
This is a repository copy of Feasibility of shape memory alloy in a tuneable mass damper 
to reduce excessive in-service vibration.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/124951/

Version: Accepted Version

Article:

Huang, H., Chang, W.-S. orcid.org/0000-0002-2218-001X and Mosalam, K.M. (2017) 
Feasibility of shape memory alloy in a tuneable mass damper to reduce excessive 
in-service vibration. Structural Control and Health Monitoring, 24 (2). e1858. ISSN 
1545-2255 

https://doi.org/10.1002/stc.1858

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


For Peer Review
����������	
��
�
���
�����	
����	
��
�
��������
����


������
��
������
���������
����������
����������

�������	� �����������	
���
������
�������
���
�����


������
������ ���������������

�
�� ���
������
���� ��	� �������!�"�����

�������#$
���%�# ��!��&��!��	� �'�(�#����'

��$������)
����*�&��!���	� +���,-�+�� �.�/�
0���
� ��*�1��!-�������$�����*�&��!
����������%��
0
��
2�,
����
�,�
�!��,-������!��.�/�
0���
� ��*�1��!-�������$�����*�&��!
����������%��
0
��
2�,
����
�,�

�����$-�3!��
%�
�.�/�
0���
� ��*����
*���
�-�1��4��� -������������
2�,
����
�,-�
��!��
��-���%�
����
����

3� 5��%�	�
�!����$�$�� ����� -����&��
�-�����%�$����%�$���-�6
#���
�����%���
��-�
������0
���0
#���
���

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc



For Peer Review

1 

Feasibility of shape memory alloy in a tuneable mass damper to 

reduce excessive in-service vibration 

Haoyu Huang
a
, Wen-Shao Chang

a,c
, Khalid M. Mosalam

b
 

a
 Department of Architecture and Civil Engineering, University of Bath, Bath, UK 

b
 Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA 

c 
Corresponding author, wsc22@bath.ac.uk 

Abstract 

The applications of shape memory alloy (SMA) in vibration reduction are benefited by its 

superelasticity and thermomechanical properties. This study is a part of a series of research 

projects focused on reduction of timber floor vibration. In this study, the feasibility of this tuneable 

mass damper is tested for in-service vibration reduction. At first, the effect of temperature ranging 

from 11℃ to 120℃ on the dynamic characteristics of SMA was investigated under different pre-

stressed levels. At higher temperatures, the damping ratio reduces whilst stiffness increases, and 

vice versa with decreasing temperature. SMA is sensitive to temperature when the pre-stressed 

level is near the phase transformation stress. Next, the analytical model of timber floor system was 

built and idealised as a 2-degree-of-freedom system. Thirdly a series of lab tests were carried out 

and a damper consisting of an SMA bar was added on a cantilever beam with different natural 

frequencies, which represents floor system in the model. The results show that the vibration 

response of the system can be significantly reduced by the damper developed in this project, when 

the damper has resonance with the system. The mass of the system was then changed so as to 

make the damper out-of-tuned; the damper was then re-tuned by cooling/heating on SMA. After 

retuning of the damper, the response of the system was effectively reduced, which demonstrates 

the effectiveness and feasibility of employing SMA in the damper system. 

Keywords 

Shape memory alloy, Cu-Al-Mn, Tuned mass damper, Vibration reduction, In-service vibration 
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1 Introduction 

Structural in-service vibration is a common behaviour which can be excited by both natural and 

human factors. Excessive floor vibration is an important serviceability issue generally caused by 

human activities like dancing and walking or the utilisation of machinery, especially when more 

economic construction materials and more light-weight elements are employed in timber 

engineering [1-3]. The vibration amplitude is much higher when the frequency of periodic forces is 

equivalent with the structural frequency, i.e. resonance occurs. To mitigate the vibration, tuned 

mass damper (TMD) installed on the floor systems served as an energy dissipater is studied [4-6], 

above all, designing less bulky damper still needs more research. This paper presents a part of a 

series of research focused on reducing timber floor vibration; as seen in Figure 1, in this project, a 

tuned mass damper using bending shape memory alloy (SMA) is developed. This TMD system is able 

to be space-efficient compared with TMD using tensile components and it can be placed between 

the beams, also, it aims to be active-tuneable.  

 

Figure 1 Timber floor using tuned mass damper by bending SMA 

Shape memory alloy is a smart material and has been used in the medical industry, and mechanical 

and civil engineering sectors. SMA has superior mechanical characteristics compared to conventional 

materials, such as large recoverable deformation, high damping capacity and solid-solid phase 

transformation ability [7-11].  

Two unique engineering characteristics of SMA are defined as superelasticity and shape memory 

effect (SME), which is shown in Figure 2. The shape memory effect is the ability of the alloys to 

revert to their initial shape upon heating until they enter their phase transformation temperature. 

Superelasticity is the ability of the alloys to experience comparatively large recoverable strains.    
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Figure 2 Stress-strain curve demonstrating the shape memory effect (left); superelasticity (right)  

 

Figure 3 (1) Plastic deformation; (2) superelasticity; (3) shape memory effect  

Because SMA is a solid-solid phase transformation material, the phase state depends on several 

different temperature levels. The phase transformation temperatures are the intrinsic properties of 

SMA represented by	��, ��, �� and ��  in Figure 3, which stand for the start and finish (end) 

temperatures of martensitic and austenitic transformation, respectively. The deformation is 

superelastic when the working temperature is between �� and �� if the latter is above those four 

temperatures mentioned, and �� 	indicates the maximum temperature required to induce 

superelastic deformation [12]. The superelasticity property decays when the working temperature 

approaches �� and completely vanishes at temperatures above	��, working temperature should be 

below �� for the shape memory effect to take place. Earlier works on this topic can be found in [13, 

14]. 

