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Abstract. In this article, we describe a new command, eq5dmap, for conditional
prediction of the utility values of EQ-5D-5L (EQ-5D-3L) from observed or speci-
fied values of EQ-5D-3L (EQ-5D-5L) conditional on age and gender. Predictions
can be made either from the five-item health descriptions or from the (exact or
approximate) utility score. The prediction process is based on a joint statistical
model of the two variants of EQ-5D that have been fit to alternative reference
datasets (the National Data Bank for Rheumatic Diseases and a EuroQol Group
coordinated data-collection study). The underlying model is a system of ordinal
regressions with a flexible residual distribution specified as Gaussian or as a copula
mixture. Use of the command is illustrated with an application that includes an
investigation of the sensitivity of the mapping outcomes to the choice of reference
dataset.

Keywords: st0528, eq5dmap, EQ-5D, EQ-5D-3L, EQ-5D-5L, mapping, conditional
prediction, copula, mixture model

1 Introduction

The quality-adjusted life year (QALY) is one of the most widely used health benefit mea-
sures in economic evaluations of interventions, services, or programs designed to improve
health. The QALY allows healthcare decision makers to use a consistent approach across
a broad range of disease areas, treatments, and patients. It is the preferred outcome
measure for the National Institute for Health and Care Excellence in its appraisals of
health interventions in England (NICE 2014). Preference-based measures such as the
EQ-5D-3L underpin the calculation of QALYs.

EQ-5D describes health states in terms of five dimensions: mobility, self-care, usual
activities, pain or discomfort, and anxiety or depression. The original EQ-5D, now
called EQ-5D-3L, measures each dimension on a three-level scale (no problems, some
or moderate problems, extreme problems). EQ-5D-3L can describe 243 different health
states in this way. For example, the health state 11223 corresponds to no problems in
the mobility and self-care dimensions, some problems in the usual activities and pain or
discomfort dimensions, and extreme problems in the anxiety or depression dimension.
Valuation studies in different countries assigned an index or utility score to each of the

c© 2018 StataCorp LLC st0528



396 eq5dmap: a mapping command for EQ-5D

health states described in this way. Dolan (1997) published the first UK value set using
general public preferences. Other countries have developed their own value sets, but in
all countries, the health state 11111 (full health) is assigned a utility score of 1, and
death is assigned a value of 0. States with utility scores between 0 and 1 reflect some
degree of impairment, and states with negative valuations are considered worse than
death.

A new version of the health description system, the EQ-5D-5L, has been developed to
try to address concerns about the lack of sensitivity and floor or ceiling distortions of the
EQ-5D-3L. The number of dimensions has remained unchanged, but the new EQ-5D-5L

extends the number of levels per dimension from three to five (no problems, slight prob-
lems, moderate problems, severe problems, extreme problems). To improve consistency
across dimensions and aid understanding, there have also been some wording changes.1

The number of discrete health states described by the new version is 3,125. Utility
value sets for EQ-5D-5L have been released for England (Devlin et al. 2018),2 Japan
(Shiroiwa et al. 2016), Canada (Xie et al. 2016), Uruguay (Augustovski et al. 2016),
Netherlands (Versteegh et al. 2016), Korea (Kim et al. 2016), China (Luo et al. 2017),
and Indonesia (Purba et al. 2017), and similar work is underway in other countries.

