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Abstract. In traditional rehabilitation process, ankle movement ability is only 
qualitatively evaluated by its motion performance, however, its movement is 
actually achieved by the forces acting on the joints produced by muscles con-
traction. In this paper, the musculoskeletal model is introduced to provide a 
more physiologic method for quantitative muscle forces and muscle moments 
assessment during rehabilitation. This paper focuses on the modeling method of 
musculoskeletal model using EMG and angle signals for ankle plantar-
dorsiflexion (P-DF) which is very important in gait rehabilitation and foot pros-
thesis control. Due to the skeletal morphology differences among people, a sub-
ject-specific geometry model is proposed to realize the evaluation of muscle 
length and muscle contraction force arm. Based on the principle of forward and 
inverse dynamics, difference evolutionary (DE) algorithm is used to adjust in-
dividual parameters of the whole model, realizing subject-specific parameters 
optimization. Results from five healthy subjects show the inverse dynamics 
joint moments are well predicted with an average correlation coefficient of 
94.21% and the normalized RMSE of 12.17%. The proposed model provides a 
good way to estimate muscle moments during movement tasks.   

Keywords: EMG signals, musculoskeletal model, ankle plantar-dorsiflexion, 
joint moment. 

1 Introduction 

With the development of society and technology, the aging problem has become more 
and more serious. At the same time, patients with limb disability are also increasing. 
There are nearly 1.4 million people losing their ability to live independently because 
of stroke in China each year [1]. Health care and rehabilitation for elderly and disa-
bled people are increasing. The ankle joint plays an important role in human standing 
and walking but easy to be damaged [2]. It is important to assess the moment for an-
kle joint during its movement and rehabilitation. There are three degrees of freedom 
(DOFs) in the ankle joint: dorsiflexion/plantarflexion, adbuction/adduction, inver-
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sion/eversion. Plantar-dorsiflexion (P-DF) is the most important among them with 
great significance in gait rehabilitation [3] and foot prosthesis research [4].  

The electromyography (EMG) signals are commonly used in rehabilitation to esti-
mate the moments for the physiological significance. There are two main methods for 
muscle forces and moments assessment based on EMG signals: black-box method and 
musculoskeletal model [5]. Black-box method includes neural network, support vec-
tor regression and other fitting algorithms or related improved algorithms to build the 
relationship between EMG signals and muscle forces or moments. Predictive model 
can be built easily through part of the input and output data using black-box method. 
But this method cannot inform us of muscle changes during body movement and can-
not provide good reference for rehabilitation analysis [6]. 

Musculoskeletal model is able to provide a better understanding in mechanical 
process of human motion. Hassani et al. estimated muscular activities detection by 
realistic musculoskeletal models of the muscles actuating the knee joint, realizing an 
active rehabilitation strategy following the wearer's intention [7]; Manal et al. built a 
musculoskeletal model for ankle P-DF and proposed an EMG-driven modeling ap-
proach and data processing framework that allowed them to predict Achilles tendon 
force in real-time [8].  Musculoskeletal model provides a better method for muscle 
forces and moments assessment with physiological significance, realizing quantitative 
assessment of physical exercise ability. 

Many existing researches on ankle P-DF moment only focus on simple applica-
tions of mature models without musculoskeletal model optimization. Some research-
ers use sophisticated equipment such as nuclear magnetic resonance imaging (MRI) 
[9] or motion capture systems [10] to obtain actual model parameters, which is not 
suitable for practical applications. In this paper, EMG signals from four muscles re-
lated to ankle P-DF are collected along with angle signals. A subject-specific muscu-
loskeletal geometry model is proposed to assess muscle length and muscle force arm 
length. Difference evolutionary (DE) algorithm is applied to adjust the parameters of 
the whole model in off-line condition. The rest of this paper is arranged as follows: 
Section 2 presents design details of the ankle P-DF musculoskeletal model. The ex-
periment is carried out to verify performance of the model in Section 3. Section 4 
draws conclusion of the paper. 

2 Musculoskeletal Modelling Methods 

The EMG-driven musculoskeletal model in ankle P-DF derives from Hill-based mus-
cle model and joint forward/inverse dynamics. The model in this paper builds direct 
relationship between EMG signals and joint moments, which consists of three mod-
ules: muscle activation dynamics, Hill-type muscle-tendon model and subject-specific 
musculoskeletal geometry model, as shown in Fig. 1. Raw EMG signals collected 
from medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus (SO) and tibial-
is anterior (TA) are pre-processed and then used as input to the muscle activation 
dynamics to get muscle activations. Angle signals are taken as input to the subject-
specific musculoskeletal geometry model to get the muscle length and muscle force 
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arm length. Hill-type muscle-tendon model is used to get muscle force of each muscle 
and finally get the whole moment output. 

