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Machine-learning Support to Individual Diagnosis
of Mild Cognitive Impairment Using Multimodal MRI

and Cognitive Assessments

Matteo De Marco, PhD,* Leandro Beltrachini, PhD,†‡§ Alberto Biancardi, PhD,∥

Alejandro F. Frangi, PhD,† and Annalena Venneri, PhD*†

Background: Understanding whether the cognitive profile of a
patient indicates mild cognitive impairment (MCI) or performance
levels within normality is often a clinical challenge. The use of
resting-state functional magnetic resonance imaging (RS-fMRI) and
machine learning may represent valid aids in clinical settings for the
identification of MCI patients.

Methods: Machine-learning models were computed to test the
classificatory accuracy of cognitive, volumetric [structural magnetic
resonance imaging (sMRI)] and blood oxygen level dependent-
connectivity (extracted from RS-fMRI) features, in single-modality
and mixed classifiers.

Results: The best and most significant classifier was the RS-fMRI
+Cognitive mixed classifier (94% accuracy), whereas the worst
performing was the sMRI classifier (∼80%). The mixed global
(sMRI+RS-fMRI+Cognitive) had a slightly lower accuracy
(∼90%), although not statistically different from the mixed RS-
fMRI+Cognitive classifier. The most important cognitive features
were indices of declarative memory and semantic processing. The
crucial volumetric feature was the hippocampus. The RS-fMRI
features selected by the algorithms were heavily based on the con-
nectivity of mediotemporal, left temporal, and other neocortical
regions.

Conclusion: Feature selection was profoundly driven by statistical
independence. Some features showed no between-group differences,
or showed a trend in either direction. This indicates that clinically
relevant brain alterations typical of MCI might be subtle and not
inferable from group analysis.

Key Words: machine learning, magnetic resonance imaging,

semantics, hippocampus, resting-state

(Alzheimer Dis Assoc Disord 2017;31:278–286)

Mild cognitive impairment (MCI) identifies adults who
experience impairment in neuropsychological abilities,

while retaining daily-life independence. The range of possi-
ble etiologies is heterogenous, with Alzheimer disease (AD)
often being a prime suspect.1 Nonpathologic processes of
senescence, however, may also trigger a measurable decline
in cognitive functioning,2 and it is not uncommon that
healthy adults complain of their declining cognitive abilities.
This conceptual overlap is further complicated by additional
factors. First, thresholds of impaired cognitive performance
have been operationalized in many ways.3 Second, varia-
bility in the choice of cognitive tests and their procedure of
administration generates different diagnostic outputs.4

Third, cross-cultural differences exist in test performance,5

but this is rarely acknowledged. Fourth, raw neuro-
psychological scores may distribute skewly,6 compromising
the validity of the descriptors used to set the threshold of
“normality”. Fifth, high levels of education may mask the
presence of cognitive impairment.7

Recently, revised versions of consensus guidelines have
incorporated supporting evidence from neuromolecular
imaging and cerebrospinal fluid biomarkers, for diagnosing
MCI due to AD.8 Despite the theoretical robustness of this
approach, these techniques are not appropriate for charac-
terizing AD burden in asymptomatic adults or patients
with nonprogressive/nonpersistent MCI.9 A more viable
contribution is that of structural magnetic resonance imag-
ing (sMRI) and resting-state functional magnetic resonance
imaging (RS-fMRI). Both appear useful to describe patients
diagnosed with clinically established AD,10,11 and RS-fMRI
in particular is increasingly receiving attention by
researchers, as it seems to be sensitive to very early patho-
logic alterations.12 Although significant reduction of
regional functional connectivity in MCI has been reported
in cross-sectional,13 and longitudinal studies,14 this evidence
is the result of group-level inferential statistics, which is of
limited utility for the clinical classification of single indi-
viduals. Multivariate and machine-learning techniques offer
the opportunity to build data-driven classificatory models
which can predict group membership of each participant
based on MRI features. A number of recent studies have
implemented these classificatory techniques to identify MCI
patients using RS-fMRI as a single source of diagnostic
information,15–18 or in combination with sMRI.19–21

In this study we used machine-learning methods to carry
out classifications of participants with a diagnosis of MCI
based on features extracted from cognitive performance,
sMRI, and RS-fMRI, with a series of single-type and mixed
classifiers. No specific hypothesis was formulated in associa-
tion with cognitive classifiers as the diagnostic status was
heavily dependent on cognitive performance. We hypothe-
sized that RS-fMRI-based classifiers would be superior to the
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others (quantitative expectation), and that the selected features
would yield important connection with neuropathologic models
of abnormal aging (qualitative expectation). A major goal was
to understand to what extent and in what way such method-
ology would be of aid in clinical settings.