Many studies now include EQ-5D-5L instead of the original EQ-5D-3L. We have shown
in previous articles (Hernández-Alava and Pudney 2017; Hernández-Alava et al. 2018)
that in the UK, EQ-5D-3L and EQ-5D-5L lead to different utility scores for the same
underlying level of health; this has profound implications for economic evaluations. It
is, therefore, inappropriate to mix the evidence collected using both instruments without
adjusting for these differences. Because all studies, new and those previously completed,
will form part of the available evidence in future economic evaluations, it is important
to have a consistent way of translating health benefits measured using one of the two
versions of EQ-5D into the other. Hernández-Alava and Pudney (2017) developed a
flexible model that allows analysis of the joint responses to EQ-5D-3L and EQ-5D-5L.
The underlying model is a system of ordinal regressions with a flexible copula-mixture
residual distribution. This model has been refit using two different datasets and results
reported elsewhere (Hernández-Alava et al. 2018). In this article, we describe a new
command, eq5dmap, for conditional prediction of the EQ-5D-5L (EQ-5D-3L) utility from
observed EQ-5D-3L (EQ-5D-5L) responses or specified utility values and age and gender.
The command predictions are based on the models in Hernández-Alava et al. (2018).
This command is the only available method of translating evidence from EQ-5D-3L to
EQ-5D-5L and vice versa using the individual health states, an individual utility value, or
an approximate utility score. Section 2 describes the two types of predictions that can
be computed with the command. Section 3 explains briefly the underlying statistical
model. The command syntax is fully described in section 4. Section 5 presents an
illustrative example of the use of the command. Section 6 concludes.

1. See the EuroQol website https://euroqol.org/eq-5d-instruments/ for examples of the question word-
ing used in EQ-5D-3L and EQ-5D-5L.

2. There are some differences between the value set reported in the Health Economics article and the
previous version reported in the Office of Health Economics research paper (Devlin et al. 2016).
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2 The mapping method

The eq5dmap command allows mapping both from the older to the newer format (3L →
5L) and the reverse (5L → 3L). We explain the mapping methodology for the case of
3L → 5L, but the procedure is essentially the same for 5L → 3L.

Let Y3d ∈ {1, 2, 3} and Y5d ∈ {1, 2, 3, 4, 5} represent outcomes for the dth do-
main (d = 1, . . . , 5) of EQ-5D-3L and EQ-5D-5L, respectively. Define the vectors Y 3 =
(Y31, . . . , Y35) and Y 5 = (Y51, . . . , Y55) , and write the corresponding utility scoring
scales υ3(.) and υ5(.). Our aim is to calculate the expectation of υ5(Y 5) conditional
on the values of a vector of covariates X and also on available information about Y 3.
Depending on the form of that information, two types of mapping can be done.

2.1 A specified value for Y3

Let S5 = {1, . . . , 5}
5
be the set of possible values that can be taken by the vector Y 5.

If we know the conditioning value of Y 3, the expectation of υ5 can be computed as

E(υ5|Y 3 = y3,X) =
∑

y5∈S5

υ5 (y5) p (y5|y3,X)

where p (y5|y3,X) is the form of conditional probability implied by the specified under-
lying statistical model for the joint distribution Y 3|X and Y 5|X.

2.2 A specified (approximate) value for υ3(Y3)

In some cases, the user may know only the value of υ3(Y 3), rather than Y 3 itself.
Because the mapping Y 3 → υ3 is not (quite) one to one, this case involves weaker
conditioning information. Another possibility is that the user has only a predicted
value υ̂3, and the prediction may not correspond precisely to any valid EQ-5D-3L utility
score. We handle both problems by distance-weighted averaging within a neighborhood
of the specified value, υ̂3.

Let C be a user-specified bandwidth. Define a set of vectors

S(υ) = {Y 3 : |υ3 (Y 3)− υ| ≤ C}

and a weight function of Epanechnikov form:

ω (υ3 − υ) =

{ [
1− {(υ3 − υ) /C}2

]
for | (υ3 − υ) | < C

0 otherwise

The estimate of the expected value of υ5 is
∑

y3∈S(υ̂3)

ω {υ3 (y3)− υ̂3}
∑
y5

υ5 (y5) p (y5|y3,X)

∑
y3∈S(υ̂3)

ω {υ3 (y3)− υ̂3}
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where the summation over y5 covers all 3,125 possible outcome vectors for the EQ-5D-5L

descriptive system.

