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ABSTRACT

Frequent monitoring of urban environment has now been regulated

in most EU countries. Due to the design and cost of high-quality

sensors, the current approach using these sensors may not provide

data with an appropriate spatial and temporal resolution. As a re-

sult, using a wireless sensor network constructed by a large number

of low-cost sensors is becoming increasingly popular to support

the monitoring of urban environments. However, in practice, there

are many issues that prevent such networks to be widely adopted.

In this paper, we use data and lessons learnt from three real deploy-

ments to illustrate those issues. The issues are classified into three

main categories and discussed according to the different sensing

stages. In the end, we summarise a list of open challenges which

we believe are significant for the future research.
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1 INTRODUCTION

Current air pollution mitigation strategies require the air to be

monitored in an appropriate spatial and temporal scale [11, 22].

High-quality sensors installed for regulatory monitoring purposes

often have a high market price and demand frequent manual han-

dling such as re-calibration. These constraints make current sensors

prohibitively expensive to deploy, especially at a higher spatial res-

olution. Therefore, an alternative solution is urgently required. As

a result, wireless sensor networks constructed by a large number

of low-cost sensors are designed and implemented.

Low-cost sensors are defined as electronic sensors that cost sev-

eral orders less than high-quality sensors. As a result, low-cost

sensors are able to construct a higher density network with a rel-

atively low cost, which further enables data to be obtained at the

sufficient spatial and temporal resolution and addresses the issues

that the current monitoring networks are having [6, 12, 15]. How-

ever, there are many challenges that make it difficult to obtain

useful information from these low-cost sensors. It is noted that in

this paper information is considered different from data; with data

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

FAILSAFE’17

© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

being what is sensed and information being resulting models after

processing upon which decisions may be taken.

According to existing studies, low-cost sensors are prone to

failures and errors, and their general accuracy can be much lower

than high-quality sensors [18]. Hence, data from low-cost sensors

often shows various issues. For example, the data can occur at

a higher percentage of magnitude (e.g. through spikes) than the

reference data [9]; or the data can be affected or biased by other

substances in the air or interference from the environment (e.g.

cross-sensitivity) [3]. It is aware that using these data directly would

potentially bias the decision making, hence, various processes from

the calibration of sensors to optimizing the deployment of networks

have been proposed to address the data issue. However, we identify

that the inappropriate use of some of the processes would further

bias the data and needs to be avoided. Unfortunately, to the best of

our knowledge, it has not yet been widely reported.

In this paper, we discuss a list of data issues that we encountered

during our study and inference their possible causes. We further

explain why some of the data issues are significant and cannot

be compensated for by certain methods. The rest of this paper is

organised as follows. We first introduce our deployments and the

use of sensors in Section 2. Then, we discuss a list of data issues

that occurred in different stages of sensing in an order of 1) the

deployment of sensors; 2) the obtaining of sensor data; and 3) the

processing of the data from the Section 2 to 5. Finally, we conclude

this paper in Section 7 with some of the open challenges for the

environmental monitoring using low-cost sensors.

2 SENSORS AND DEPLOYMENTS

The ELM sensor, a product from Perkin Elmer, is used as the low-

cost sensor in our study [13]. It measures multiple parameters in-

cluding nitrogen dioxide (NO2), ozone (O3), temperature, humidity,

volatile organic compound (VOC), dust and noise. The parameter of

dust stands for particulate matters, PM10 and PM2.5; The parameter

of noise presents for the level of sound in decibels. ELM sensors are

powered by AC and the overall unit is about the size of a shoe box.

The sensors are designed to have a life time for about 18 months as

some of the sensors provide their data via chemicals that degrade.

Data, by default, is uploaded to a server using GSM. However, when

the GSM service is not available, data is temporally stored (within

the limits of available resources) in an on-board data logger and

uploaded again when the GSM communication recovers.