The sensitivity of SMA to temperature is a potential for applications, as shown in the studies by 

Araya, Marivil [15], Dolce and Cardone [16] and Andrawes and DesRoches [17]. They demonstrated 

that the transformation stress increases with the rise of the working temperature, which leads to the 

increase in stiffness. Shaw and Kyriakides [18] indicated the strong dependence of the stress-strain 
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curve of superelastic SMA on temperature results first in the decrease of the equivalent damping 

ratio with increasing temperatures. However, the equivalent damping ratio starts to increase around 

and above temperature	��, i.e., when the superelasticity decays and vanishes. SMA therefore is 

able to exhibit different deformation forms through adjusting temperature states.  

SMAs have been used to reduce vibration, due to their superelasticity and high energy dissipation 

capacity. Therefore, satisfactory fatigue working life is of importance; SMA material 

characterisations regarding to fatigue-fracture and damping evolution were studied and the 

enhancement of stability was discussed [19-24]. Pre-training before the application is a solution to 

obtain a stable behaviour so as to reduce the influence of stabilisation [16]. The SMA-based 

vibration reduction systems can be classified into passive and active controls. When SMAs are used 

in a passive control system, superelastic and high damping capacity are utilised. Several researchers 

have developed SMA-based energy-absorption devices which generally consist of SMA wires [25-30]. 

These devices provide high damping and recentering capacity, and can be easily installed in the main 

structures to increase damping.  

Along with the trend for in-service adaptability in engineering, SMA is becoming a popularly 

investigated material as it can provide active control functions by its particular thermomechanical 

properties [31, 32]. For active vibration control, the SME property of SMA is frequently used to 

actuate the system by its thermal activation [11, 32, 33]. When the martensitic SMAs are heated, 

they will recover their initial shape (temperature-induced transformation) and the recovering force 

can be used as a mechanical stroke for actuation. The requirement of this application is that the 

heating/cooling cycle on SMAs should be fast; otherwise the effectiveness of active control would be 

reduced.  

Another way to use SMAs in active control systems is referred to semi-active control in which the 

physical or mechanical properties are changed by an external actuation. SMA can be used to re-tune 

the frequency to change the main structural frequency. Liang and Rogers [31] heated NiTi SMA 

springs by a power supply and observed the variation in the spring constant, enabling the system to 

control the vibration. Williams, Chiu [34] used SMA in a tuned mass damper attached to a cantilever 

beam. By changing the stiffness of SMA using different heating combinations, it was observed that 

the vibration can be attenuated for several discrete frequencies. Rustighi, Brennan [35] developed 

an active tuned mass damper system and found that temperature control of SMAs can control the 

frequencies of the damper within a limited range. The aforementioned temperature active control 

approach using SMA was developed so as to reduce the machine-induced vibration with a specific 

known frequency to be tuned; however, in a building structure the in-service vibration often involves 
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a wide range of frequencies. This paper aims to implement Cu-Al-Mn SMA in a tuned mass damper 

and optimise its effectiveness by varying stiffness and damping of the SMA.  

2 Dynamic characteristics of SMA under different temperature and pre-

stressed levels 

Cu-Al-Mn SMA is selected to test in this study as copper has much higher thermal conductivity 

compared with other metals (nickel and titanium), which is efficient to keep the inner temperature 

and surface temperature of SMA bar consistent. It is important that copper-based SMA costs less 

money, therefore has the potential for civil engineering applications regarding to its large demand 

[36, 37]. In addition, the development of Cu-Al-Mn SMA in civil engineering is underway in recent 

years [9, 36, 38-40]. In this study, the dynamic modulus and damping of Cu-Al-Mn SMAs were tested 

at different temperatures and pre-stressed levels, since these dynamic characteristics may vary with 

the variation of the pre-stressed levels because of phase transformation.  

2.1 Experimental methods 

A superelastic Cu-Al-Mn (Cu = 81.84%, Al = 7.43% and Mn = 10.73% by weight)  bar with a diameter 

of 12 mm and length of 125 mm was used in this study, which was provided by Furukawa Techno 

Material Co., Ltd., Japan. The phase transformation temperatures are	M� = −74℃,M� = −91℃, 

A� = −54℃ and	A� = −39℃, so superelastic deformation occurs at room temperature. The SMA 

used is a polycrystalline material and the grain size is 54 mm. The SMA bar was machined so as to 

have a rectangular section in the middle with a dimension of 10×3 mm
2
 and the effective length for 

vibration was set to be 50 mm as shown in Figure 4 (a). This rectangular- section zone is the effective 

zone.  
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Figure 4 (a) Cu-Al-Mn SMA vibration sample; (b) SMA free vibration test set-up 

The SMA sample was tested as a cantilever beam under free vibration as shown in Figure 4 (b).  A 

constant force of about 14 N was applied to the cantilever beam by hanging a steel block to initiate 

the displacement in each test and free vibration was generated after the force was removed. The 

acceleration was measured by an accelerometer attached to the cantilever beam at a sampling rate 

of 100 Hz for a duration of one minute.  

The experimental tests were conducted under different pre-stressed levels in order to examine the 

sensitivity to temperature under different pre-loading conditions. The pre-stressed levels were set 

by the weights fastened through the hole on the steel block (Figure 4 (b)). Different loads have been 

selected as 13.1 N, 21.7 N, 35.7 N and 52.7 N to provide different pre-stressed levels of 79 MPa, 131 

MPa, 216 MPa and 319 MPa at the end of effective zone on clamping side. The pre-stressed levels 

presents the maximum stress (at the location of surface) calculated using the product of the bending 

moment and the distance from the neutral axis divided by the area moment of inertia. These loads 

lead to corresponding strain values of 0.30%, 0.47%, 1.21% and 3.04%. The strain values were tested 

by strain gauge at the location where the pre-stress values are calculated, and the static loading 

strain-stress curve can be estimated in Figure 5. From Figure 5, the transformation strain is at about 

(b) 

(a) 
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1%, which has also been found in our previous materials studies. It can be observed that the pre-

stressed levels at 216 MPa and 319 MPa can induce nonlinear deformation and SMA is under stress-

induced transformation from austenite to martensite.  