3 The underlying statistical model

The predictive distribution Pr(Y 5|Y 3,X) is derived from a model of the joint distri-
bution of Y 3|X and Y 5|X developed by Hernández-Alava and Pudney (2017). That
model is a system of 10 latent regressions, arranged in 5 groups, following the natural
pairing of the dimensions in the 2 versions of EQ-5D, with domain d containing the
equations for Y3d and Y5d,

Y ∗
3d = Xβ3d + U3d

Y ∗
5d = Xβ5d + U5d

}
d = 1, . . . , 5

where i indexes individual cases and we assume random sampling so that all sampled
variables are independent across individuals. X is a row vector of covariates, and β3d

and β5d are column vectors of coefficients conformable with X. We assume that the
covariate vector X is the same for both the three-level and the five-level version of the
rth domain but may differ between domains. U3d and U5d are unobserved residuals,
which may be stochastically dependent and nonnormal. The latent dependent variables
Y ∗
3d and Y ∗

5d are not observed directly, but they have observable ordinal counterparts,
Y3d and Y5d, that are generated by the threshold-crossing conditions

Ykd = q iff Γkqd ≤ Y ∗
kd < Γk(q+1)d, q = 1, . . . , Qk, and k = 3, 5

where Qk = 3 or 5 is the number of categories of Ykd and the Γkqd are threshold pa-
rameters, with Γk1d = −∞ and Γk(Qk+1)d = +∞.

To allow for background correlation between the five dimensions of EQ-5D, we de-
compose the residual Ukid into a single between-group factor Vi, which represents the
individual’s general tendency to give more or less positive responses and a specific resid-
ual εkid correlated within but not between dimensions,

Ukid = ψkdVi + εkid k = 3, 5 and d = 1, . . . , 5

where the ψkd are a set of 10 parameters.

The model can be fit under various alternative assumptions about the joint distribu-
tion of the residuals ε3id and ε5id within each dimension d and the distributional form
of the common factor Vi. The eq5dmap command offers two specifications: the Gaus-
sian, where the pairs ε3id and ε5id have bivariate normal distributions and Vi ∼ N(0, 1);
and the copula specification, where the distribution of each pair ε3id and ε5id is spec-
ified in copula form with normal mixture marginals and Vi as a normal mixture (see
Hernández-Alava and Pudney [2017] for details).

These two variants of the mapping model have been fit using two alternative datasets.
To our knowledge, these are the only datasets large enough to undertake this type
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of study. We present a concise summary of both datasets below. A more detailed
discussion of the similarities and differences between the two datasets can be found
in Pennington et al. (Forthcoming). Users of eq5dmap should consider carefully which
reference dataset is better suited for their study.

The first dataset comes from the National Data Bank for Rheumatic Diseases (NDB),
which is a register of patients with rheumatic disease, mainly referred by U.S. and
Canadian rheumatologists (Wolfe and Michaud 2011). In 2011, there was a switch from
the three-level to the five-level version of EQ-5D, and both versions were collected in
parallel during the January 2011 wave, which we used to fit the reference model. The
second dataset comes from a data-collection study coordinated and partly funded by
the EuroQuol Group (EQG) between August 2009 and September 2010, in six countries:
Denmark, England, Italy, the Netherlands, Poland, and Scotland. It covered eight
broad patient groups (cardiovascular disease, respiratory disease, depression, diabetes,
liver disease, personality disorders, arthritis, and stroke) and a student cohort (healthy
population). This EQG dataset was intended to cover many responses across all the EQ-

5D dimensions in a range of diseases (Janssen et al. 2013; van Hout et al. 2012). The
EQG sample is younger than the NDB sample, with an average age of 51 versus 63, and
it covers a wider age range. There is a big difference in gender composition: the EQG

sample is 53% female, compared with 81% for NDB, in line with what is expected in
a rheumatoid arthritis specific sample. Using the UK value sets, the EQG sample has
lower health-related quality of life, with average UK utility values of 0.628 and 0.7033

for EQ-5D-3L and EQ-5D-5L, respectively, versus 0.681 and 0.7664 in the NDB dataset.
Fitted reference models for these datasets are described in Hernández-Alava and Pudney
(2017) and Hernández-Alava et al. (2018).

