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 
Abstract—This paper proposes a new adaptive patient- 

cooperative control strategy for improving the 
effectiveness and safety of robot-assisted ankle 
rehabilitation. This control strategy has been developed 
and implemented on a compliant ankle rehabilitation robot 
(CARR). The CARR is actuated by four Festo Fluidic 
muscles (FFMs) located to the calf in parallel, has three 
rotational degrees of freedom (DOFs). The control scheme 
consists of a position controller implemented in joint space 
and a high-level admittance controller in task space. The 
admittance controller adaptively modifies the predefined 
trajectory based on real-time ankle measurement, which 
enhances the training safety of the robot. Experiments 
were carried out using different modes to validate the 
proposed control strategy on the CARR. Three training 
modes include 1) a passive mode using a joint-space 
position controller, 2) a patient-robot cooperative mode 
using a fixed-parameter admittance controller, and 3) a 
cooperative mode using a variable-parameter admittance 
controller. Results demonstrate satisfactory trajectory 
tracking accuracy, even when externally disturbed, with a 
maximum normalized root mean square deviation (NRMSD) 
less than 5.4%. These experimental findings suggest the 
potential of this new patient-cooperative control strategy 
as a safe and engaging control solution for rehabilitation 
robots. 
 

Index Terms—Adaptive, patient-cooperative, admittance 
controller, ankle rehabilitation, robot, safety. 
 

Manuscript received June 29, 2016; revised May 09, 2017; accepted 
July 13, 2017. This work was supported in part by the University of 
Auckland. 

M. Zhang and X. Li are with Tongji Zhejiang College, Jiaxing, China. 
M. Zhang is also with the Department of Mechanical Engineering at the 
University of Auckland, New Zealand (e-mail: 
mzha130@aucklanduni.ac.nz; xlonglee@tongji.edu.cn). 

S. Q. Xie is with the School of Electronic and Electrical Engineering at 
University of Leeds, Leeds, UK (corresponding author to e-mail: 
S.Q.Xie@leeds.ac.uk). 

G. Zhu and X. Huang are with the School of Mechanical Science & 
Engineering and Tongji Medical College, respectively, at Huazhong 
University of Science and Technology, Wuhan, China (e-mail: 
glzhu@mail.hust.edu.cn; xiaolinh2006@126.com). 

W. Meng is with the School of Information Engineering, Wuhan 
University of Technology, Wuhan, China (email: 
wmen386@aucklanduni.ac.nz). 

A. Veale is with the Department of Mechanical Engineering at the 
University of Auckland, New Zealand (email:  
avea007@aucklanduni.ac.nz). 

 

 

I. INTRODUCTION 

OBOT-assisted ankle rehabilitation solutions, as 
therapeutic adjuncts to facilitate clinical practice, have 

been actively researched in the past few decades. Two types of 
ankle robots are wearable devices such as the MIT Anklebot [1] 
and the bio-inspired soft ankle robot [2], and platform ones 
[3-7]. Zhang, et al. [8] systematically reviewed a variety of 
ankle rehabilitation devices and demonstrated that 
robot-assisted rehabilitation techniques are effective in 
reducing ankle impairments. They also demonstrated that 
wearable robots are more suitable for gait training, while 
platform ones are better suited for ankle exercises only. 

Platform robots can have a single degree of freedom (DOF) 
or multiple DOFs. The single-DOF one is generally actuated by 
a rotating motor [3], while multi-DOF ones are usually based 
on parallel mechanisms [4-7]. Further, the parallel robot whose 
actuators locate below its end effector has a misaligned rotation 
center with the ankle joint [6, 7]. This requires synergic 
movement of the shinbone from the patient for ankle training, 
which causes discomfort to patients and even hurts the ankle 
joint. By contrast, patients can keep their shanks stationary on 
leg holders on devices with actuators installed above their end 
effectors [4, 5]. From this point of view, parallel robots actuated 
from above are more suitable for ankle rehabilitation due to 
better alignment of the robot and the ankle joint. 