METHODS

Participants
In total, 139 inhabitants of the Venetian lagoon, older

than 50 years and still independent in their daily activities
were considered for inclusion. Candidates were either out-
patients referred to neurological examination by their gen-
eral practitioner because of suspected cognitive decline, or
adults willing to take part in research projects because of
personal interest and/or subjective cognitive concerns. All
underwent a comprehensive medical examination led by an
experienced neurologist between May 2011 and November
2014. This was based on the anamnestic information, a
neurological screening, a clinical MRI protocol (including
diffusion-weighted, T1-weighted, T2-weighted, and Fluid
Attenuation Inversion Recovery images) which was
inspected by a senior neuroradiologist, and a battery of
cognitive tests administered and interpreted by an experi-
enced neuropsychologist. Upon application of exclusion
criteria, participants were allocated to 1 of 2 diagnostic
categories: healthy adult having no objective cognitive dif-
ficulties (control), or patient diagnosed with MCI (patient).
Diagnoses of MCI were established by a consensus of
opinions among clinicians and clinical follow-ups. Diag-
nostic exclusion criteria were as follows: a Mini Mental
State Examination score <24, ongoing treatments

(psychotropic medication, cholinesterase inhibitors, mem-
antine, drugs for research purposes, or with toxic effects to
internal organs); a significant disease at clinical level; history
of transient ischemic attack; diagnosis of severe vascular
pathology; baseline structural MRI revealing different
diagnostic patterns from those expected in MCI; presence/
diagnosis of uncontrolled seizures; peptic ulcer; car-
diovascular disease; neuropathy with conduction difficulties;
significant disabilities; proof of abnormal baseline levels of
folates, vitamin B12, or thyroid-stimulating hormone.
“Technical” exclusion criteria were as follows: > 1 missing
entry in the database of cognitive scores; presence of rele-
vant signal artefacts or excessive in-scanner motion. On the
basis of application of these criteria, 50 controls and 50
patients matched as closely as possible at a group level for
age, education levels, and sex ratio were included. Demo-
graphic characteristics of the final sample are reported in
Table 1. This study was approved by the Institutional
Review Board of the IRCCS Fondazione Ospedale San
Camillo (Venice, Italy), protocol number 11/09-version 2.
Informed consent was obtained from all participants.

MRI and Cognitive Data Acquisition
The MRI protocol (1.5 T Philips Achieva), including

structural and functional acquisitions, was completed in a
single session. Participants were instructed to keep their eyes
closed without falling asleep and remain as still as possible
for the full duration of the examination. Turbo-field echo
T1-weighted images were acquired with the following
characteristics: voxel dimension 1.10×1.10×0.60 mm; Rep-
etition Time 7.4 ms; Echo Time 3.4 ms; Field of View
250 mm; matrix size 256×256×124; flip angle 8 degrees.

TABLE 1. Demographic and Neuropsychological Characteristics (expressed as means and standard deviations in parentheses) of the Sample

Variables Healthy MCI Group Difference

Demographic Factor P UMann Whitney/χ
2

Age (years) 69.54 (5.88) 73.86 (6.31) < 0.001
Education (years) 10.94 (4.60) 10.70 (4.33) 0.840
Sex (F/M) 31/19 25/25 0.227

Neuropsychological Test P UMann Whitney P FCorrected
Mini Mental State Examination 28.98 (1.32) 27.46 (1.92) < 0.001 < 0.001
Raven Progressive Matrices 30.14 (4.62) 27.34 (5.77) 0.015 0.029
Digit Cancellation Test 53.52 (5.27) 48.16 (7.91) < 0.001 0.001
Stroop Test—time interference 23.70 (8.99) 35.77 (18.48) < 0.001 < 0.001
Stroop Test—error interference 0.97 (2.81) 3.02 (5.79) 0.002 0.126
Letter Fluency Test 34.74 (12.81) 31.34 (11.08) 0.145 0.234
Category Fluency Test 41.36 (9.92) 30.18 (8.66) < 0.001 < 0.001
Token Test 34.50 (1.79) 34.18 (1.90) 0.305 0.256
Similarities Test 20.80 (5.02) 19.78 (4.37) 0.175 0.467
Confrontational Naming Test 19.17 (1.46) 18.48 (1.72) 0.019 0.044
Digit Span Test—forward 6.08 (0.92) 5.74 (0.90) 0.026 0.026
Digit Span Test—backwards 4.30 (0.95) 3.72 (0.81) 0.002 0.001
Paired Associates Learning Test 13.36 (4.02) 9.54 (3.77) < 0.001 < 0.001
Prose Memory Test—immediate recall 9.88 (3.68) 6.72 (3.64) < 0.001 < 0.001
Prose Memory Test—delayed recall 13.10 (4.71) 7.32 (4.48) < 0.001 < 0.001
Corsi Block Tapping Test 4.82 (0.87) 4.22 (0.79) 0.001 0.002
Visual Supraspan Test 20.70 (6.60) 13.20 (8.33) < 0.001 < 0.001
Rey-Osterrieth Figure—copy 32.47 (3.65) 29.55 (6.18) 0.008 0.028
Rey-Osterrieth Figure—recall 15.98 (5.66) 8.45 (4.59) < 0.001 < 0.001