A deployment of sensors often has a purpose. In this work, we in-

troduce three of our deployments in York, UK. The first deployment

was in 2015 when we first had the ELM sensor. For this deployment,

the aim was to understand the performance of ELM sensors in an

uncontrolled environment as we only have a datasheet describing
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how it behaves in a Lab. We wanted to know if sensors can report

accurate or consistent data in respect to high-quality sensors with-

out or with a simple calibration. Hence, twenty ELM sensors were

co-located with a reference sensor for more than two months at

the Wolfson Atmospheric Chemistry Laboratories (WACL). The ref-

erence sensor is a high-quality sensor that is carefully maintained

by WACL. This location is on the west campus of the University of

York. Since it is outside of city centre and away from major roads

and junctions, the environment is believed to be consistent and

considered as mild.

Sensors may have non-unique responses in different conditions

of environments [3]. Hence, the aim of the second deployment was

to understand how ELM sensors would perform in a typical urban

environment and to determine how the response of sensors would

differ from in the mild environment. This deployment was at the

Fishergate, which is in the centre of York next to a busy junction.

This environment is therefore considered as harsh. At the Fishergate,

two ELM sensors were co-located with a high-quality reference

sensor for more than 8 months in early 2016. The reference sensor

is managed by the City of York Council and it is a part of Automatic

Rural and Urban Networks (ARUN).

The third deployment was in cooperation with ARUP to evaluate

how green infrastructures in an urban environment would impact

the micro-environment. Eleven ELM sensors were firstly placed at

the WACL for a month co-located with a reference sensor (similar

to the fisrt deployment) so that some calibration data was available

and then moved to Scarcroft road, York. In this deployment, sensors

were spread around the area, some sensors were on the road side

while others were placed in a green park. No reference sensors

were available on site. This deployment started in the middle of

2016 for more than 8 months.

For all three deployments, like most of end-users, we do not have

a direct access to the hardware during and after the deployments.

The data is obtained through the service providers and downloaded

from their server directly via the API [13].

3 ISSUES WITH THE DEPLOYMENT

The place of the deployment is often determined in advance ac-

cording to the purposes, however, real deployments are often con-

strained by practical limitations which can be unforeseen in a plan-

ning phase. In this section, we share a list of issues that we encoun-

tered during the deployments.

The first issue is the location of deployments in terms of spatial

locations. ELM sensors are powered by mains electricity instead

of battery, which is believed to address the power limitations that

many low-cost sensors have. However, our deployment is then

constrained by the power supplies. We determine the best practice

for a consistent AC supply across a city is to utilise lamp-posts.

However, locations of the sensor deployment are then constrained

by the availability of lamp-posts in the city. Lamp-posts in York are

managed by third parties, hence, deploying sensors on lamp-posts

requires their cooperation. Furthermore, getting permissions from

the local council can also be a time consuming process. Therefore,

sensor deployments in urban environment can be very expensive

in terms of both labour costs and arrangement.

Another issue is the location of deployments in terms of height.

According to the regulatory, the air-intake of a high-quality sensor,

which is used as a reference in this work, should be placed at

1.60 meters above the ground. This height is to determine pollution

exposures for adults. Other studies suggest to place sensors lower as

children beingmore vulnerable than adults are far below that height.

However, our deployment failed to meet either of the requirements.

Since we do not know how local community would react to the

deployment and we have to prevent the sensors being physically

damaged, sensors on lamp-posts are placed at three meters above

the ground and sensors on top of high-quality sensors are locked in

a metal cage. We are aware that our deployment indirectly ignores

the variation of the height. However, considering the effect of the

height is not our main interest and to the best of our knowledge

no studies have shown it is significant, we did not investigate it

further.

Since ideal locations of deployment can often be constrained by

the practical limitations, obtaining of data in an desired location

can be an issue. Furthermore, some methods of data compensation

require the network or sensors in a certain topology or in a certain

spatial and temporal range [4, 10, 16]. As a result, those methods

may be difficult to apply in such circumstance.