Many rehabilitation strategies have been implemented on 
existing ankle robots [8]. Zhang, et al. [3] developed an 
intelligent ankle stretching device. This device only allows 
training along ankle dorsiflexion/plantarflexion (DP) although 
its effectiveness has been verified on children with cerebral 
palsy [9] and stroke patients [10]. The Rutgers Ankle was 
proposed based on a six-DOF Stewart-Gough platform [7]. It 
has been able to conduct both passive and active rehabilitation 
exercises by integrating real-time assessment, virtual-reality 
games, and tele-rehabilitation techniques [11]. Saglia, et al. [6] 
constructed a parallel ankle rehabilitation robot with two DOFs 
(ankle DP and inversion/eversion (IE)). While an interaction 
control algorithm has been implemented through a position 
controller for passive training and an admittance controller for 
active training [12], it does not consider adaptive adaptation of 
the control parameters. These robots suffer from limited DOFs 
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or misaligned rotation center. Jamwal, et al. [4] developed a 
parallel ankle rehabilitation robot using four pneumatic 
artificial muscles. This robot has an aligned rotation center with 
the ankle joint. While satisfactory trajectory tracking was 
achieved using an adaptive fuzzy-logic position controller, the 
adaptation law was only for the length control of the muscle 
rather than real-time patient-robot interaction. In brief, this 
control method does not allow active training on this robot. 

To overcome the abovementioned limitations of existing 
ankle rehabilitation robots, our group recently developed a 
compliant ankle rehabilitation robot (CARR). This robot has 
advantages including aligned rotation center, three DOFs, 
compliant actuation, and real-time measurement of 
patient-robot interaction. These features make the CARR have 
great potential for ankle rehabilitation. However, an interactive 
controller that can maximize the performance of the CARR has 
not been designed and validated. Such a training strategy can 
improve the training safety and therapeutic outcome by 
introducing a certain amount of robot compliance, and adapting 
robot behavior to patients' ankle abilities. 

II. COMPLIANT ANKLE REHABILITATION ROBOT (CARR) 

The CARR, as a parallel mechanism, consists of a fixed 
platform and a moving platform, of which the moving one is a 

three-link serial manipulator. It is actuated by four Festo 
Fluidic muscles (FFMs) (DMSP-20-400N) for three rotational 
DOFs. Ankle DP and IE are labeled in Fig.1 (a), and ankle 
adduction/abduction (AA) is labeled in Fig.1 (b1). These three 
motions are denoted by red, blue, and pink lines, respectively. 
The arrow line represents the rotation axis. 

Four proportional pressure regulators (Festo 
VPPM-6L-L-1-G18-0L6H) are used for pressure control of 
four FFMs. For the sensing function of the CARR, three 
magnetic rotary encoders (AMS AS5048A) are used about each 
rotation axis for measuring angular positions of the end 
effector, a six-axis load cell (SRI M3715C) is located between 
the footplate and the end effector for measuring patient-robot 
interaction, as shown in Fig. 1(b2) and Fig. 2. It is hypothesized 
that there is no relative motion between the footplate and the 
patient's foot during the training, thus the measured position of 
the end effector equals that of the involved foot. Fig. 1(c) 
presents the use of the CARR on a subject. These electronic 
components communicate with the embedded controller (NI 
Compact RIO 9022) through three modules (NI 9401, NI 9205 
and NI 9263) for digital input/output, analog input, and analog 
output, respectively. 

III. ADAPTIVE PATIENT-COOPERATIVE CONTROL 

A new patient-cooperative control strategy on the CARR 
based on real-time patient-robot interaction is shown in Fig. 3. 
It consists of a joint-space position controller (low-level) and a 
task-space admittance controller (high-level). 

A. Joint-Space Position Controller 

A position controller serves as a low-level controller for 
patient-cooperative robotic training. The trajectory tracking of 
the CARR could be achieved by controlling individual FFM 
length in joint space. As in Fig. 3, the desired individual FFM 
length is calculated by inverse kinematics based on predefined 

(a) (b) (c)
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Fig. 1. An ankle rehabilitation robot with three rotational DOFs. (a) The CARR, the red and blue arrow lines represent the axes of ankle DP and IE; (b1) The end 
effector with a six-axis load cell for the measurement of patient-robot interaction forces and torques, the pink arrow line represents the axis of ankle AA; (b2) The 
mechanical design to show the installation of the six-axis load cell; and (c) The CARR in use on a patient. 

AdapterboardMagnet
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Fig. 2.  Sensors installation in the CARR: (a) the magnetic rotary encoder for 
measuring the angular position of a single axis; (b) the six-axis load cell 
(SLC) for detecting patient-robot interaction. FP: Footplate, EE: End effector. 
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trajectories, while, as the feedback to the 
proportional-integral-derivative (PID) controller, the actual 
individual FFM length is obtained based on measured posture 
of the CARR. This controller outputs four individual pressure 
values that directly go to VPPMs for actuating the four FFMs. 