In each pre-stressed level, the SMA beam was tested under free vibration at a wide range of 

temperatures (11℃, 17℃, 21℃, 50℃, 80℃ and 120℃). To reach 11℃	and	17℃, the SMA beam 

was cooled down by surrounding ice cubes. SMA was heated by wrapping energised carbon fibre. 

The high temperature levels can be controlled and stabilised by adjusting voltage and current 

controlled by a DC power supply. During the cooling/heating, the surface temperature was 

measured by an infra-red thermometer. Even though copper-based SMA has high thermal 

conductivity, 2-minute extra heating and cooling were done to make sure inner temperature reaches 

expected value. Under each pre-stressed testing condition and temperature condition, three tests 

were repeated to evaluate the statistical variations. 

 

Figure 5 Static strain-stress graph of SMA cantilever beam  

2.2 Results 

The data recorded was analysed to obtain the natural frequency and damping ratio. In the analysis, 

linear-prediction SVD (singular-value decomposition) -based Matrix Pencil method (MP), 

summarised by Zieliński and Duda [41] and proposed by Sarkar and Pereira [42], was applied to 

compute the natural frequency and damping ratio. The MP approach is a computationally efficient 

and precise method producing a small variance.  

The MP approach aims to deal with the approximation for complex exponentials in the signal. The 

observed signal is modelled as Equation (1): 
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��� �! "# $%&%' ( )�� �!*
%+,  (1) 

&% = -�./01230!45 (2) 

where ��� �! is the noise-contaminated signal, $%  is the amplitude,  � is the sampling period, � �  is 

the time duration, )�� �! represents the noise, and � is the estimated number of complex 

exponentials. In Equation (2), 6% and 7%  are damping factor and angular frequency, respectively and 

8 = √−1. By using the MP approach, &% can be solved based on SVD.  

              (a)               (b)  

Figure 6 Normalised free vibration response at pre-stress level of 216 MPa in first 4 seconds (a) at 11

Υ; (b) at 80Υ  

Figure 6 shows the free vibration at the pre-stress level of 216 MPa in first 4 seconds in comparison 

between 11℃ and	80℃ which are the two temperatures considered reasonable in the applications. 

For comparison, the acceleration data in Figure 6 (a) are normalised to 0.29 and those in Figure 6 (b) 

are normalised to 0.86. It can be observed that the vibration frequency is higher at	80℃, and the 

damping is higher at	11℃. The effects of the temperature on the natural frequency of the SMA 

cantilever beam at pre-stressed level of 216 MPa are presented in Figure 7. From the tests, the 

natural frequency decreases with the increase in the pre-stressed levels and decrease in the working 

temperature. On the other hand, the natural frequency of the SMA beam shows higher dependency 

on the pre-stressed levels than on the temperature, which implies that changing the mass attached 

to the beam is a more efficient way to adjust the natural frequency. The equivalent stiffness 

depends on temperature and pre-stress levels. From Figure 8, the stiffness increases with the 

increase of temperature. In the tests, it is found the stiffness of SMA beam with pre-stressed levels 

of 79 MPa and 131 MPa increased by 10.7% and 17.3% when the working temperature was 
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increased from 11℃ to	120℃, respectively. The transformation stress is highly sensitive to 

temperature and the stiffness can be influenced by temperature significantly at higher pre-stressed 

levels. However, for the higher stress level of 319 MPa the change is not significant, because 

stiffness increases when the SMA is cooled down to 11℃. This behaviour can be explained by the 

fact that SMA may have deformed in martensitic elastic state. As presented by Gencturk, Araki [43], 

after loading to 6% strain, Cu-Al-Mn SMA is in martensitic elastic state and the stiffness starts to 

increase.  

 

Figure 7 Effect of temperature on the natural frequency of SMA cantilever beam at pre-stress level of 

216MPa 

 

Figure 8 Effect of temperature on the equivalent stiffness of SMA cantilever beam at pre-stress level 

of 216MPa 
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Figure 9 Effect of temperature on the damping ratio of SMA cantilever beam at pre-stress level of 

216MPa 

In Figure 9, the damping ratio is higher at lower temperatures. From the tests, it is also observed 

that a higher pre-stressed level can dissipate more energy since the SMA deforms in the nonlinear 

range. Under 216 MPa pre-stressed level, the damping ratio can be changed most significantly, from 

1.84% at 11℃	to 0.20% at	120℃ as shown in Figure 9. When the SMA is cooled down, the 

transformation stress can be lowered and the SMA can be easily transformed to martensite. This 

test shows that the SMA is more sensitive to temperature when the pre-stress level is near the 

phase transformation starting stress due to the fact that the deformation can be transformed easily 

between linear and nonlinear ranges by changing the temperature.  

2.3 Discussion 

Previous research has shown the same trend as observed in this study; higher temperature leads to 

higher stiffness and lower damping capacity. However, higher temperature above the range of this 

test could result in an increase in both damping ratio and stiffness [12, 18].  

Torra, Isalgue [44] reported that temperature affects the stiffness and damping of both copper-

based SMA and NiTi-based SMA but that the dependency differs, and this can also be evidenced by 

works from Strnadel, Ohashi [45] and Araya, Marivil [15]. The rate which describes the relationship 

between temperature and stress is called the Clausius-Clapeyron coefficient (C-C slope). The results 

of Torra et al. (2004) show the C-C slope of NiTi alloy is 6 times more than that of the Cu-Al-Be. 