EMG pre-process Muscle activation 
dynamics

Subject-specific 
musculoskeletal 
geometry model

Hill-type muscle-
tendon model

Muscle 
activations

Raw EMG 
signals

Muscle-
fiber lengths
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Muscle 
forces

Moment 
output

 
Fig. 1. EMG-driven musculoskeletal model 

2.1 EMG Pre-process and Muscle Activation Dynamics 

In ankle movement, raw EMG signals contain some low-frequency noise due to EMG 
acquisition device itself and environment impact. Therefore, EMG signals can be pre-
processed by a band-pass filter with a cutoff frequency in the range of 5-30Hz and 
then be rectified and normalized. The processed EMG signals are expressed by )(te . 
Neural activation )(tu is related to its past magnitude and )(te . A two order difference 
equation can be used to describe the dynamic relationship between them as follows: 

 )2()1()()( 21  tutudtetu   ふヱぶ 

where d is time delay.  , 1 and 2 are the scaling coefficients. To realize a positive 
stable solution, they must satisfy the constraints as shown in equation (2). 

 1-,, 21212211   cccc  ふヲぶ 

where 1, 1 21  cc . Since there is a nonlinear relationship between )(tu and muscle 
activation )(ta , a simple transformation is needed as follows凬  
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where A  represents nonlinear shape factor with values ranging from -3 to 0. 

2.2 Hill-type Muscle-tendon Model 

When muscles are activated, they will produce muscle contraction forces. This section 
focuses on the process of muscle contraction dynamics from muscle activations to 
contractile forces. Muscles are mainly composed of muscle fibers and tendons. The 
Hill model equates muscle fibers with a passive element CE in parallel with the shrink 
element PE and equates muscle tendon to a non-linear spring element shown in Fig. 2. 
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CE

PE

 
Fig .2. Schematic of Hill-type muscle-tendon model 

The relationship between muscle unit mtl , muscle fibers ml and  muscle tendon tl can be 
described by equation (4), where is pennation angle. Muscle fibers contraction force
mF is equal to the sum of the forces from the contraction element and the passive 

element, as shown in equation (5). 

 tmmt lll  cos  ふヴぶ 

       lFavFlFFF PVAmm  max  ふヵぶ 

where max
mF is maximum isometric contraction force, a denotes muscle activation, 

 lFA is active force-length relationship.  vFV describes force-velocity relationship and 
 lFp represents passive elastic force–length relationship. And moptm lll  is normalized 

muscle fiber length,   15.0 max  avvv m represents the normalized muscle fiber con-
traction velocity, moptl is the muscle fiber length when maximum isometric force is 
produced and maxv  is the maximum velocity. 

Tendons are rather stiff and the strain is only about 3% of tendon length for maxi-
mum muscle force, which can be neglected [11]. Tendon changes during general an-
kle P-DF in OpenSim (Simtk, Stanford, USA) [12] also illustrate the tendon stiffness. 
Therefore, tendon slack length scale ts can be introduced to adjust personalized tendon 
length tl based on tendon slack length trl , as shown in equation (6). In this way, the 
muscle fiber length can be calculated indirectly by equation (4) when tendon length tl
and muscle length mtl are obtained. 

 trtt lsl   ふヶぶ 

2.3 Subject-Specific Musculoskeletal Geometry Model 

Muscle paths need to be determined first to build musculoskeletal geometry model, 
which can be done by medical device or by anatomical measurement on cadaveric 
samples. General musculoskeletal geometry model is built based on the mean of  data 
from above methods, which is not suitable for different people. Muscles are attached 
to skeletons, whose paths are related to skeletal morphology. Muscle path assessment 
equations [13] are used to determine morphological parameters of  the actual subjects, 
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and the paths of main muscle group in ankle joint are obtained. For simplicity, mus-
cles are assumed as straight lines. Suppose the body sitting on a chair with the knee 
staying 90 degrees, taking SO as an example, as shown in Fig. 3.  

 
Fig. 3. Musculoskeletal geometry model of SO 

A is the origin point, B is the insertion point and O represents the center of ankle joint. 
The dashed line indicates the foot is in the horizontal position and the solid line indi-
cates the foot moves to a certain position.  is the angle of ankle motion, 

1ABl repre-
sents the muscle length and d is arm length. The calculation equation is shown in 
equation (7). 
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2.4 Parameters Identification 

There are many parameters with subject-specific differences and difficult to be meas-
ured directly in musculoskeletal model. To improve the prediction accuracy, subject-
specific parameters should be selected for different subjects.  

Since pennation angle is usually small, it can be assumed as consistent, to reduce 
the complexity of parameters identification. Also, it can be assumed that all muscle 
activation parameters are the same, and maxv can be replaced by moptl10 . Thus, the 
parameters needed to be identified are d , 1c , 2c and A in muscle activation model,

max
mF , moptl and ts in Hill-type muscle-tendon model. The original data for parameters 

identification are derived from the average data of autopsies [14]. The principle of 
parameters identification is shown in equation (8). The left side of the equation is the 
reference torque calculated according to the inverse dynamics and the right side is the 
predicted torque of the skeletal muscle model. 