More specifically, the desired trajectory is denoted as Ʌୢሺtሻ 
in (1). The measured trajectory is obtained from three magnetic 
rotary encoders and denoted as Ʌ୫ሺtሻ in (1). The subscripts DPǡ IE and AA  represent ankle dorsiflexion/plantarflexion, 
inversion/eversion, and adduction/abduction, respectively. 
Individual FFM length is calculated using (2) based on inverse 
kinematics, where lସൈଵୢ ሺtሻ and lସൈଵ୫ ሺtሻ  respectively represent 
desired and measured FFM lengths, Ɋ  is a coefficient that 
relates the FFM length to the link length depending on the 
CARR configuration, Յସൈଷ relates the link length to the posture 
of the robot. Lastly, the error eସൈଵሺtሻ shown in (3) is input to 
the PID controller, and the individual desired FFM pressure can 
be calculated according to (4) with well-tuned K୮, K୧, and Kୢ. 

B. Task-Space Admittance Controller 
The interaction tasks cannot be handled by pure motion 

control that rejects forces exerted by patients as disturbances. 
Impedance and admittance control schemes are usually 
considered as the basis of interactive robotic training. The 
impedance controller takes a displacement as input and reacts 
with a force. To apply on the CARR, the impedance control law 
can be considered as (5). The desired driven torque is 
calculated based on (6) and (7). An analytic-iterative technique 
proposed by Taghirad and Bedoustani [13] can be used to 
distribute the desired robot torque to individual desired FFM 
force. However, it is challenging to be implemented on the 
CARR due to high requirement of the robotic assembly 

precision. Engagements from patients also induce sudden FFM 
force changes, which can make the system unstable. 

In admittance control mode, by contrast, the robot assumes 
the behavior of admittance and its movements are determined 
by the external force from patients. Under this mode, the CARR 
deviates from the reference trajectory in the presence of 
patient-robot interaction but is otherwise following the 
reference trajectory. Thus, an adaptive admittance controller is 
developed on the CARR for patient-cooperative training. The 
admittance control law is proposed in (8), where Ʌ୰ሺtሻ  and Ʌୢሺtሻ represent the reference trajectory and the recalculated 
desired trajectory, respectively, and T୧ሺtሻ is the patient-robot 
interaction torque, B and K respectively represent the damping 
and stiffness coefficients. The end effector of the CARR is a 
three-link serial manipulator whose inertia tensor M  is 
calculated based on (9). 

The integration of the feed forward measured patient-robot 
interaction torque, in Fig.3, allows for a variable admittance 
controller for adaptive training. Patient-robot interaction forces 
and torques are calculated using readings of the six-axis load 
cell in (10) [14], where F and T represent forces and torques, 
the script a and slc represent the ankle joint and the six-axis 
load cell, Rୱ୪ୡୟ  is a 33 rotation matrix from a to slc, Pୱ୪ୡୟ ൈ Rୱ୪ୡୟ  
is a 3 3 skew matrix from a to slc, and Pୱ୪ୡୟ  is defined in (11). 

 

ቊɅୢሺtሻ ൌ ሾɅୈ୔ୢ ሺtሻ Ʌ୍୉ୢሺtሻ Ʌ୅୅ୢ ሺtሻሿ୘Ʌ୫ሺtሻ ൌ ሾɅୈ୔୫ ሺtሻ Ʌ୍୉୫ ሺtሻ Ʌ୅୅୫ ሺtሻሿ୘ (1) 

൜ lସൈଵୢ ሺtሻ ൌ ɊՅସൈଷɅୢሺtሻlସൈଵ୫ ሺtሻ ൌ ɊՅସൈଷɅ୫ሺtሻ (2) eସൈଵሺtሻ ൌ lସൈଵୢ ሺtሻ െ lସൈଵ୫ ሺtሻ (3) 

pସൈଵሺtሻ ൌ K୮eସൈଵሺtሻ ൅ K୧ න eସൈଵሺtሻdt୲
଴൅ Kୢ deସൈଵሺtሻdt  

(4) 

T୧ሺtሻ െ T୧ୢ ሺtሻ ൌ M൫Ʌୢሺtሻሷ െ Ʌ୫ሺtሻሷ ൯൅ B൫Ʌୢሺtሻሶ െ Ʌ୫ሺtሻሶ ൯൅ K൫Ʌୢሺtሻ െ Ʌ୫ሺtሻ൯ 

(5) 

T୰ሺtሻ െ T୧ሺtሻ ൌ MɅ୫ሺtሻሷ ൅ CɅ୫ሺtሻሶ ൅ C୤Ʌ୫ሺtሻሶ ൅ G (6) T୰ሺtሻ ൌ ʹT୧ሺtሻ െ B൫Ʌୢሺtሻሶ െ Ʌ୫ሺtሻሶ ൯െ K൫Ʌୢሺtሻ െ Ʌ୫ሺtሻ൯൅ CɅ୫ሺtሻሶ ൅ C୤Ʌ୫ሺtሻሶ ൅ G 