4 THE ISSUES OF OBTAINING DATA

In this section, we discuss issues that we encountered during the

data acquisition. The process of data acquisition collects data from

the deployed sensors for the further processes. At this stage only

the data pattern is checked by visual inspection. The data pattern

is classified as the normal and abnormal based only on domain

knowledge. An abnormal data pattern is often associated with the

issues in networks or sensors, such as data gaps caused by the

communication issues and constant values caused by malfunction

of sensors [18]. The abnormal data pattern often suggests that a

physical inspection of sensors or networks may be needed. The nor-

mal data pattern indicates that the monitoring networks is working

properly in the system level, e.g. the communications. However,

it would require further processes to evaluate the accuracy of the

data.

4.1 Data gap

Since the sensors are designed to provide data in a consistent time

interval, any gaps in the data are considered as abnormal. We have

an omission failure that causes a complete loss of the data. Then,

long terms and short terms data gaps can also be observed across

all deployments.

Sensors deployed at the Fishergate failed to report data back to

the server after the deployment. We identified that it was due to the

effect of the metal cage. The cage that protects the sensors blocks all

signals of the communication. For the deployment in WACL, 11 out

of 20 sensors stopped getting measurements after 2 months of the

deployment. It was due to the GSM service providers. Those issues

can results in a permanent loss of data and a physical inspection

may allow the cause to be corrected.

The remaining nine sensors show a partial loss of the data, which

have a similar pattern to Figure 1. Figure 1 shows the completeness

of data received in a week time from these nine ELM sensors at
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WACL. The colour is associated with a percentage of data that have

been received in an hour. Light yellow indicates the data has been

completely received (100%) and dark blue shows a complete data

loss (0%).
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Figure 1: Data completeness

In the figure only a small percentage of data are completely re-

ceived whereas the data loss can be observed frequently in different

levels. Such data pattern can be widely observed across all of our

deployments despite the system having a mechanism to avoid the

data loss as mentioned in Section 2.

An interesting observation during the deployment is the data

gaps in WACL occur more frequently during the university term

time than the off-term. This relationship suggests that some of

the data loss can be associated with the volume of communication

traffic. Since during a term timemore GSM users will share a limited

bandwidth, the data collision is likely to occur. However, as we don’t

have the direct access to the hardware, we haven’t had sufficient

evidence to confirm this.

It is noted that ELM sensors were commercially available. Hence,

the reliability of the system in terms of data communication should

be better than many open-source systems. However, data gaps can

be observed across all sensors. It suggests that data communication

for WSN in urban environment may still be an issue.

4.2 Data uncertainty

Data uncertainty describes how data vary from the ground truth.

Since data reflects the variations from the sensors and the environ-

ments, we believe a higher variation of a sensor will lead to a higher

data uncertainty. Low-cost sensors are widely reported to have a

larger variation (e.g. due to low sensitivity and selectivity) and the

response of the sensor is easier to be affected by the environment

(e.g. due to cross-sensitivity). Hence, data from low-cost sensors

often have a larger uncertainty.

Sensor ageing and material degradation can occur in all sensors

at different stages, and they are believed to influence the response

of a sensor and further affect data uncertainty, like a drift of mea-

surements.

Figure 2: Data of ELM from Fishergate

Figure 2 shows a week long measurement of NO2 from a ELM

sensor at the Fishergate. In the figure, a large variation of data can

be observed. Since it is impossible to separate the variations that

caused by the sensor and the environment, it would not be possible

to identify the drift of sensors or to know the drift rate. It shows

an importance of having a ground truth during the deployment.

The ground truth will indicates the variation of the environment.

Hence, the variation of the sensor can be subtracted from the data.

Furthermore, environmental interference or other unknown is-

sues can cause sensors to misbehave temporally, which results in

abnormal data patterns (e.g. spikes) and affects data uncertainty.