Niitsu, Omori [46] indicated that the C-C slope for Cu-Al-Mn SMA was 2.7 MPa/℃ in their tests, and 

Nemat-Nasser, Choi [47] estimated the NiTi SMA C-C slope was 6 MPa/℃. Therefore, it can be 

concluded that the growth of transformation stress leading to increase in stiffness, with temperature 

of NiTi-based SMA is larger than that of copper-based SMA. For precise adjustment using 

temperature, if the C-C slope is large, it is difficult to adjust to the target stress exactly, as high 
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precision of temperature control is hard to achieve. In this case, copper-based SMA is more 

appropriate than NiTi. However, for the purpose of increasing the stress by a large margin within a 

short time, NiTi exhibits a better performance. Copper-based SMA and NiTi SMA can therefore play 

different roles in active control. Moreover, how to develop a system to control temperature via 

heating and cooling will be a next step. In the future, more efficient and more applicable cooling 

method such as 1,1,1,2-tetrafluoroethane cooling system will be developed. 

The results of dynamic characteristics are calculated from a free vibration generated by a specific 

initial force, and the initial force is selected based on the measurement range of accelerometer and 

tools in the lab. It is important to bring out that stiffness values and damping values are amplitude-

dependent, especially damping depends on the hysteresis. The damping ratio (ξ) has the relationship 

as seen in the equation: ξ = ΔW/(4πW), in which ΔW is the dissipated energy, and W is the 

equivalent elastic strain energy [48]. Therefore, stiffness and damping values are changeable with 

the hysteretic curve and the specific values should be further studied in real time in order to 

determine the amplitude dependence. In this test, the dynamic characteristics are averaged values 

form a one-minute free decaying wave including different amplitudes.   

3 Application of SMA to tuned mass damper 

3.1 Fundamentals of tuned mass damper 

Tuned mass damper (TMD) is a less-complicated device for structural response reduction in respect 

of its easy installation on structures. TMD is a device consisting of a spring, damper and mass [49]. 

The function of TMD is that its natural frequency can be tuned to a particular frequency to match 

the main structure, so the damper can resonate with the structure. The motion of TMD is a way of 

outputting energy; thus the energy input in the structure can be dissipated and the vibration can be 

mitigated.  

 

Figure 10 Idealisation of the timber floor system with TMD 
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Figure 10 is an idealisation of the timber floor system with TMD (Figure 1) to describe the behaviour. 

:, represents the concentrated mass of the floor and :; implies the mass of the TMD, �,, �; and 

<,, <; stand for the stiffness and damping of the main structure and the TMD, respectively, =, is a 

dynamic excitation load on the main structure modelling structural in-service vibration, and > is the 

corresponding displacement, with superposed dots implying derivatives with respect to time. 

For each free body, the equations of motion can be input to the matrix. 

?:, 00 :;@ ?
>A,>A;@ ( B<, ( <; −<;−<; <; C ?

>D,>D;@ ( ?�, ( �; −�;−�; �; @ B
>,>;C = B=,0 C (3) 

which can be generalised as: 

B:,, :,;:,; :;;C ?
>A,>A;@ ( B<,, <,;<,; <;;C ?

>D,>D;@ ( ?�,, �,;�,; �;;@ B
>,>;C = B=,0 C 

 

(4) 

Assume the external force is harmonic. 

                                          =, = =E-23F, >, = G,-23F, >; = G;-23F 
The matrix becomes: 

H−7;:,, ( 87<,, ( �,, −7;:,; ( 87<,; ( �,;−7;:,; ( 87<,; ( �,; −7;:;; ( 87<;; ( �;;I ?
G,G;@ = B=E0 C 

 

(5) 

Let  &JK�7! = −7;:JK ( 87<JK ( �JK 

?&,,�7! &,;�7!&,;�7! &;;�7!@ ?
G,G;@ = B=E0 C (6) 

LMN ?G,G;@ = B=E0 C and ?G,G;@ = B=E0 C LMN., (7) 

Let LON = LMN., 

?G,G;@ = B=E0 C LON 
 

(8) 

Therefore, a typical frequency response of the structure -TMD system can be drawn by G, = O,,=E 

for the main structure and G; = O;,=E for the TMD. As an example given by Schmitz and Smith [50], 

when a damper is added to a Single Degree of Freedom (SDOF) system, the amplitude of vibration is 

significantly reduced at the natural frequency of the main structure as the damper can resonate. The 
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performances of TMD in civil structures were studied and the optimal design methods were 

developed [51-53]. 

The drawback of the TMD is that it is sensitive to the change of the main structure and is easily out-

of-tune [54] so that subsequently its effectiveness is significantly reduced. In practice, the natural 

frequency of building structures can be easily affected by environmental conditions (analogous to 

how the exterior building environment changes by date), damage due to extreme events, such as 

earthquakes, and increase/reduction of mass [55-58]. Thus, it is vital to adjust the natural frequency 

of the TMD actively, thereby tuning the structure effectively. 