Between-group differences in cognitive performance were analyzed both with Mann-Whitney tests as well as ANOVAs, correcting for age and years of
education. A Bonferroni-corrected P threshold equal to 0.002 was adopted as the appropriate significance level. There were only 3 missing data points: 2
participants missing their Token Test score (1 control and 1 patient) and 1 participant (patient) missing their Paired Associates Learning Test score.

ANOVA indicates analysis of variance; F, female; M, male; MCI, mild cognitive impairment.
Sex is presented in units.
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Echo-planar T2*-weighted volumes were instead registered
at rest with the following settings: voxel dimensions
3.28×3.28×6.00mm; Repetition Time 2 s; Echo Time 50ms;
Field of View 230mm; flip angle 90 degrees. Two 120-volume
runs were obtained, preceded by 20 s of dummy scans, set to
allow the scanner to reach electromagnetic equilibrium.

A neuropsychological battery was designed for clinical
purposes, with particular focus on those domains which are
most sensitive to aging and early-stage neurodegeneration
(Fig. 1).

MRI Data Preprocessing
T1-weighted images were processed with the Free-

Surfer Image Analysis Suite (http://surfer.nmr.mgh.harvard.
edu/) following standard segmentation and parcellation
procedures. Morphologic indices were extracted from cort-
ical and subcortical structures. RS-fMRI images were pre-
processed using the Statistical Parametric Mapping 8
(Wellcome Trust Centre for Neuroimaging, London, UK)
CONN toolbox,22 in a Matlab R2012a environment
(Mathworks Inc., UK). Images were realigned to estimate
head-motion vectors, slice-timed to correct for intravolume
temporal phasing-out, coregistered with their T1-weighted
image, normalized with the echo planar imaging template,
smoothed with a 6mm full-width at half-maximum gaussian
filter to minimize noise and residual anatomic discrepancies,
partialized of the confounding signal coming from the top 5
orthogonal components estimated from the maps of white
matter and cerebrospinal fluid (aCompCor procedure),23

and band-pass filtered (0.008 to 0.09 Hz).

Feature Definition
A large number of candidate indices were defined from

demographic/clinical variables and neurostructural/neuro-
functional maps (Fig. 1). Basic demographic information
and raw cognitive scores (extracted from clinical neuro-
psychological tests) were included in this list. Neuroanatomic
volumetric indices were extracted from the segmentation and
parcellation output. ROI-to-ROI (R2R) indices of functional
connectivity were computed from RS-fMRI runs as part of
the CONN pipelines. These ROIs were defined based on the
anatomically automatic labeled atlas.24 R2R indices identi-
fied aspects of connectivity among pairs of anatomically
automatic labeled ROIs. To minimize potential selection
bias, and in parallel optimize number of regions, the cer-
ebellum was excluded from the model, as it is characterized
by low presence of AD pathology,25 and is usually considered
a reference region in positron emission tomography-based
studies. Primary sensorimotor areas were also excluded due
to their prolonged preservation in AD.26 Orbitofrontal and
temporopolar regions subjected to signal dropout were
excluded too to avoid miscalculations. In total, 2122 indices
were extracted: demographics: 3, cognition: 19, sMRI: 84,
RS-fMRI: 2016.