The random data patterns caused by sensor issues are referred to as

anomalies in this work. For example, an unexpected spike caused by

communication interference in the continuous data is considered as

an anomaly. Since anomalies in the data can have random patterns,

compensation of anomalies can be difficult in practice. Therefore,

identifying anomalies and removing them can be important for

reducing data uncertainty.

The detection of anomalies can be difficult for the environmental

data. For example, we can observe a few spikes in the Figure 2.

However, we would not confidently classify them as anomalies

since those spikes may also be introduced by events at various

levels or time-bands [23], such as spikes caused by a bus idling

near a sensor (the minutes time band), York race days (the day time

band), and roadworks (the week time band). As a result, knowing

environmental conditions can be important for any further data

processing.

In the stage of data acquisition, data is only checked visually.

Gaps or certain patterns in data can indicate whether the sensors or

network is working properly at some degree. However, it is difficult

to compensate the data or to evaluate the data uncertainty when

no ground truth is available. Moreover, in the Section 5, we will

illustrate that processing methods can have different impacts on

data uncertainties. Therefore, processes and techniques are needed

to understand the uncertainties so that some of them can be reduced.
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5 THE ISSUE OF DATA PROCESSING

The processing of data aims to improve data quality to a standard.

The data quality is often defined by end-users indicating whether

the accuracy of the data is sufficient for their processes. Therefore,

ideally we would know the uses of the data from end-users and op-

timise the techniques accordingly. As we do not know the uses, our

aim of the data processing becomes to improve the data quality by

maximising the accuracy of the data with respect to the reference.

As explained in Section 4.2, data is sensitive to both the environ-

ment and the specific sensors. Hence, we believe that if the sensor

issues are properly addressed, the accuracy of the data could be

significantly improved. Therefore, our data processing is mainly

focused on compensating sensor issues, such as sensors calibration

and anomaly detection [3, 23]. In this section, we share a list of

important findings encountered during the processing of the data.

5.1 Reference

As mentioned in Section 4, it is important to have a ground truth

for data processing. However, unlike in a Lab environment, con-

ditions in real environments do not have a control, which results

in obtaining a ground truth in the environment of deployments

difficult. In most practices, data from high-quality sensors is often

considered as the ground truth and is referred to as the reference.

Since no sensor can obtain an absolute ground truth, such practice

potentially biases the result of the process. However, to the best of

our knowledge, there is no better solution. Another issue of using

high-quality sensors as references is the temporal resolution. Due

to the design of the sensor, the reference data is often provided on

an hourly basis. Consequently data obtained in a higher temporal

resolution, like a minute time band, will require an aggregation

process before it can be compared to the reference. As a result, the

temporal scale of low-cost sensor can be affected.

For some applications, the ground truth is also suggested to be

obtained using statistical estimation, likemacro-calibration that will

be discussed in Section 5.3. However, comparing the ground truth

that obtained from high quality sensors, such approach introduces

more uncertainty and has less accuracy. Hence, using an estimated

reference is not suggested if a high-quality sensor is available.

5.2 Data aggregation

The main purpose of data aggregation in this work is to average

data with a higher temporal resolution into the same resolution

as the reference (hourly) for the evaluation. Data aggregation can

be generally classified as an on-line or off-line process. An on-

line process stands for the data is aggregated on the sensor before

it is transmitted to a server. An advantage of this process is it

significantly reduces the amount of data that needs to be transmitted

and saves the costs of communication. However, such a process is

not reversible, which means that if the aggregation process makes

inappropriate transformations they cannot be recovered. On the

contrary, an off-line process transmits everything back to a server.

As a result, raw data can be securely stored and can be recovered

at any time when it is necessary. Since our sensors are powered by

AC, the power is not an issue. Hence, we utilise an off-line process

in our study. It is noted though the off-line process can make the

errors due to communications worse as discussed in section 4.1.