(7) 

T୧ሺtሻ ൌ M൫Ʌୢሺtሻሷ െ Ʌ୰ሺtሻሷ ൯ ൅ B൫Ʌୢሺtሻሶ െ Ʌ୰ሺtሻሶ ൯൅ K൫Ʌୢሺtሻ െ Ʌ୰ሺtሻ൯ (8) 

MሺɅୈ୔ǡ Ʌ୍୉ǡ Ʌ୅୅ሻ ൌ ෍ M୧ଷ
୧ୀଵ ൌ ෍ R୧ଷ

୧ୀଵ I୧R୧୘ (9) 

൤FଷൈଵୟTଷൈଵୟ ൨ ൌ ൬ Rୱ୪ୡୟ ͲଷൈଷPୱ୪ୡୟ ൈ Rୱ୪ୡୟ Rୱ୪ୡୟ ൰ ቈFଷൈଵୱ୪ୡTଷൈଵୱ୪ୡ ቉ (10) 

CARRTask-Space Admittance Controller Joint-Space Position Controller
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Fig. 3. An adaptive patient-cooperative control strategy implemented on the CARR with a position controller in joint space and an admittance controller in task 
space. DFFML: Desired Festo Fluidic muscle length; MFFML: Measured Festo Fluidic muscle strain; PID-C: Proportional-integral-derivative controller; 
Adaptation law refers to Fig. 3 and (16-17); and ankle force and torque are calculated using (8); șr is the reference position, and the position tracking error is 
denoted by șe, șe=șd-șm, of which șd represents the desired position of the end effector while șm is the measured position; Ti represents the interaction torque. 
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To ensure the safety of the proposed patient-cooperative 
control strategy, the bounded input and bounded output (BIBO) 
stability of the admittance controller is conducted. Equation (8) 
can be rewritten in (12), and (13) is further obtained, where Tୢ ሺtሻ ൌ MሺtሻɅௗሺtሻሷ ൅ BሺtሻɅௗሺtሻሶ ൅ KሺtሻɅௗሺtሻ. System transfer 
function (15) is obtained through Laplace transformation (14). 
Based on (16), this system is BIBO stable, since all eigenvalues 
are in the open left half plane with B ൐ Ͳ and M ൐ Ͳ. 

C. Adaptation Law 

Ankle stiffness varies over its range of motion (ROM) during 
robot-assisted rehabilitation training. To guarantee training 
safety, it is important for the robot to provide assistive torque 
with adjustable compliance. While the CARR can be 
programmed to carry out both passive and interactive training, 
an adaptive interaction control scheme is required for enhanced 
rehabilitation efficacy and training safety.  

A new adaptation law is proposed in this study to tune the 
admittance parameters of the CARR based on real-time ankle 
posture and interaction torque. Specifically, the parameters B 
and K are adapted by rules (17) and (18), where B଴ and K଴ are 
base values, aଵ ,  aଶ , and aଷ  are weighting coefficients that 
adjust the influences of the angular position, bଵ, bଶ, and bଷ are 
used to adjust the influence of the interaction torque.  

To reduce the effect of the angular dependency of passive 
ankle torque, the interaction torque is normalized by a 
model-based predicted passive torque. The involvement of the 
subject-specific passive ankle torque is expected to minimize 
the effects of different sizes of participants. Stiffness and 
damping parameters are bounded by saturation functions to 

guarantee the stability of the control system. The proposed 
adaptation law reduces the robot stiffness and damping as the 
robot angular displacement and interaction torque increase. 
This ensures that the patient is able to safely backdrive the 
CARR even when the foot is took into an uncomfortable 
position, and so prevents a large and potentially harmful 
contact force and torque.  

IV. SIMULATION 

To verify the feasibility of the admittance controller with the 
adaptation law, a MATLAB simulation was conducted. It is 
shown in Fig. 4 that the patient-robot interaction torque 
deviates the robot trajectory from the reference one. This can 
increase motivation and active participation of patients as 
his/her movement intention and active effort are reflected by 
the adaptation of the robot trajectory. Adaptation of the training 
trajectory is also influenced by damping and stiffness 
parameters, which enables the robot to provide assistance with 
adjustable compliance. When the ankle is highly extended or 
exerts a large interaction torque, the robot behaves with a high 
compliance for training safety. In this situation, the movement 
of the robot can be adjusted by patients, and thus the trajectory 
deviation can be prominent. On the other hand, the trajectory 
deviation is slight when the robot is running in a more passive 
way with a low robot compliance. Meanwhile, constraints on 
the robot ROM and compliance are enforced by using 
saturation functions to prevent endangerment to patient safety. 
It should be noted that this algorithm suits for any movement, 
not limited to the three DOFs of the CARR. 