3.2 Experimental investigation 

As explained previously, the most effective way to resolve the issue of off-tuning of a TMD system is 

to change the mass of the system. However, this is not always easy, particularly when the system is 

already installed. To demonstrate the potential of change in working temperature of the TMD 

employing an SMA beam for active control, this study uses a Cu-Al-Mn SMA beam with a mass 

attached as the TMD to reduce the vibration of a SDOF system, as shown in Figure 11. A cantilever 

beam made of mild steel with section of 100×10 mm
2
 and 520 mm in length was designed with 

adjustable mass attached to the free end. Another cantilever beam made of Cu-Al-Mn SMA with 

section of 10×3 mm
2
 and effective length of 50 mm was used as the TMD. At first, a mass was hung 

at the end of the steel beam using string and the free vibration was triggered by cutting off the 

string. The resulting accelerations were measured by accelerometers. The experimental sequences 

and factors are tabulated in Table 1. The ambient temperature of the laboratory was 21℃, and each 

test combination was repeated three times to ensure consistency of results. In this series of tests, 

the mass of the TMD does not change and the natural frequencies of the TMD system are controlled 

by a change of working temperature which, as previously discussed, leads to changes in the stiffness 

and damping properties of the system. 
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 Figure 11 Schematic drawing of the experimental set-up 

Test No. 2 keeps  �, :,⁄ = �; :;⁄  so the TMD system was in nearly-optimised condition. The mass 

of the main structure was increased in Test No. 4, representing the change of use for the main 

structure; the TMD was then off-tuned and became less effective. The SMA beam in TMD was then 

cooled down to 11
o
C to retune the main structure in Test No. 5. The mass in the main structure was 

then reduced to 54.1 kg which lead to the TMD being off-tuned again in Test No. 7, followed by the 

SMA beam being heated to 120
o
C to retune the main structure in Test No. 8.  

3.3 Comparison 

From the free decaying data in each test, the damping ratio and natural frequency can be computed 

by using the MP approach described previously. Figure 12 presents the comparison between the 

response before and after installing the TMD when	:, = 61.6	kg. In this case, the natural frequency 

of the damper is tuned to be nearly equal to that of the beam so that the response can be 

significantly reduced at about 4.4 Hz. Two modes appear after adding the damper and the highest 

response is still much lower than the previous, which is in line with the results demonstrated by 

Schmitz and Smith [50]. 
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Figure 12 Frequency response of cantilever beam without and with damper (:, = 61.6	�R) 

 

Figure 13 Frequency response of cantilever beam without damper, with damper and with 

temperature controlled damper (:, = 71.5	�R) 

The results of Tests Nos. 3, 4 and 5 are summarised in Figure 13. When the mass of the main 

structure changes, the TMD becomes off-tuned, as shown in Figure 13, and the first mode of the 

structure moves to the lower frequency region where there is a spike. When the SMA beam in the 

TMD is cooled down to 11℃, the spectrum magnitude is significantly reduced particularly in the first 

mode.  

Figure 14 compares the test response spectra of Tests Nos. 6, 7 and 8, where the mass of the main 

structure was decreased to 54.1 kg and the natural frequency of the main structure without the 
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TMD was increased to 4.74 Hz. The system with the original TMD (Test No. 7) appears to be off-

tuned; test No. 8 represents the response of the whole system with the TMD being heated to 120℃. 

As shown in Figure 14, the response can be reduced in the range between 4.3 Hz and 5.6 Hz, but the 

response in the first and second modes is even increased. The reason is that the damping capacity of 

the SMA at 120℃ is low. For vibration reduction through heating the SMA, only a narrow frequency 

band near the structural resonance frequency can be controlled. To control a broader frequency 

band, it is less appropriate to increase the temperature of SMA due to the fact that SMA would not 

provide enhanced damping. 

 

Figure 14 Frequency response of the cantilever beam without damper, with damper and with 

temperature controlled damper (:, = 54.1	�R) 

3.4 Discussion 

Williams, Chiu [34] reported that to control the vibration by using TMD, the excitation frequency is 

discrete and should be known in advance. However, for applications in buildings during in-service 

vibration, the excitation frequency is in a wide range. The vibration reduction should be effective in a 

wider frequency band around the natural frequency of structure. 

Increasing the working temperature of SMA can lead to higher stiffness but lower damping ratio, 

which is effective to control the vibration in a narrow range, e.g. the vibration induced by machines. 

The target for optimisation, in this case for building structural applications, is that both stiffness and 

damping ratio be increased so as to keep the response small. If the elements connected with the 

mass are in parallel and their motions have the same displacement and velocity, their stiffness and 

damping coefficient can be added together as in [59]: 
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S = S, ( S; (⋯(SK (9) 

U = U, ( U; (⋯( UK (10) 

S and U represent the total stiffness and damping coefficient of the SMA damper, S% and U%  imply 

the corresponding properties in each element. The temperature adjustment on the SMA can be a 

combination and there could be a number of SMA elements in parallel, in which some are cooled 

down and some are heated up. Through the adjustment process, S can control the natural 

frequency of the TMD near the optimal value in order to increase resonance, while U is able to 

provide as much damping as a possibility to reduce the highest amplitude in the first and second 

modes. There will be a future research direction for SMA heating/cooling combinations. 

As this study is a part of a series of research for floor vibration control as shown in Figure 1, the 

cantilever beam model in this paper requires scaling. Two practical limitations need to be 

compromised, and one of them is the mass ratio between the mass of TMD and the mass of floor, as 

the supplementary mass cannot be too heavy and the floor carrying capacity has to be assured. 

Another limitation is the relative motion of TMD, and it should be restricted in a safety range to 

protect the floor [60]. In the practical application to floor system, the size of SMA beam may need to 

be larger compared with the model in laboratory, therefore SMA properties such as stiffness, 

damping ratio and heat-transfer capacity should be concerned after scaling. The stiffness of SMA 

beam should meet the requirement that its natural frequency is able to tune the natural frequency 

of the primary structure. The damping ratio can be improved by increasing the number of SMA 

elements in parallel like aforementioned SMA combinations. As the heating is from surface to the 

inside, for larger size, higher electrical power may need in order to fully heat. To achieve precise 

control, the heating time will be estimated by simulation corresponding to the actual size. 