For the techniques of the data aggregation, arithmetic mean

and median are often used. The arithmetic mean is the most often

used technique to average the data. It is the sum of received values

divided by the number of received values. However, it is noted that

the arithmetic mean is sensitive to the sample size (the number of

received values). Considering the number of samples in a window

of an hour can be non-unique due to the data gaps, using arithmetic

mean can result in the confidence interval of the mean value from

each hour being different. Moreover, the mean is also sensitive

to extreme values. For example, in Figure 2, if all observed spikes

were anomalies, then the mean value could be largely influenced

by the anomalies. However, it does not mean using median value is

always a better option than the mean. As median value is a single

value, median value will not represent for other samples. If the

spikes do have an meaning, taking the median value may not be

appropriate as it ignores all information from the spikes. Moreover,

if a percentage of anomalies is more than 50% on an hourly samples,

the median value is then biased.

Another issue is the sliding window for the hourly average.

Even though a different starting point of a sliding window will

not significantly affect the result, the result will still be affected by

the use of different samples. Hence, it is believed that if we know

how the reference is produced, a better sliding window could be

determined and the uncertainty can be minimised.

Finally, depending on the type of the network, such as flat and

hierarchy network, the strategy of data aggregation can be different.

It is also worth considering how to archive the data and how to

balance the trade-offs, such as trade-off between the communication

cost and amount of data to be transmitted.

5.3 Calibration

Calibration can be important for the data process as it is believed to

address a systematic variation of sensors. However, the calibration

processes required by different applications may be non-unique,

which could lead to various issues. We discuss the issues from cali-

bration according to the calibration of networks and the calibration

of a single sensor. We further classify the calibration of networks

as macro-calibration and micro-calibration according to [3].

5.3.1 Macro-calibration. Macro-calibration utilises the consis-

tency of nearby environment and maximises the similarity of mea-

surements from the neighbouring sensors. This calibration requires

the ground truth to be estimated from corresponding sensors. As

mentioned in Section 5.1, the estimated ground truth may have

large uncertainties, which can further affect the result of calibration.

Existing studies that utilise macro-calibration often require a

ultra dense network [2]. However, considering the issues discussed

in Section 2, it can be difficult to deploy a network to fit the require-

ment of calibration in cities.

The authors in [1] propose a technique that can estimate ground

truth without requiring a dense network by assuming a network can

oversample the underlying signals. However, our understanding

of the paper suggests that such a method requires targeted signals

being consistent over the space, e.g. temperature. If the signal is not

or less spatially consistent, like NO2, a dense network will still be

required. Otherwise, the method will obtain a biased ground truth

and affect the result of calibration.
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Figure 3: Inconsistency

Moreover, we also need to aware if the calibration process is

appropriate for the end-users. Figures 3 shows boxplot of 2 months

worth of O3 from 10 ELM sensors at WACL. The figure shows

O3 measurement is inconsistent. Ideally, we would like to use a

reference sensor co-located with those sensors to identify whether

the inconsistency of the measurements was due to the environment

or sensors. However, since the reference would not also be available,

such evaluation may not be performed in many real deployment. As

a result, the actual variation of the environment could be considered

as the variation of sensors and be leveraged in a macro-calibration

process. If the calibrated data, later on, is used to determine the

environmental difference between locations, the determined result

is likely to be biased.

Above examples show the importance of having references in

the calibration process.

5.3.2 Micro-calibration. Micro-calibration, on the contrary, re-

lies on reference sensors. However, this would require a reference

sensor to be co-located with every low-cost sensor. Since the re-

quirement can be practically difficult, solutions that utilise a fresh

calibrated sensors to propagate the calibration has been widely

used [5, 16].

The biggest issue in using calibrated sensors to propagate the

calibration is the calibration errors as calibration errors of individual

sensor will propagate through the calibration path. As a result,

the error of micro-calibration will be closely associated with the

calibration of errors of individual sensor and the size of the network.