In Fig. 4, the cyan curve represents the reference trajectory, 
the desired trajectory is adaptively deviated from the reference 

Pୱ୪ୡୟ ൌ ቎ Ͳ െp୸ p୷p୸ Ͳ െp୶െp୷ p୶ Ͳ ቏ (11) 

MሺtሻɅௗሺtሻሷ ൅ BሺtሻɅௗሺtሻሶ ൅ KሺtሻɅௗሺtሻൌ T୧ሺtሻ ൅ MሺtሻɅ୰ሺtሻሷ൅ BሺtሻɅ୰ሺtሻሶ ൅ KሺtሻɅ୰ሺtሻ 
(12) 

T୧ሺtሻ ൌ Tௗሺtሻ െ MሺtሻɅ୰ሺtሻሷെ BሺtሻɅ୰ሺtሻ െ KሺtሻɅ୰ሺtሻሶ  
(13) T୧ሺsሻ ൌ െሾMሺsሻsଶ ൅ Bs ൅ KሿXሺsሻ (14) XሺsሻT୧ሺsሻ ൌ െͳMሺsሻsଶ ൅ Bሺsሻs ൅ Kሺsሻ (15) 

s ൌ െB േ ξBଶ െ ͶMKʹM  (16) 

B ൌ ۔ە
ۓ B୪ଵǡ ifB ൏ B୪ଵB଴ ͳaଵeȁୟమ஘ȁ ฬaଷ T୫୭ୢୣ୪୧୬୥T୫ୣୟୱ୳୰ୣୢฬ ǡ ifB୪ଵ ൑ B ൑ B୪ଶ B୪ଶǡ ifB ൐ ୪ଶܤ

 (17) 

K ൌ ۔ە
ۓ K୪ଵǡ ifK ൏ K୪ଵK଴ ͳbଵeȁୠమ஘ȁ ฬbଷ T୫୭ୢୣ୪୧୬୥T୫ୣୟୱ୳୰ୣୢฬ ǡ ifK୪ଵ ൑ K ൑ K୪ଶ K୪ଶǡ ifK ൐ ୪ଶܭ

 (18) 

 
Fig. 4. Simulation of the admittance controller with an adaptive adaptation 
law. The recalculated desired trajectory Ʌୢ is determined by the reference 
trajectory Ʌ୰ and the deviated value οɅ, which is calculated by (8). Here െͲǤͳ ൑ οɅ ൑ ͲǤͳ, െͲǤ͵ͷ ൑ Ʌୢ ൑ ͲǤ͵ͷ. The saturation function is denoted 
by the red and blue dotted lines respectively. The damping B and stiffness K 
are determined by the robot's angular position, interaction torque, and the 
modeled ankle torque. They are adapted using (17) and (18). Here, ͲǤ͸ ൑B ൑ ͸, ͳ ൑ K ൑ ͳͲ. The saturation function is denoted by the blue and red 
dotted lines respectively. M is the inertial parameter calculated of the CARR. 
To get a clear view of its changes, M is multiplied by 100 times. 
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one based on real-time patient-robot interaction, plot in blue, 
the red line shows the deviation of these two trajectories. Fig. 4 
also shows the values of B, K and M and the interaction torque, 
of which B and K are adaptively tuned by (17) and (18). 

V. EXPERIMENTAL RESULTS 

A musculoskeletally injured subject (male, 29 years) with 
ankle sprain, and a neurologically injured subject (male, 68 
years) with drop foot participated in this study. The sprained 
ankle was due to jumping and rolling during basketball and 
diagnosed as limited ROM and torn ligaments. The drop foot 
was caused by stroke. Both gave written consent to participate 
in the trial according to ethics approval obtained from the 
University of Auckland, Human Participants Ethics Committee 
(011904). 

A. Experimental Protocol 

Before the training, a preliminary assessment was conducted 
to check the appropriate ROMs of the drop foot and the 
sprained ankle by a doctor. Each of them was instructed to sit 
on a height-adjustable chair with the shank free on the leg 
holder, as shown in Fig. 1(c). Their feet were strapped into the 
ankle orthosis during the training. The patient with drop foot 
has very limited active ankle ROM, thus only passive stretching 
along ankle DP was conducted based on the doctor’s 
suggestion. The subject with ankle sprain can conduct both 
passive and active training along ankle DP and IE, with very 
limited active ROM of ankle IE. Although the CARR was 
designed with three DOFs, only training along DP and IE was 
conducted. The doctor did not suggest any training along ankle 
AA. 