Feature Selection
Two machine-learning algorithms were considered. These

were the linear and quadratic Fisher discriminant analyses
(LDA and QDA, respectively),27 based on their proneness to
being applicable to multiple research contexts, including small-
sample scenarios.28,29 Both classifications were modeled for each
set of features. To pursue maximized classificatory accuracy, the
classifier with higher accuracy was chosen each time. A feature-
selection analysis was then run by testing the performance of the

Mini Mental State Examination General cognitive screening

Raven Progressive Matrices Visuospatial abstract reasoning

Digit Cancellation Test Visuospatial exploration & speed of processing

Stroop Test - time interference Inhibitory skills

Stroop Test – error interference Inhibitory skills

Letter Fluency Test Phonologically-cued lexical memory access

Category Fluency Test Semantically-cued lexical memory access

Token Test Verbal comprehension

Similarities Test Verbal abstract reasoning

Confrontational Naming Test Lexical memory access

Digit Span Test - forward Verbal short-term memory

Digit Span Test - backwards Working memory

Paired Associates Learning Test Verbal learning

Prose Memory Test – Immediate Verbal long-term memory

Prose Memory Test – Delayed Verbal long-term memory

Corsi Block Tapping Test Visuospatial short-term memory

Visual Supraspan Test Visuospatial learning

Rey-Osterrieth Figure – Copy Visuoconstructive skills

Rey-Osterrieth Figure – Recall Visuospatial long-term memory

Age Years of Education Gender

FRONTAL

Medial Superior Frontal Gyrus

Superior Frontal Gyrus

Middle Frontal Gyrus

Inferior Frontal Gyrus - Pars Opercularis

Inferior Frontal Gyrus - Pars Triangularis

Supplementary Motor Cortex

Paracentral Lobule

TEMPORAL

Insula

Superior Temporal Gyrus

Middle Temporal Gyrus

Inferior Temporal Gyrus

Fusiform Gyrus

PARIETAL

Superior Parietal Gyrus 

Inferior Parietal Gyrus

Supramarginal Gyrus

Angular Gyrus

Precuneus

OCCIPITAL

Superior Occipital Gyrus

Middle Occipital Gyrus

Inferior Occipital Gyrus

Cuneus

Lingual Gyrus

LIMBIC

Anterior Cingulate Cortex

Middle Cingulate Cortex

Posterior Cingulate Cortex

Parahippocampal Gyrus 

SUBCORTICAL

Thalamus

Caudate

Putamen

Globus Pallidus

Hippocampus

Amygdala

FRONTAL

Orbital Gyrus

Rectal Gyrus

Frontomarginal Gyrus

Transverse Frontopolar Gyrus

Superior Frontal Gyrus

Middle Frontal Gyrus

Inferior Frontal Gyrus - Pars Opercularis

Inferior Frontal Gyrus - Pars Triangularis

Inferior Frontal Gyrus - Pars Orbitalis 

Subcallosal Gyrus

Paracentral Lobule

TEMPORAL

Long Insular Gyrus

Short Insular Gyri 

Superior Temporal Gyrus - Lateral

Superior Temporal Gyrus - Planum

Polare

Superior Temporal Gyrus - Planum

Temporale

Middle Temporal Gyrus 

Inferior Temporal Gyrus

Temporal Pole

Subcentral Gyrus

Fusiform Gyrus

PARIETAL

Superior Parietal Lobule

Angular Gyrus

Supramarginal Gyrus

Precuneus

OCCIPITAL

Superior Occipital Gyrus

Middle Occipital Gyrus

Inferior Occipital Gyrus

Cuneus

Lingual Gyrus

LIMBIC

Anterior Cingulate Cortex

Middle-Anterior Cingulate Cortex

Middle-Posterior Cingulate Cortex

Posterior-Dorsal Cingulate Cortex

Posterior-Ventral Cingulate Cortex

Parahippocampal Gyrus

SUBCORTICAL

Thalamus

Caudate 

Putamen 

Globus Pallidus

Hippocampus 

Amygdala

A

B

C

D

FIGURE 1. List of features and regions included in the study.
Demographic features were included in the feature-selection
process of all classifiers (A). Each cognitive test is listed together
with the cognitive domain it relies on (B). Volumetric features
did not include the cerebellum or nonassociative areas but did
include regions normally subjected to artefacts during blood
oxygen level dependent acquisitions (C). The 64 neocortical
patches from which the blood oxygen level dependent signal was
extracted were processed to calculate the 2016 resulting patterns
of statistical association (D). Volumes and hemodynamic signal
were extracted separately for each hemisphere. The exclusion of
primary motor, primary sensory, and cerebellar areas allowed the
feature-selection procedure to focus on the regions of the brain
that are affected by Alzheimer pathology during the preclinical
and prodromal stage of the disease, and during the phases of
mild and moderate dementia. The regions retained by this
methodological choice are involved in high-order processes of
cognitive and behavioral function.
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chosen classifier as a function of groups of indices. This was
achieved via a cost function.27 The complete data set was sub-
divided into training and testing subsets using a 10-fold

Montecarlo cross-validation. The performance of each classifier
was finally evaluated by computing accuracy, area under the
receiver-operating-characteristic curve, and sensitivity.