Furthermore, the propagation of calibration will also require

similarity or consistency of the environment. As a result, it may

face to a similar problem that discussed in Section 5.3.1. Some

suggest using the calibration function obtained during the night

time as the air pollutant is more spatially consistent than during

the day time. However, the pattern of pollutant in a day and night

time can be different as shown in Figure 4. The Figure 4 shows

the measurements of O3 in the day and the night respectively. The

measurements were averaged into hourly basis using median value.

It suggests that the measurements are generally lower during the

night than the day. As a result, the calibration function determined

using the night time data may not be optimal for the data from day

time [3].
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Figure 4: Day and night pattern of Ozone

5.3.3 Calibration of a single sensor. As errors from a single

sensor calibration can be propagated in the calibration of networks,

reducing the errors can be significantly important for the calibration

of the network.

Ideally, every sensor will undertake a series of lab tests. In the lab,

the environment is encapsulated and sensors will not be influenced

by other gases or conditions. However, since sensors in real practice

will be exposed in an environment that contains multiple gases and

some of them can react each other under certain environmental

conditions, calibration of sensors in a real environment can be

different from the lab.

A conventional way to calibrate a sensor in real environments is

to determine a predictive model between an uncalibrated sensor and

its reference. However, due to cross-sensitivity and other unknown

reasons, the correlation between the data from low-cost sensor

and the reference is often weak [9]. As a result, the calibration

can be difficult and the calibration errors are often large. Figure

5 shows an example of a low correlation between an ELM sensor

and a reference. It suggests that a more comprehensive calibration

method may be required.

The authors in [9, 19ś21] suggest utilising the cross-sensitive

parameters, temperature and humidity in the calibration as the

response of sensor can be closely associated with those variables.

Their result shows the calibration errors are significantly reduced.

However, it is noted that no two sensors are identical, hence, it is

necessary to calibrate every sensor in the network. Furthermore,

locations would affect the calibration as the environmental condi-

tions can vary in different places. As a result, having the ground

truth for the calibration would be an issue.
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Figure 5: Correlation

6 DETECTION OF ANOMALIES

As explained in Section 4.2, the anomalies can potentially increase

data uncertainty and hard to be compensated. As a result, detection

and removal anomalies is another important process to ensure data

quality.

For the detection of anomalies, understanding the pattern, magni-

tude and percentage of anomalies can be important. As our sensors

are deployed in real environments which means that the ground

truth of anomalies may be unavailable, it can be difficult to accu-

rately label or deeply understand anomalies. As a result, most of

quantitative analysis for anomaly detections are evaluated on an

artificial data. However, since the understanding of anomalies from

environmental data is not comprehensive, the artificial data may

not fully simulate the reality, which leads to an issue of detecting

anomalies in real applications.

Detection of anomalies has been an active research in many

domains. Since anomalies in our dataset may not have an unique

pattern as explained in 4.2, many well-known methods or tech-

niques that rely on data pattern to distinguish anomalies are not

applicable. For example, supervised learning methods may face

issues when the anomalies are not correctly labelled in the training

phase; or threshold based methods may be difficult to accurately

classify the anomaly as anomalies do not have an unique data pat-

tern.

The authors in [23] suggests that data that is difficult to be

separated in one feature space may be easier to be separated in

another feature space. Since the fact that the correct measurements

are likely to be related in a certain context, whilst the anomalies may

be stochastically unrelated to the correct measurements, utilising

contextual information is believed to help to detect anomalies. For

example, in the Figure 2, if the spikes were also observed in the data

of its co-located sensors, the spikes are unlikely to be anomalies.

Otherwise, we would have a higher confidence to classify the spikes

as anomalies. Even though this observation is intuitive simple,

understanding the stochastic relationships and how context affects

the relationships is not for many systems including wireless ones

[7, 8].