4 The eq5dmap command

4.1 Syntax

eq5dmap outputvarname
[
if
] [

in
] [

weight
]
, covariates(varlist)

{items(varlist) | score(varname)}
[
model(modelname)

direction(mappingdirection) values3(3Lvaluesetname)

values5(5Lvaluesetname) bwidth(#)
]

4.2 Description

eq5dmap is a community-contributed command that allows outcomes measured using
EQ-5D-3L to be converted into (expected) utility values measured using the newer EQ-

5D-5L or vice versa.

3. 0.712 using the valuation in Devlin et al. (2016).
4. 0.779 using the valuation in Devlin et al. (2016).
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The predictions are constructed from an underlying statistical model as described
in section 3. The model is not fit by the eq5dmap command; instead, estimation re-
sults are selected from a collection of existing estimates derived from alternative model
specifications and alternative reference datasets.

4.3 Output

eq5dmap returns the calculated conditional expectation of the required three- or five-
level EQ-5D utility score in the variable outputvarname. It also uses the summarize

command to give a (weighted) summary of the predicted scores within the subset of
observations defined by any if and in qualifiers that are specified.

4.4 Options

covariates(varlist) specifies the variables used as covariates. Mapping is age and
gender specific, so there are two covariates. They must be specified as a varlist

with the items ordered as age in years in the interval [16, 100] and gender (coded as
female = 0, male = 1). covariates() is required.

If the predictor is the five-dimensional EQ-5D health description:

items(varlist) specifies the variables that contain observed values for the five EQ-5D

domain items to map from. They must be specified as a varlist containing five
variables ordered as mobility, self-care, usual activities, pain or discomfort, and
anxiety or depression. For 3L → 5L mapping, the variables should all be coded on
a scale 1, 2, 3, where 1 = no problems, . . . , 3 = extreme problems; for 5L → 3L
mapping, the coding must be 1 = no problems, . . . , 5 = extreme problems. Either
items() or score() is required, but not both.

If the predictor is a utility score rather than the health description:

score(varname) specifies a variable that contains the value of the utility score. Either
items() or score() is required, but not both.

model(modelname) specifies the model to be used for the mapping. The available
options for modelname are NDBgauss, NDBcopula, EQGcopula, or EQGgauss. The
default is model(EQGcopula).

direction(mappingdirection) specifies the direction of mapping: direction(3L->5L)
specifies mapping from EQ-5D-3L to the newer EQ-5D-5L, while direction(5L->3L)

specifies the reverse. The default is direction(3->5).

values3(3Lvaluesetname) specifies one of the alternative EQ-5D-3L value sets offered.
Currently, the only one offered is UK, which specifies the value set described by Dolan
(1997). The default is values3(UK). This option is used only when EQ-5D-3L is the
target outcome or when mapping from an EQ-5D-3L utility score.
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values5(5Lvaluesetname) specifies one of the alternative EQ-5D-5L value sets offered.
Currently, the only one offered is UK, which specifies the value set described by
Devlin et al. (2018). The default is values5(UK). This option is used only when
EQ-5D-5L is the target outcome or when mapping from an EQ-5D-5L utility score.

bwidth(#) is the bandwidth that controls the matching of the specified utility score to
neighboring values. The default is bwidth(0), which enforces exact matching to a
point on the chosen value set; if there is a multiplicity of points that match exactly,
then their average is returned as the value for outputvarname. If there is no exact
match within the neighborhood defined by the bandwidth, then outputvarname is
returned with a missing value, and a warning is written to the log file.