FIGURE 2. The Cognitive (A), sMRI (B), RS-fMRI (C), sMRI+RS-fMRI (D), sMRI+Cognitive (E), RS-fMRI+Cognitive (F), and global sMRI+RS-
fMRI+Cognitive (G) classifiers. Accuracy levels are depicted together with measures of sensitivity and area under the curve (AUC).
Cognitive, volumetric, and R2R features are indicated in green, red, and blue, respectively (please refer to the online version for color
guidance). As the amount of classificatory accuracy decreases with the serial order of the index within the classifier, only the first 4 indices
were examined in depth. Correlations among features are indicated below each classifier. AUC indicates area under the receiving-
operator curve; LDA, linear Fisher discriminant analyses; QDA, quadratic Fisher discriminant analyze; RS-fMRI, resting-state functional
magnetic resonance imaging; R2R, ROI-to-ROI; sMRI, structural magnetic resonance imaging.
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Seven classifiers were tested: 3 basic “single-modality” (a,
Cognitive; b, sMRI; c, RS-fMRI) and 4 “multiple-modality”
classifiers (d, sMRI+RS-fMRI; e, sMRI+Cognitive; f, RS-fMRI
+Cognitive; g, sMRI+RS-fMRI+Cognitive). Demographic fea-
tures were included in all classificatory models. Bonferroni-
corrected, post hoc Kruskal-Wallis statistics tested interclassifier
differences in accuracy.29

RESULTS
The Cognitive classifier (Fig. 2A; LDA) was driven by

a test of declarative memory (Rey-Osterrieth Figure—
Delayed Recall), and a measure of semantic processing
(Category Fluency test). These 2 were responsible for a
classificatory accuracy of about 83%. Further tests
improved the accuracy rate by an additional 5%. The first
volumetric feature selected by the sMRI classifier (Fig. 2B;
LDA) was the right hippocampus, followed by the left
caudate and the left orbital gyrus. These 3 features
approached a 77% accuracy, reaching 80% with additional
indices. The RS-fMRI classifier (Fig. 2C; QDA)

overstepped an 85% accuracy plateau after 5 indices. These
were patterns of R2R connectivity widespread across vari-
ous regions of the brain, but heavily hinging upon medi-
otemporal regions (3 of 5 indices). The mixed sMRI+RS-
fMRI classifier (Fig. 2D; QDA) obtained performance levels
equal to 85% accuracy after 5 indices. The volume of the
right hippocampus was selected as the most accurate,
followed by R2R connectivity of various associative (pre-
frontal, parietal, and temporal) cortices. As with the cog-
nitive classifier, the remaining 3 mixed classifiers were reli-
ant on declarative memory and semantic processing as the 2
leading features. In the sMRI+Cognitive classifier (Fig. 2E;
LDA) these 2 indices reached an 83% accuracy, marginally
improved by volumetric properties of the left medi-
otemporal complex. In the RS-fMRI+Cognitive classifier
(Fig. 2F, QDA), and in the global sMRI+RS-fMRI+Cog-
nitive classifier (Fig. 2G, QDA) the accuracy of the 2 tests
reached an accuracy of over 85%, further improved by
additional R2R indices. In the global classifier the accuracy
was raised to 90% with the addition of indices characterizing
left temporal connectivity. Conversely, in the RS-fMRI
+Cognitive classifier the accuracy was further enhanced up
to 94% with the contribution of 2 indices of widespread
connectivity.

The comparison between classifiers revealed that the
RS-fMRI+Cognitive classifier was, by far, the most accu-
rate ensemble, accounting for a significantly more accurate
classification than 5 of the other classifiers. Vice versa, the
sMRI classifier was the least accurate, performing sig-
nificantly worse than any other classifier (Fig. 3).

For each classifier, the performance of the less accurate
classification methods (LDA or QDA) was associated with
2% to 3% less accuracy than the rates of those described
above. Nonetheless, these were reliant on comparable sets of
features (the recall of Rey-Osterrieth Complex Figure and
Category Fluency, the volume of the right hippocampus,
and the connectivity of mediotemporal regions).