Temporal dependency and spatial dependency are mostly used

contextual information in the literature [14, 17]. However, they may

not be ideal for our application. Figure 6 shows an auto-correlation

of NO2 between time t and time t − 1. It suggests that in our

application the temporal dependency can be weak, which suggests

that utilising temporal dependency can be insufficient for anomaly

detection in our application. Figure 7 shows the data of NO2 from

WACL and Fishergate respectively, at each location an ELM sensor

is co-located with a reference. Comparing the sensors atWACLwith

those in Fishergate, it is believed that utilising spatial dependency

for the detection of anomalies is also inappropriate as the spatial

variation can be significant for certain parameters.

Real data suggests that existing contextual information may not

be applicable for our application. Since there is a lack of studies in

understanding anomalies in environmental data, it is still not clear

what contextual information is relevant or should be utilised for

the detection of anomalies of a particular parameter.

Figure 6: Auto-correlation

7 CONCLUSION AND OPEN ISSUES

In this paper, we share a list of issues that we encountered during

our deployments.

In the first deployment, temperature and humidity show a con-

sistent measurement over the number of sensors. But the measure-

ments of NO2 and O3 have a large variation among the different

sensors. Considering the distance between sensors are within 5 me-

ters range and the environment condition is relatively consistent,

we suspect the inconsistency of data was caused by sensors.

In the second deployment, the magnitude of measurement is

constantly and significantly higher than the reference, especially at

the a high temporal resolution. Apart from low-cost sensors having

a lower accuracy, we believe the difference in measurement is also

associated with the dynamic of the environment, such as emissions
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Figure 7: boxplots for NO2 in two locations

from vehicles. Since low-cost sensors sample the environment more

frequently than high-quality sensors, every 20s, low-cost sensors

are more affected by the dynamics of the urban environment.

In the third deployment, the calibration functions determined

at WACL was soon found to be invalid in the deployment. It is

because some of parameters change with time and space. For ex-

ample, the temperature is different between summer and winter;

the NO2 concentration is inconsistent between mild and harsh

environments.

From those deployments, we observe various data issues and

some of them can easily be compensated. However, others are more

difficult to address. For example, the calibration of the networks

can be one of them. As explained in Section 5.3, the propagation of

calibration function in a network relies on the consistency of the

environment. However, an urban environment is dynamic, which

would result in large calibration errors in the result. On the other

hand, it is also practically impossible to have reference sensors

co-located with every low-cost sensor in the network. Therefore,

the calibration of networks is still an open challenge.

We believe that having a transferable calibration model can be

significantly useful for the calibration of networks. Ideally, the

transferable model is able to obtain an calibration function in one

location, e.g. in a place where the reference is available. Then, the

calibration function is still working when sensors are moved to a

different location. As the sensor response is closely associated with

different environmental conditions (e.g. different concentration

and combination of gases) and various environmental variables (e.g.

vehicles, wind, sunlight), if we can identify how the sensor response

is affected by those variables and conditions, the transferable model

can be obtained by automatically adjusting the differences.

Furthermore, the detection of anomalies in the data can be an-

other issue. Currently, we often do not knowwhy and how an anom-

aly is caused. Hence, distinguishing anomalies from real events

faces a high false positive rate, which can have a significant impact

on data analysis. For example, if data caused by an event is wrongly

classified as anomalies, a decision may be taken differently. There-

fore, a better understanding of anomalies and their causes is also

important.

Apart from the examples above, there are still many open issues

that prevent low-cost sensors to be widely adapted for the urban

environmental monitoring. We identify some of the core issues as:

• What environmental variables affect the response of the

sensor most and how to determine them?

• What are the properties of anomalies in environmental data

and what are their main causes?

• How can we have more reliable and diverse ground truth for

the evaluation of low-cost sensors or networks in different

time-bands?

• How context affects the approaches to calibration and anom-

alies?

• How to balance the available resources against the usefulness

of data, e.g. when deciding between off-line and on-line

methods?
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