Self-heating of SMA is an issue in dynamic applications [16, 18], and is commonly due to the latent 

heat during phase transformation [61]. The extra heat from self-heating influences the shape of the 

hysteresis loops thus changes the fracture level of SMA. With regard to the timber floor application, 

the free vibration is common. Therefore, the solution to reduce the self-heating is to increase more 

damping so as to dissipate more energy, attenuate the vibration faster and reduce the cyclic 

deformations of SMA. In further SMA-based TMD design, the damping of SMA should be considered 

to be improved, for instance, multiple SMA elements can be employed in parallel. 
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4 Conclusion 

As a part of a series of research focused on timber floor vibration, this paper studies the feasibility of 

a new TMD system using bending SMA. To apply SMA in structural in-service vibration reduction 

systems, the effect of temperature on the dynamic characteristics of SMA was studied and a TMD 

with a Cu-Al-Mn SMA beam was tested. The dynamic characteristics, such as stiffness and damping 

of Cu-Al-Mn SMA, were characterised by free vibration tests under different pre-stressed levels and 

temperatures. With the increase of temperature up to 120℃, the damping ratio decreases and 

stiffness increases. When the SMA is cooled down to 11℃, the damping ratio can be increased while 

the stiffness is reduced. The influence of temperature change is most sensitive when the pre-

stressed level is near the transformation stress at 216 MPa for the studied case.  

The floor vibration system was idealised as a 2-DOF model and the feasibility was tested using a 

cantilever beam. SMA was used as a means for stiffness and damping adjustment in TMD added on a 

cantilever beam, and at first this TMD was in the near optimal condition capable to tune the natural 

frequency of the beam. After increasing the mass clamped on the beam to disturb the tuning 

condition, the vibration response increased, but the response can be significantly reduced by cooling 

SMA as the new main structural natural frequency can be effectively tuned. When the mass on the 

cantilever beam is reduced, heating SMA can reduce the response at a narrow frequency band near 

the resonance frequency. It is not appropriate to reduce the response for a wider frequency range 

due to decreasing damping in the SMA. In future research, an optimisation needs to be studied 

regarding this case. Both cooling and heating can operate on a number of SMA elements and, after 

combination, an effective tuning frequency and enough damping capacity are expected to be 

achieved. 

Acknowledgement 

The authors appreciate Furukawa Techno Material Co., Ltd., Japan for their material supply and 

International Copper Association for financial support (TEK-1079). 

 

References: 

1. Weckendorf, J., Dynamic response of structural timber flooring systems, in The 

Centre for Timber Engineering, School of Engineering and the Built Environment. 

2009, Edinburgh Napier University. 

2. Hu, L.J., Y.H. Chui, and D.M. Onysko, Vibration serviceability of timber floors in 

residential construction. Prog. Struct. Engng Mater., 2001(3): p. 228-237. 

Page 18 of 40

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

19 

 

3. Smith, I., Vibrations of timber floors: serviceability aspects, in Timber engineering, S. 

Thelandersson and H.J. Larsen, Editors. 2003, Wiley Chichester. p. 241-266. 

4. Webster, A.C. and R. Vaicaitis, Application of Tuned Mass Dampers to Control 

Vibrations of Composite Floor Systems. Engineering Journal-American Institute of 

Steel Construction Inc, 1992. 29(3): p. 116-124. 

5. Setareh, M. and R.D. Hanson, Tuned Mass Dampers to Control Floor Vibration from 

Humans. Journal of Structural Engineering-Asce, 1992. 118(3): p. 741-762. 

6. Setareh, M., et al., Semiactive tuned mass damper for floor vibration control. Journal 

of Structural Engineering-Asce, 2007. 133(2): p. 242-250. 

7. DesRoches, R. and B. Smith, Shape memory alloys in seismic resistant design and 

retrofit  a critical review of their potential and limitations. Journal of earthquake 

engineering, 2003. 7: p. 1 - 15. 

8. Ozbulut, O.E., S. Hurlebaus, and R. Desroches, Seismic response control using shape 

memory alloys: a review. Journal of intelligent material systems and structures, 

2011. 22(14): p. 1531-1549. 

9. Chang, W.S., et al., Technical Note: Potential to Use Shape Memory Alloy in Timber 

Dowel-Type Connections. Wood and Fiber Science, 2013. 45(3): p. 330-334. 

10. Cladera, A., et al., Iron-based shape memory alloys for civil engineering structures: An 

overview. Construction and Building Materials, 2014. 63: p. 281-293. 

11. Janke, L., et al., Applications of shape memory alloys in civil engineering structures - 

Overview, limits and new ideas. Materials and structures, 2005. 38(279): p. 578-592. 

12. Duerig, T.W., Engineering aspects of shape memory alloys. 1990, London ; Boston: 

Butterworth-Heinemann. xi, 499 p. 

13. Pops, H., Stress-Induced Pseudoelasticity in Ternary Cu-Zn Based Beta Prime Phase 

Alloys. Metallurgical Transactions, 1970. 1(1): p. 251-&. 

14. Nakanishi, N., Lattice softening and the origin of SME, in Shape Memory Effects in 

Alloys, J. Perkins, Editor. 1975, Plenum press: New York. p. 305-326. 

15. Araya, R., et al., Temperature and grain size effects on the behavior of CuAlBe SMA 

wires under cyclic loading. Materials science and engineering A - structural materials 

properties microstructure and processing, 2008. 496(1-2): p. 209-213. 

16. Dolce, M. and D. Cardone, Mechanical behaviour of shape memory alloys for seismic 

applications - 2. Austenite NiTi wires subjected to tension. International journal of 

mechanical sciences, 2001. 43(11): p. 2657-2677. 

17. Andrawes, B. and R. DesRoches, Effect of ambient temperature on the hinge opening 

in bridges with shape memory alloy seismic restrainers. Engineering structures, 2007. 