Selected post hoc analyses were run to understand the
clinical importance of these features driven by and in sup-
port of possible interpretational frameworks (Fig. 4). Within
the cognitive classifier a significant difference existed

FIGURE 3. Between-classifier Kruskal-Wallis post hoc compar-
isons. RS-fMRI, resting-state functional magnetic resonance
imaging; sMRI indicates structural magnetic resonance imaging
(please refer to the online version for color guidance).

FIGURE 4. Selected post hoc analyses. Between-group comparisons (t test statistics) were run to explore the group-level differences of
the main features included in the classifiers. MCI patients had significantly larger volumes in the right hippocampus but no difference in
the left caudate nucleus. Moreover, patterns of connectivity showed a trend in either direction and, as exemplified by the association
between the left posterior cingulate and the left pars opercularis, did only differ in the pattern of dispersion. MCI indicates mild cognitive
impairment; R2R, ROI-to-ROI.
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between the 2 diagnostic groups on the delayed recall scores
on the Rey-Osterrieth Figure and on the Category Fluency
Test (both P< 0.001). No significant difference was present;
however, between the 2 groups on the 2 subsequent tests
(Digit Span—forward and the similarities subtest of the
Wechsler Adult Intelligence Scale). Moreover, a significant
correlation was found between the delayed recall scores on
the Rey-Osterrieth Figure and the delayed recall scores on
the Prose Memory test (partial correlation correcting for age
and education levels, P= 0.000006), and between the
delayed recall scores on the Rey-Osterrieth Figure and the
volume of the right hippocampus (P= 0.00013).

Within the structural classifier, a significant difference
was found between groups solely for the volume of the right
hippocampus, and the volumes of the 2 hippocampi and
caudate nuclei were highly correlated (P= 4.90e-30 and
4.20e-52, respectively).

As most of the RS-fMRI R2R indices featured the
connectivity of mediotemporal areas, their between-group
directionality was explored. The association tended to be
larger in controls for some of the features (eg, the second
feature: right parahippocampal gyrus—left putamen R2R
connectivity), and larger in patients for others (eg, the third
feature: left hippocampus—right superior temporal gyrus
R2R connectivity).

In the mixed sMRI+RS-fMRI classifier the first 2 R2R
features were explored further. A 0.2 z difference from controls
was seen for the first R2R (temporal-parietal) feature in patients.
In contrast, the correlation between the posterior cingulate
cortex and the left pars opercularis was close to 0 in both
groups, but showed a larger dispersion in the patient group.

Finally, Pearson correlations were run to explore the
association among the top features, within each classifier.
Variable results were found, with cognitive and sMRI fea-
tures showing significant correlations, and RS-fMRI indices
tending instead to be statistically independent from each
other (Fig. 2).

DISCUSSION
AD triggers a large number of alterations to brain

structure, brain connectivity, and cognitive function. Partly,
this is the result of a global process of decline which,
homogenously, affects a large number of regions, circuital
pathways, and cognitive domains (ie, global atrophy and
ventricular enlargement, global loss of network connectivity
and regional isolation, global cognitive decline). What looks
like a general trend, however, can be broken down into
separate processes. In AD, studies have highlighted that
disease progression involves a number of separate routes. For
instance, loss of posteromedial metabolism and atrophy in
the mediotemporal complex seem to be driven by distinct
mechanisms.30 Similarly, changes in patterns of connectivity
in crucial network pathways are governed by disease-specific,
compensatory, and maladaptive mechanisms, which can
induce decreases but also increases in the resulting
phenotype.31,32 The extrapolation of independent disease
mechanisms can be helpful in clinical settings. For example,
there are studies which highlight the importance of exploring
mechanisms of both declarative and semantic memory for an
early diagnosis of AD, as semantic processing is severely
down-regulated in AD, but not significantly disrupted by the
normal processes of aging.33 On this note, the use of machine-
learning algorithms for classification purposes is an excellent
approach to clarify the diagnostic importance of features

extracted from structural and functional neuroimaging. As
commented below, however, the particularity of this
approach lies in the elimination of any redundancy expressed
by features significantly correlated with one another. The
resulting combination of variables, therefore, captures dis-
tinct aspects of classification, and, thus, of disease.

RS-fMRI Improves Classification
A look at the quantitative aspects of classificatory

performance reveals that the sMRI classifier was the least
accurate. This indicates that morphometric biomarkers are
not as effective as fMRI or cognitive features at detecting
abnormalities in the presence of MCI. We argue that, as
hippocampal and brain volumes are in fact also influenced
by nonpathologic aging,34 they are unsuitable to provide
classificatory specificity.