5 Examples

In sections 5.1 and 5.2, we give examples of the basic use of eq5dmap for Y 3 → υ5
mapping and (exact) υ3 → υ5 mapping. Section 5.3 gives recommendations on the
choice of bandwidth for approximate υ3 → υ5 mapping, and section 5.4 considers the
potential sensitivity of results to the choice of reference dataset and model specification.

5.1 Mapping from EQ-5D-3L items to a EQ-5D-5L utility score

eq5dmap is provided with a dataset that lists all possible EQ-5D-3L health states by
gender and all ages from 16 to 100 (it thus contains N = 243× 2× 85 = 41310 records).
The dataset includes a set of five ordinal variables Y3 1 to Y3 5 corresponding to the
five EQ-5D-3L dimensions.5 The data are summarized below.

. // Load and examine the input dataset

. use eq5dmap_data

. summarize

Variable Obs Mean Std. Dev. Min Max

Y3_1 41,310 2 .8165065 1 3
Y3_2 41,310 2 .8165065 1 3
Y3_3 41,310 2 .8165065 1 3
Y3_4 41,310 2 .8165065 1 3
Y3_5 41,310 2 .8165065 1 3

male 41,310 .5 .5000061 0 1
age 41,310 58 24.53599 16 100

fwEQG 41,310 .0856693 .626692 0 37
fwNDB 41,310 .1259985 1.05797 0 34

u3 41,310 .1367572 .3105279 -.594 1

u3hat 41,310 .1372946 .3011919 -.5935036 .781076

5. The dataset also contains the corresponding utility value, u3, calculated using the UK value set; age;
a dummy variable for gender; and two weight variables, fwEQG and fwNDB. We have also included
an additional variable, u3hat, that contains an approximate EQ-5D-3L utility value such as those
typically obtained from published articles or a previous mapping. These additional variables are
used in later examples.
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Our example uses the UK value sets reported in Devlin et al. (2018) and Dolan (1997)
for the EQ-5D-5L and EQ-5D-3L value sets, respectively. We use the NDB reference dataset
and the copula specification and predict the five-level utility score from the vector of
EQ-5D-3L descriptive items, that is, a Y 3 → υ5 mapping. Note that it is not necessary
to include the utility5 option in the command, because the Devlin et al. (2018) UK

score is the default (and currently only) choice.

. eq5dmap v5_y3, covariates(age male) model(NDBcopula)
> items(Y3_1 Y3_2 Y3_3 Y3_4 Y3_5)
No direction specified: default is 3->5
No 5L value set specified: default is UK
Summary of inputs to eq5dmap:
The 5-level value set is: UK
The age covariate is contained in input variable: age
The gender covariate is contained in input variable: male
Mapping from Y3 to v5
The 3-level descriptive items are contained in input variables: Y3_1 Y3_2 Y3_3
> Y3_4 Y3_5
Unweighted mean of predicted 5L score within selected sample

Variable Obs Mean Std. Dev. Min Max

v5_y3 41,310 .4755077 .262427 -.2247076 .9600279

The striking feature of the predicted utility scores is that they do not cover the full
range [−0.285, 1.000] of the Devlin et al. (2018) value set. Instead, they vary between
−0.225 and 0.960. This loss of dispersion is an inevitable feature of any minimum
mean-squared error prediction based on the conditional expectation because the purely
random component of υ5(Y 5) is inherently unpredictable. But note that the lower
dispersion of predicted scores relative to directly observed scores is not a problem if the
scores are to be used in an economic evaluation based on aggregate net benefit, because
the conditional mean of QALYs is not affected by the loss of dispersion.6 However, loss
of dispersion does become a problem when confidence intervals are to be computed or
the distribution, rather than the mean or aggregate, of net benefit is required. See
Hernández-Alava and Pudney (2017) for details of the full predictive distribution that
can be used to handle such cases.

5.2 Mapping from an exact EQ-5D-3L score to an EQ-5D-5L score

The second type of mapping generates the predicted five-level utility score from a spec-
ified utility value (a υ3 → υ5 mapping). In this example, we choose the precise utility
score u3 corresponding to the actual health state description in the dataset and a band-
width of 0.001, which gives exact mapping of utility scores.