The training trajectory prescribed to the drop foot is a sine 
wave with the frequency of 0.02 Hz. Its amplitude was initially 
set at 0.1 rad, and then gradually increased until a feeling of 
joint tightness. The subject was verbally encouraged to relax 
his foot to minimize the effects by active contributions. The 
whole process lasted 15 minutes with 18 cycles. On the 
sprained ankle, three types of trainings were conducted, as 
summarized in Table I. They are 1) passive mode using only 
position control in joint space, 2) patient-cooperative training 
using a fixed- admittance controller, and 3) patient-cooperative 
training using a variable-admittance controller. The passive 
mode followed a mixed trajectory of ankle DP and IE, while the 
patient-cooperative training was conducted along only ankle 
DP. These trajectories were set to operate three cycles of sine 
wave at 0.05 Hz. The parameters of the admittance controller 
were determined based on trial and error. Optimization 

techniques are required for optimal parameter selection. In this 
study, ankle DP, IE and AA are respectively denoted as X, Y 
and Z to simplify the description. 

B. Model-Based Passive Ankle Torque 

The estimated passive ankle torque can be obtained from a 
computational ankle model that has three rotational DOFs with 
12 muscles and seven ligaments [15]. The modeling results on 
the participant with ankle sprain are presented in Fig. 5. To 
facilitate its use with the variable-admittance controller in 
real-time, an approximation equation (19) is fitted to the 
numerical model to estimate passive ankle torque, where pଵ ൌͷǤͳͻͻʹ, pଶ ൌ ͳǤ͸ʹ͵ͺ, pଷ ൌ ͻǤ͹͹ͻʹ, and pସ ൌ ͲǤʹͻʹ͹. 

C. Position Control 

Experimental results on the drop foot are presented in Fig.6. 
In the first 100 seconds, the training trajectory has an amplitude 
of 0.1 rad. Based on the patient’s feedback, the robot ROM was 
gradually increased until a feeling of joint tightness. During the 
period of 100th to 200th seconds, the amplitude of the trajectory 
was increased to 0.15 rad. It was further increased to 0.2 rad 
after the 200th second, when the patient felt slightly tight at his 
ankle joint. The robot kept this trajectory during the period of 
200th to 725th seconds. As the patient requested, the amplitude 
of the training trajectory was finally adjusted to 0.25 rad when 
the patient felt obvious ankle stretching. The statistical results 
of the trajectory tracking accuracy are encouraging with the 
root mean square deviation (RMSD) value being 0.0408 rad 
and the normalized root mean square deviation (NRMSD) 
value being 8.16%. 

Experimental results on the sprained ankle are presented in 
Fig. 7 and 8. The trajectory tracking in task space is shown in 
Fig. 7, and individual muscle length tracking in joint space is 
plot in Fig. 8. The trajectory tracking performance is 
satisfactory in both task space and joint space, with all NRMSD 
values in task space less than 5.4% and those in joint space no 
greater than 4.71%, as summarized in Table II at the end of 
Section V. 

D. Patient-Cooperative Training 

Patient-cooperative training was first evaluated using the 
fixed-admittance controller on the sprained ankle. Parameters B 
and M were both set at a constant value of 0.03. Experimental 

T୫୭ୢୣ୪୧୬୥ ൌ pଵɅ୫ሺtሻଷ ൅ pଶɅ୫ሺtሻଶ ൅ pଷɅ୫ሺtሻ൅ pସ 
(19) 

 
Fig. 5.  Model-based passive joint torque of the sprained ankle. 
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TABLE I 

THREE TRAININGS APPLIED TO THE SUBJECT WITH ANKLE SPRAIN 

Training Modes 
X (rad) Y (rad) 

Dorsiflexion Plantarflexion Inversion Eversion 
PT 0.3 0.3 0.1 0.1 

PCT with FA 0.2 0.2 0 0 
PCT with VA 0.2 0.2 0 0 

PT: Passive training, PCT: Patient-cooperative training; FA: Fixed 
admittance; VA: Variable admittance. 
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results are presented in Fig. 9, where satisfactory performance 
is achieved for the position tracking of the robot and real-time 
interaction torque is recorded. Statistical results of the 
trajectory tracking about X are summarized in Table II, with the 
NRMSD value being 3.26%. It is shown in Fig. 9 that by using 
the admittance controller the recalculated desired trajectory 
deviates from the reference path in accordance with the 
interaction torque ܶ௫. For instance, the recalculated trajectory 
deviates from its reference path to move towards plantarflexion 
when ܶ ௫ is in negative direction during 0-10 seconds. The robot 
deviates and moves towards dorsiflexion during 12-18 seconds 
when positive interaction torque is applied. The robot ROM is 
bounded for preventing ankle hyperflexion or hyperextension, 
which is reflected during 54 to 57 seconds. 