29: p. 2294 - 2301. 

18. Shaw, J.A. and S. Kyriakides, Thermomechanical aspects of NiTi. Journal of the 

mechanics and physics of solids, 1995. 43(8): p. 1243-1281. 

19. Torra, V., et al., Shape memory alloys as an effective tool to damp oscillations Study 

of the fundamental parameters required to guarantee technological applications. 

Journal of Thermal Analysis and Calorimetry, 2015. 119(3): p. 1475-1533. 

20. Torra, V., et al., Damping in civil engineering using SMA. The fatigue behavior and 

stability of CuAlBe and NiTi alloys. Journal of Materials Engineering and Performance, 

2009. 18(5-6): p. 738-745. 

21. Casciati, S. and A. Marzi, Experimental studies on the fatigue life of shape memory 

alloy bars. Smart Structures and Systems, 2010. 6(1): p. 73-85. 

Page 19 of 40

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

20 

 

22. Khan, M.I., et al., Combined effects of work hardening and precipitation 

strengthening on the cyclic stability of TiNiPdCu-based high-temperature shape 

memory alloys. Acta Materialia, 2013. 61(13): p. 4797-4810. 

23. Hartl, D.J., et al., Use of a Ni60Ti shape memory alloy for active jet engine chevron 

application: I. Thermomechanical characterization. Smart Materials & Structures, 

2010. 19(1). 

24. Casciati, F., et al., Fatigue Damage Accumulation in a Cu-based Shape Memory Alloy: 

Preliminary Investigation. Cmc-Computers Materials & Continua, 2011. 23(3): p. 287-

306. 

25. Birman, V., Effect of SMA dampers on nonlinear vibrations of elastic structures., in 

SPIE. 3038. 268 - 276. 1997. p. 268 - 276. 

26. Qian, H., et al., Recentering shape memory alloy passive damper for structural 

vibration control. Mathematical problems in engineering, 2013. 2013: p. 13 pages. 

27. Ma, H.W. and C.D. Cho, Feasibility study on a superelastic SMA damper with re-

centring capability. Materials science and engineering A - structural materials 

properties microstructure and processing, 2008. 473(1-2): p. 290-296. 

28. van de Lindt, J.W. and A. Potts, Shake table testing of a superelastic shape memory 

alloy response modification device in a wood shearwall. Journal of structural 

engineering-Asce, 2008. 134(8): p. 1343-1352. 

29. Zuo, X.B. and A.Q. Li, Numerical and experimental investigation on cable vibration 

mitigation using shape memory alloy damper. Structural Control & Health 

Monitoring, 2011. 18(1): p. 20-39. 

30. Parulekar, Y.M., et al., Seismic response attenuation of structures using shape 

memory alloy dampers. Structural Control & Health Monitoring, 2012. 19(1): p. 102-

119. 

31. Liang, C. and C.A. Rogers, Design of shape memory alloy springs with applications in 

vibration control. Journal of intelligent material systems and structures, 1997. 8(4): 

p. 314-322. 

32. Saadat, S., et al., An overview of vibration and seismic applications of NiTi shape 

memory alloy. Smart materials & structures, 2002. 11(2): p. 218-229. 

33. Belyaev, S.P., A.E. Volkov, and A.V. Voronkov, Mechanical oscillations in TiNi under 

synchronized martensite transformations. Journal of Engineering Materials and 

Technology-Transactions of the Asme, 1999. 121(1): p. 105-107. 

34. Williams, K., G. Chiu, and R. Bernhard, Adaptive-passive absorbers using shape-

memory alloys. Journal of sound and vibration, 2002. 249(5): p. 835-848. 

35. Rustighi, E., M.J. Brennan, and B.R. Mace, A shape memory alloy adaptive tuned 

vibration absorber: design and implementation. Smart materials & structures, 2005. 

14(1): p. 19-28. 

36. Araki, Y., et al., Potential of superelastic Cu-Al-Mn alloy bars for seismic applications. 

Earthquake Engineering & Structural Dynamics, 2011. 40(1): p. 107-115. 

37. Araki, Y., et al., Rate-dependent response of superelastic Cu-Al-Mn alloy rods to 

tensile cyclic loads. Smart Materials and Structures, 2012. 21(3). 

38. Araki, Y., et al., Integrated mechanical and material design of quasi-zero-stiffness 

vibration isolator with superelastic Cu-Al-Mn shape memory alloy bars. Journal of 

Sound and Vibration, 2015. 358: p. 74-83. 

39. Araki, Y., et al., Feasibility of tension braces using Cu-Al-Mn superelastic alloy bars. 

Structural Control & Health Monitoring, 2014. 21(10): p. 1304-1315. 

Page 20 of 40

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

21 

 

40. Hosseini, F., et al., An experimental investigation of innovative bridge columns with 

engineered cementitious composites and Cu-Al-Mn super-elastic alloys. Smart 

Materials and Structures, 2015. 24(8). 

41. Zieliński, T.P. and K. Duda, Frequency and damping estimation methods - an 

overview. Metrology and measurement systems, 2011. 18(4): p. 505 - 528. 

42. Sarkar, T.K. and O. Pereira, Using the Matrix Pencil Method to Estimate the 

Parameters of a Sum of Complex Exponentials. Ieee antennas and propagation 

magazine, 1995. 37(1): p. 48-55. 

43. Gencturk, B., et al., Loading rate and temperature dependency of superelastic Cu–Al–

Mn alloys. Construction and building materials, 2014. 53: p. 555 - 560. 

44. Torra, V., et al., Shape memory alloys: From the physical properties of metastable 

phase transitions to dampers for civil engineering applications. Journal de physique 

Iv, 2004. 113: p. 85-90. 