Classifiers based on cognitive features performed very
well. This is necessarily due to the fact that the standard of
truth (ie, “patient” or “control”) was heavily based on the
presence of cognitive impairment measured with cognitive tests.

The most accurate classifications were obtained when
RS-fMRI features were included in the feature-selection
process. The performance of the RS-fMRI classifier did in fact
not differ from that of the Cognitive classifier. In addition,
RS-fMRI features improved classification of both sMRI and
cognitive features. One possible reason behind such good
performance may be the large number (2016) of available RS-
fMRI features. This should be seen as an advantage enabled
by RS-fMRI modalities (rather than a methodological
imbalance), as RS-fMRI offers the opportunity of exploring
properties of the blood oxygen level dependent signal which
are not absolute (ie, related only to a specific voxel or ROI),
but relative (ie, reflective of the relationship between 2 voxels
or ROIs). These dynamic characteristics are profoundly
associated with the basic processes of brain functioning, as
task performance is supported by the interactive coactivation/
codeactivation of multiple structures.

Each Classifier as Informant of Distinct
Mechanisms

A closer, qualitative look at each classifier allows the
clarification of: (1) how useful machine-learning algorithms
are to extract classificatory information, and (2) how this
method helps the understanding of the various types of
mechanisms which may separate patients from controls.

As for the Cognitive classifier, the first feature was a
measure of declarative memory (the delayed recall of the
Rey-Osterrieth Figure), a domain well known to be severely
affected in AD. Although cognitive assessment featured a
second measure of long-term declarative memory (the
delayed recall of the Prose Memory test), this variable was
not chosen as part of the classifier. We argue that the sig-
nificant correlation found between the 2 memory tests
translates into comparable classificatory accuracies, hence
the non-necessity of including both. In contrast, the per-
formance on a measure of semantic processing (the
Category Fluency test) accounted for an exclusive and relevant
amount of variability. Declining semantic processing is one of
the major features of various forms of neurodegeneration, and
occurs as a result of compromised circuits sustained by regions
that are anatomically distinct from those in support of
declarative memory.35 By relying on the same argument, we
speculate that the global classifier did not include both
the performance on the delayed recall of the Rey-Osterrieth
Figure and the volume of the right hippocampus (the “top”
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cognitive and MRI-based features, respectively) because of a
conceptual association between the 2 variables.36

The sMRI classifier was heavily reliant on the right
hippocampus in our sample, whereas the left hippocampus,
presumably because of a very high interhemispheric corre-
lation coefficient, was not included. The second volumetric
feature was the left caudate nucleus (presumably con-
tributed by both caudate nuclei, given the large intrahemi-
spheric correlation). Although the volume of the right
hippocampus was significantly smaller in the group of
patient, no significant between-group difference emerged for
the left caudate. It is interesting to note how features with no
between-group differences may yield classificatory rele-
vance. We argue that there might be structures subjected to
minor morphometric changes, which, however, are more
distinctively related to cognitive impairment than any more
extensive morphometric dysregulation located elsewhere.
On this note, studies on human and primate brains show
that neuronal and synaptic densities are not homogenous
across the entire cortex.37,38 Small group differences in a
region with high cell density or sustaining a crucial function
might have profound biological implications. Dopaminergic
neurons represent an example of this mechanism in Par-
kinson disease, as they are a minimal portion of the total
number of nervous cells, but they serve paramount pur-
poses. In this respect evidence does shows that the caudate
manifests volumetric shrinkage in AD,39 whereas this does
not occur in healthy aging.34 These findings show that the
caudate alterations seen in patients, albeit not reaching
statistical significance in any specific direction, seem to be
independent from mediotemporal modifications, yet con-
ceptually relevant for the diagnosis of MCI.

The RS-fMRI classifier was profoundly based on
the connectivity of the left and right hippocampal formation.
The first feature represented the R2R pathway accounting for
the single largest portion of variability in our sample. The
subsequent 4 features all entailed independent aspects of
mediotemporal connectivity. Since the earliest histopatho-
logic descriptions, AD has been described as a disease that
causes a computational isolation of the hippocampus.40 Loss
of hippocampal and parahippocampal connectivity would be
the in vivo equivalent of this process. In addition, one of the
R2R features showed a trend toward the opposite direction,
with patients having increased hippocampal-temporal con-
nectivity. In line with the evidence of increased hippocampal
metabolism shown during the MCI stage,32 we hypothesize
that up-regulated connectivity in patients may be the result of
neuroplastic modifications triggered by the early stages of
hippocampal disconnection, and that the RS-fMRI classifier
is suitable to capture disease mechanisms as well as neuro-
plastic responses. These latter would in all likelihood not be
recordable by morphometric acquisitions, which reflect
instead gross anatomy, well known to be more resistant to
neuroplastic alterations.