The patient-cooperative training was then evaluated using 
the variable admittance controller on the sprained ankle, with B 
and M being adjusted based on (17) and (18). Experimental 
results are presented in Fig. 10. The real-time adaptive damping 
and stiffness coefficients are recorded as well as the measured 
interaction torque. Table II summarizes the statistical results of 
the trajectory tracking accuracy about X, with the NRMSD 
value being 3.77%. The robot ROM is bounded between -0.35 
and 0.35 rad for training safety when continuous interaction 
torque exists. The deviated movement for a certain moment is 
limited between -0.1 and 0.1 rad to prevent sudden changes of 
the trajectory. The damping and stiffness coefficients remain 
inside a constrained space between 0.01 and 0.1 to guarantee 
the system stability.  

The passive ankle torque is small when the ankle is close to 
its neutral position and increases when it goes to its limited 
position, as shown in Fig. 5. It can be seen from Fig. 10 that the 
interaction torque depends on both ankle position and patient's 
active engagement with the robot. The interaction torque tends 
to be larger for a higher ankle extension, although certain rapid 
changes exist due to the patient's subjective intention. 
Parameters B and K increase as the interaction torque decreases 
while decrease as the interaction torque increases during 15-20 
seconds. The adaptation law is also influenced by the modeling 
torque and the ankle position. For instance, parameters B and K 
are small during 4-5 seconds when the interaction torque is 
small, which can be accounted for by large ankle flexion and 
model predicted torque. This adaptation law allows the robot to 

 
Fig. 6.  Trajectory tracking responses during passive training on the drop foot. 
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Fig. 7.  Trajectory tracking during passive training on the sprained ankle. 

 
Fig. 8.  Muscle length tracking during passive training on the sprained ankle. 
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Fig. 9.  Trajectory tracking of the patient-cooperative training with fixed 
admittance. 
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be more compliant in extended ankle position compared to its 
neutral position. Specifically, it is easier for the patient to 
change the robot movement with lower B and K values, such as 
during the periods of 30-35 and 52-57 seconds. In contrast, 
during the periods of 7-10 and 38-41seconds, the robot is 
operating in a more passive mode with high B and K values, 
limiting backdrivability. 

As experimental results presented in Fig. 9 and Fig. 10, the 
patient-cooperative control strategy with fixed admittance or 
variable admittance has been used in both passive and active 
training. If a patient does not exert any active torque above the 
defined threshold, the robot operates in a passive mode to track 
the predefined trajectory. Otherwise, the robot runs in a 
patient-cooperative mode under the admittance control 
strategy. The adaptive patient-cooperative control scheme, 
however, presents advantages compared to that with fixed 
admittance based on a fact that the robot should be more 
compliant with a stiffer joint. For instance, adapting robot 
compliance according to joint stiffness increases robot 
backdrivability at ankle limits, thus making patients safer and 
more comfortable. This realizes the remark of Riener, et al. [16] 
who suggested that robot-assisted training with real-time 
assessment will likely make therapy easier, more efficient, and 
comfortable. 

VI. DISCUSSION AND CONCLUSION 

Two typical control schemes of parallel robots are the joint 

space controller and the task space controller. The joint space 
controller, for position control, is to make actual link lengths 
conform to desired lengths computed from the required 
position of the manipulator by inverse kinematics [17]. In a 
similar way, a joint space force controller is also achievable if 
force distribution can be conducted for a given robotic torque. 
This method, however, is subject to numerical optimization 
[13]. In this study, the joint space position controller was 
selected as the basis of the patient-cooperative control strategy. 
This is due to the fact that the force distribution of the CARR 
with minimum energy consumption cannot be obtained in real 
time. 

Adaptive interaction control strategies have been developed 
in different ways. A common method is based on the trajectory 
tracking error [18-20]. Lu, et al. [21] developed an adaptive 
control scheme by incorporating learning control approaches 
into an exoskeleton to handle periodic uncertainties. The 
patient’s disability level and active engagement have been also 
considered for more advanced adaptation laws. Hussain, et al. 
[22] proposed an adaptive impedance controller that adjusts the 
assistance of a robotic gait orthosis according to the disability 
level and voluntary participation of human subjects. Jamwal, et 
al. [23] used a similar control strategy on a parallel ankle robot. 
While estimation of voluntary participation could result in 
adaptive robotic assistance, the identification of active joint 
torque is subject to inverse dynamics and estimation of passive 
joint torque [24]. 