45. Strnadel, B., et al., Cyclic stress-strain characteristics of Ti-Ni and Ti-Ni-Cu shape-

memory alloys. Materials science and engineering a-structural materials properties 

microstructure and processing, 1995. 202(1-2): p. 148-156. 

46. Niitsu, K., T. Omori, and R. Kainuma, Superelasticity at low temperatures in Cu-17Al-

15Mn (at%) shape memory alloy. Materials transactions, 2011. 52(8): p. 1713-1715. 

47. Nemat-Nasser, S., et al., High strain-rate, small strain response of a NiTi shape-

memory alloy. Journal of engineering materials and technology-transactions of the 

asme, 2005. 127(1): p. 83-89. 

48. Priestley, M.J.N., F. Seible, and G.M. Calvi, Seismic design and retrofit of bridges. 

1996, New York: John Wiley. xvii, 686 p. 

49. Connor, J.J., Introduction to structural motion control. MIT-Prentice Hall series on 

civil, environmental, and systems engineering. 2003, Upper Saddle River, N.J.: 

Prentice Hall Pearson Education, Inc. xiv, 680 p. 

50. Schmitz, T.L. and K.S. Smith, Mechanical vibrations modeling and measurement. 

2012, Springer Science+Business Media, LLC: New York, NY. 

51. Adam, C. and T. Furtmuller, Seismic Performance of Tuned Mass Dampers. 

Mechanics and Model-Based Control of Smart Materials and Structures, 2010: p. 11-

18. 

52. Schmelzer, B., M. Oberguggenberger, and C. Adam, Efficiency of tuned mass dampers 

with uncertain parameters on the performance of structures under stochastic 

excitation. Proceedings of the Institution of Mechanical Engineers Part O-Journal of 

Risk and Reliability, 2010. 224(O4): p. 297-308. 

53. Casciati, F. and F. Giuliano, Tuned mass dampers in the towers of suspension bridges. 

Innovation in Computational Structures Technology, 2006: p. 439-473. 

54. Nagarajaiah, S. and E. Sonmez, Structures with semiactive variable stiffness 

single/multiple tuned mass dampers. Journal of structural engineering-Asce, 2007. 

133(1): p. 67-77. 

55. Xue, S., et al., Natural frequency changes for damaged and reinforced real structure 

in comparison with shake table and simulation. Materials forum, 2009. 33: p. 344-

350. 

56. Pandey, A.K., M. Biswas, and M.M. Samman, Damage detection from changes in 

curvature mode shapes. Journal of sound and vibration, 1991. 145(2): p. 321-332. 

Page 21 of 40

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

22 

 

57. Luco, J.E., M.D. Trifunac, and H.L. Wong, On the apparent change in dynamic 

behavior of a 9-story reinforced-concrete building. Bulletin of the seismological 

society of america, 1987. 77(6): p. 1961-1983. 

58. Brincker, R., J. Rodrigues, and P. Andersen, Scaling the mode shapes of a building 

model by mass changes, in IMAC-22: A Conference on Structural Dynamics. 2004, 

Society for Experimental Mechanics: Hyatt Regency Dearborn, Dearborn, Michigan, 

USA. p. 119-126. 

59. Meirovitch, L., Fundamentals of vibrations. 2001, Boston: McGraw-Hill. xviii, 806 p. 

60. Connor, J., S. Laflamme, and SpringerLink (Online service), Structural Motion 

Engineering. 2014, Springer International Publishing,: S.l. p. 1 online resource. 

61. Soul, H., et al., Pseudoelastic fatigue of NiTi wires: frequency and size effects on 

damping capacity. Smart Materials & Structures, 2010. 19(8). 

 

Table 1 Testing protocol for the cantilever beam-TMD system 

 Main structure TMD 

Test No. m1 (kg)
(1)

 f1 (Hz)
(2)

 T (
o
C)

(3)
 k2 (N/m)

(4)
 ξ2 (%)

(5)
 m2 (kg)

(6)
 f2 (Hz)

(7)
 

1 61.6 4.41 - - - - - 

2 61.6  4.41 21 2704.76 0.81 3.6  4.38 

3 71.5 4.02 - - - - - 

4 71.5 4.02 21 2704.76 0.81 3.6 4.38 

5 71.5 4.02 11 2282.19 1.84 3.6 4.03 

6 54.1 4.74 - - - - - 

7 54.1 4.74 21 2704.76 0.81 3.6 4.38 

8 54.1 4.74 120 3192.96 0.20 3.6 4.76 

(1)
 mass attached to the steel cantilever beam 

(2)
 natural frequency of the main structure 

(3)
 working temperature of the SMA beam 

(4)
 stiffness of the SMA beam 

(5)
 equivalent damping ratio of the SMA beam 

(6)
 mass attached to the SMA beam 

(7)
 natural frequency of the TMD

 

Page 22 of 40

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

23 

 

 

 

 

 

 

Dear Editor, 

 

Please find table which we respond to all the comments that reviewer has, we have considered 

comments from reviewer, responded and amended our manuscript as appropriate. The comments 

from reviewer are very useful to improve the quality of the manuscript, his/her efforts and time are 

much appreciated. We are looking forward to working with you during the review process.  

 

Best regards, 

 

Wen-Shao Chang 

 

 

 

 

Reviewer 2: 

Reviewer’s comments Response to reviewer 

According the MANDATORY remarks of 

the previous refereeing, suppress the 

figures 7-8-9. In fact, not includes clear 

recoverable data. If introduction of 3-D 

figures can be considered of potential 

interest but in this case this idea cannot 

be considered. Please suppress figures 7-

8-9 and adapt the text. 

 

We agree with the reviewer’s comments. We have 

suppressed Figures 7-8-9 and adapted the relevant 

text.  
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