 TATASOSOLGLGMGMG dFdFdFdFMglI  ---cos  ふΒぶ 
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where is the angle of ankle P-DF movement, I ,M , g , l are the moment of inertia 
for the foot, the mass of the foot, the gravity acceleration and the gravity arm length 
of the foot, respectively, F and d represent muscle forces and arm lengths. 

3 Experimental Results and Analysis 

3.1 Experiment Setup 

Five healthy subjects were recruited to collect the signals (right foot, 23.5±1.6 years 
old). Written informed consent was obtained from them. The subjects were asked to 
sit on a suitable table to conduct the ankle P-DF movement, with his/her knee joint 
staying 90 degrees and foot above the ground.  Four electrodes were attached to the 
skin surface on muscle bellies center of MG, LG, SO and TA. Raw EMG signals were 
recorded by the EMG acquisition equipment (DataLOG MWX8, Biometrics Ltd. UK) 
and angle signals were recorded by the angle acquisition equipment(MPU6050, In-
venSense. USA). To reduce the effects of muscle fatigue, subjects relaxed their ankle 
muscles for 10 min between every two experiment trials.  

3.2 Experimental Results 

Without loss of generality, two subjects (Sub.1 and Sub.4) are selected to analyze the 
results shown in Fig. 4. Both the value and trend of the estimated moment (the green 
and the red dashed line) are in good agreement with the reference moment (the blue 
solid line) calculated by inverse dynamics illustrated in the section of parameters 
identification, which shows the EMG-driven model can be used for ankle joint mo-
ment tracking with an acceptable accuracy. It can be seen that under the same test 
conditions, the subject-specific model (the green dashed line) is closer to the reference 
moment and better than the general model (the red dashed line), which demonstrates 
different people have different parameters and it is thus of great importance to build 
their own subject-specific musculoskeletal model. 

 
Fig. 4. Comparison of torque 

The same experiments have been performed with five subjects. The normalized 
RMSE and correlation coefficient (CC) are used as the main criteria to show the per-
formance of the model. A high level of CC and a low normalized RMSE have been 
obtained as presented in Table 1. 
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Table 1. Summary of prediction performance of the model 

S┌HﾃWIデ MﾗSWﾉ CﾗヴヴWﾉ;デｷﾗﾐ CﾗWaaｷど
IｷWﾐデふХぶ Nﾗヴﾏ;ﾉｷ┣WS RMSEふХぶ 

S┌Hくヱ G ΓンくヵΑ ヱヴくΑヱ 
S ΓヵくヰΒ ヱヱくΑΒ 

S┌Hくヲ G Γヲくヶヲ ヱンくヶヲ 
S Γヴくヴヴ ヱヱくΓΑ 

S┌Hくン G ΒΓくンヵ ヱΑくンΑ 
S Γヱくヱヶ ヱヴくヲΓ 

S┌Hくヴ G Γヶくヰヲ ヱヲくヴΒ 
S ΓヶくΑΒ ヱヰくヲΓ 

S┌Hくヵ G ΓヱくΑヶ ヱヴくヲΒ 
S ΓンくヵΑ ヱヲくヵン 

MW;ﾐ G Γヲくヶヶ ヱヴくヴΓ 
S Γヴくヲヱ ヱヲくヱΑ 

(Note: G and S stands for general model and subject-specific model, respectively. ) 

It is evident that the estimated moments in G and S are both in good agreement with 
the reference moment but the result in S is better than that in G. The mean of the cor-
relation coefficient in S (94.21%) is greater than that in G (92.66%) and the mean of 
the normalized RMSE in S (12.17%) is smaller than that in G (14.49%). In addition, 
the correlation coefficients in S are greater and the normalized RMSEs in S are small-
er across all subjects compared with that in G, indicating the proposed model is capa-
ble of providing better representations of the subjects involved in this study. Through 
the results of the experiment, it can be concluded that the performance of subject-
specific model is superior to general model. 

4 Conclusion 

Researches on ankle P-DF musculoskeletal model are beneficial to evaluate muscle 
contraction force and moment from a more physiological point of view, and can thus 
improve the flexibility of human-computer interaction. In this paper, EMG signals 
and angle signals in ankle P-DF movement are used to assess the joint moment off-
line through a subject-specific EMG-driven musculoskeletal model with an acceptable 
accuracy. The average correlation coefficient is high (94.21%) and the normalized 
RMSE is relatively small (12.17%), which shows the feasibility and effectiveness of 
the proposed model. Experimental results also show the importance of acquiring more 
accurate musculoskeletal geometry. Limitations of this paper include the fact that off-
line musculoskeletal model is studied but without using it in real-time applications. 
Therefore, our future work is to verify the on-line effectiveness of EMG-driven model 
proposed in this study and consider the practical conditions. Further more, the ap-
proach proposed in this study will be expanded to other joints that can be employed in 
various applications. 
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