Rehabilitation therapists advocated the assistance-as-needed 
(AAN) control strategy. Recent studies have investigated this 
novel training scheme to keep a challenging assistance level to 
avoid slacking. Emken, et al. [25] designed an error-based 
tracking controller with a forgetting factor for providing 
assistance only as needed. Wolbrecht, et al. [26] introduced a 
forgetting factor for adaptive control to decay the robotic 
assistance when errors in task execution are small. Banala, et al. 
[27] gradually increased the difficulty level by reducing the 
robotic assistance and increasing the treadmill speed when 
patients achieved better tracking performance. These robotic 
interaction controllers behave like: they create restoring forces 

TABLE II 

STATISTICAL RESULTS OF THE CONTROL PERFORMANCE ON THE CARR 

 PT PCT with FA PCT with VA 

X  RMSD (rad) 0.0247 
4.12 

0.0223 0.0251 
NRMSD (%) 3.26 3.77 

Y 
RMSD (rad) 0.0107 

5.36 
0.0016 0.0017 

NRMSD (%)   

ML 1 
RMSD (mm) 1.1345 

4.34 
  

NRMSD (%)   

ML 2 
RMSD (mm) 2.9144 

4.71 
  

NRMSD (%)   

ML 3 
RMSD (mm) 0.9861 

3.77 
  

NRMSD (%)   

ML 4 
RMSD (mm) 2.5954 

4.20 
  

NRMSD (%)   
RMSD: Root mean square deviation; NRMSD:  Normalized root mean 
square deviation; PT: Passive training, PCT: Patient-cooperative training; 
ML: Muscle length; FA: Fixed admittance; VA: Variable admittance;  
represents not applicable. 

 
Fig. 10.  Trajectory tracking responses of the patient-cooperative training 
with variable admittance. 
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if participants deviate from desired trajectories. Otherwise, if 
the tracking error is acceptable, the controller will not intervene. 
In addition, Pérez-Rodríguez, et al. [28] proposed a new AAN 
control algorithm to provide anticipatory actuation. To tailor 
the therapy for each patient, Metzger, et al. [29] adapted 
exercise difficulty based on an assessment-driven selection for 
hand training. The focus of such adaptation algorithms is that 
the robot torque varies over time to continuously challenge the 
patient to exert his/her own effort and thus actively engage in 
the rehabilitation treatment [26]. However, as each algorithm 
has its own specific advantages related the platform on which it 
is implemented, there is no obvious golden standard for online 
difficulty adaptation of the training.  

Back to Figs 9, 10, the patient-cooperative control strategies 
with fixed admittance or variable admittance both have shown 
great potentials for clinical applications. However, a 
quantitative comparison between fixed admittance and variable 
admittance is lacking, although statistical data are present in 
Table II. The admittance parameters were determined based on 
trial and error in this study, and for optimal control performance 
optimization techniques are required for most appropriate 
parameters. This will be carried out in future, as well as a direct 
comparison between fixed admittance and variable admittance 
on a large sample of participants. 

The proposed techniques in this study contribute to enhanced 
effectiveness and safety of robot-assisted ankle rehabilitation 
training from four aspects. One is the use of compliant actuators 
making the training safer and more comfortable. Next, the robot 
has three rotational DOFs for comprehensive ankle exercises. 
Third, the parallel mechanism based robot designed with 
appropriate workspace can ensure the robotic training in a safe 
range of motion. Last is the development of an adaptive 
admittance controller. It adaptively modifies the predefined 
trajectory based on real-time ankle measurement (ankle posture 
and interaction torque) to ensure training safety by avoiding 
excessive interaction forces and torques. 

While Krebs, et al. [30] suggested that therapy should be 
tailored to each patient and there is no “one-size-fits-all” 
control strategy, howover, it can be assumed that the proposed 
patient-cooperative control is a "one-size-fits-most" control 
scheme. This algorithm allows the CARR to adaptively conduct 
either passive or cooperative training based on real-time 
assessment from subject-specific modeling results and built-in 
sensors. Preliminary findings on a drop foot and a sprained 
ankle are encouraging, which demonstrates adaptive robust and 
accurate trajectory tracking and thus establishes its efficacy. To 
the best of the authors’ knowledge, the admittance control on a 
parallel mechanism with actuators below its end effector has 
not been reported in literature. The proposed adaptation law for 
adjusting admittance parameters based on real-time ankle 
position, interaction torque, and passive ankle torque is also 
novel. 
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