We then included a mixed sMRI+RS-fMRI classifier
to understand whether the sole information extracted from
an MRI protocol could be exploited clinically. Hippo-
campal volumes were confirmed as the most informative
feature. Decreased connectivity (a 0.2 average drop in the
strength of the correlation coefficient) between temporal and
parietal region improved this classification. Interestingly, for
the third feature (posterior cingulate to Broca area), the r
coefficient was close to 0 in both groups (indicating no
association). In this case, the 2 groups differed in the dis-
persion levels, suggesting that the informative aspect for this

pathway might be the presence of an association (regardless
of the directionality) in a pathway where an association
would normally not exist.

The mixed sMRI+Cognitive classifier was constructed
based on the combination of features that are usually at
disposal of the clinician (a cognitive assessment and an
anatomic brain scan). The results are perfectly in line with
the typical pattern of clinical features that drives a diagnosis
of early-stage neurodegeneration, as the selected features
are measures of declarative memory and mediotemporal
volumes.

The RS-fMRI+Cognitive classifier was the top-per-
forming one. When the analysis of declarative memory is
flanked by measures of connectivity, the classification
approaches optimal levels (accuracy ∼94%) and outper-
forms the support provided instead by sMRI. The superior
performance of this classifier might reflect the qualitatively
different disruption caused by AD neurodegeneration on
brain function, leading often to compensatory change in
controls and maladaptative alteration in the early stage of
neurodegeneration.31

Finally, the outcome of the global classifier confirmed
that the characterization of cognitive profiles (presence of
declarative memory and semantic processing deficits) was by
far the most accurate predictive formula for classifying
patients. R2R features contributed to improving the accu-
racy by highlighting the role played by various aspects of the
limbic system, and temporooccipital areas.

Limitations
Despite the protection toward bias offered by a data-

driven approach and a sample of comparable or larger size
than that of other studies,16–20 the outcome is still the result
of feature and algorithm definition. Although we selected
“standard” cognitive tests and segmentation/parcellation
atlases, and 2 basic machine-learning algorithms, we cannot
rule out the possibility that other methodological choices
might have yielded slightly different patterns of findings.
This, however, would not undermine the core findings and
interpretations. Moreover, the sets of cognitive, neuro-
anatomic, and neurofunctional variables are qualitatively
different from one another, for example, in their number, in
the presence of a numerical ceiling, or in their directionality
(as patients may show either decreased or increased RS-
fMRI connectivity, but only an impoverishment of cogni-
tion and brain structure, see Table 2 for the most distinctive
anatomic and R2R). Inevitably, feature selection will be
affected by these different properties. As a consequence,
comparisons of classifiers will be meaningful as far as
quantitative performance is concerned, but any analysis
focusing on confronting different types of features has to be
interpreted with caution. Post hoc inter-feature correlations
are in line with the presence of such qualitative differences,
as, for instance, most cognitive features (fewer in number)
were mutually correlated, determining a certain degree of
collinearity, whereas RS-fMRI indices (many in number)
were unrelated with one another.

Clinical Usefulness of Machine-learning Methods
In conclusion, these findings indicate that RS-fMRI

R2R connectivity improves diagnostic classification of
patients with MCI, and outperforms the accuracy of sMRI,
which was profoundly reliant on the importance of hippo-
campal volumes. A careful look at each classifier revealed
that machine-learning approaches, by circumventing
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feature-to-feature statistical redundancy, generate classi-
fiers in which each feature accounts for an independent
portion of classificatory accuracy, presumably in reflection
of separate disease mechanisms. These might manifest as
decrease/increase in R2R correlation (and these differences
are often very small and not significant), or in the presence
of a correlation between 2 otherwise uncorrelated areas. In
addition, between-group volumetric differences do not
seem to scale to a common denominator, as minimal dif-
ferences in specific structures might be more relevant than
larger differences elsewhere. These alterations might rep-
resent an important source of clinical information and have
to be further explored to be implemented in neurological
settings. The nature of these findings suggest that clinically
relevant alterations seen in brain function of MCI patients
might be quite subtle and not potentially inferable from
group-based analyses.
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