6. Provided calculation of QALYs involves only linear operations, as is typically the case.
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. eq5dmap v5_u3, covariates(age male) model(NDBcopula) score(u3) bwidth(0.001)
No direction specified: default is 3->5
No 5L value set specified: default is UK
No 3L value set specified: default is UK
Summary of inputs to eq5dmap:
The 5-level value set is: UK
The age covariate is contained in input variable: age
The gender covariate is contained in input variable: male
Mapping from v3 to v5
The 3-level value set is: UK
The 3-level score is contained in input variable: u3
The bandwidth is: .001
Unweighted mean of predicted 5L score within selected sample

Variable Obs Mean Std. Dev. Min Max

v5_u3 41,310 .4755077 .2607798 -.2247076 .9600279

The means of the two mapped variables, v5 y3 and v5 u3, are the same up to the
seventh decimal place, but not their standard deviations (SDs). This is due to the
weaker conditioning information contained in the utility score. For the majority of
the UK utility values in EQ-5D-3L, there is a one-to-one correspondence between the
health state and its assigned value. For example, the worst health state described by
Y 3 = (3, 3, 3, 3, 3) is the only one that has a value of −0.594. However, for a small
number of utility values, there is not a one-to-one relationship, because the same utility
value corresponds to two different health states. For example, the two distinct health
states described by Y 3 = (1, 2, 2, 1, 1) and Y 3 = (2, 1, 1, 1, 2) have the same utility value
of 0.779. Thus, the calculation of the expected EQ-5D-5L needs to take into account that
an EQ-5D-3L value of 0.779 can result from either of those two health states. Averaging
across these equal-valued states reduces the SD slightly.

5.3 Mapping from an approximate utility score: choice of bandwidth

One can use eq5dmap to carry out a υ̂3 → υ5 mapping in situations where υ̂3 is not
a valid point in the EQ-5D-3L value set, but rather an inexact average or predicted
utility score. Mapping is done using distance-weighted averaging of scale points within a
neighborhood of υ̂3. The bandwidth parameter simultaneously defines the neighborhood
over which averaging is to be done and the rate at which the weight declines with
increasing distance.

There are potential pitfalls in this type of mapping, and it is important to consider
two issues: What is the local character of the distribution of utilities that (implicitly)
underlies the specified value υ̂3? And does the mapping function υ̂3 → υ5 have the
desirable property of monotonicity?

Given the coarse structure of the EQ-5D-3L and the nature of the UK value set re-
ported in Dolan (1997), the EQ-5D-3L utility distributions in most trial datasets are
very irregular, with large intervals of zero or nonzero probability and multiple modes.
Consequently, the local averaging procedure may work well in some regions and not
in others, and results can be very sensitive to the choice of bandwidth; indeed, with a
small bandwidth, if υ̂3 lies in one of the zero-probability intervals, there may be no scale
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points near enough to average. Because we do not know the shape of the distribution
implicitly underlying υ̂3, we cannot implement an adaptive bandwidth procedure as is
commonly used in nonparametric density estimation.

To illustrate this, we now repeat the mapping using the variable u3hat, which con-
tains approximate utility values that do not exactly match any values found in the
“official” UK EQ-5D-3L value set.7 We illustrate the effect of making alternative choices
for the bandwidth using the mixed copula model and the NDB reference dataset. The
following code is used:

. // Predicted UK utility scores:

. // loop over different bandwidths: 0.01, 0.03, 0.05, 0.1, and 0.2

. foreach c of numlist 1 3 5 10 20 {
2. local bw = `c´/100
3. display "Bandwidth = `bw´, Specification = copula, Data = NDB"
4. display "Predicted UK scores..."
5. eq5dmap v5_u3_`c´ , covariates(age male)

> model(NDBcopula) score(u3hat) bwidth(`bw´)
6. // Correlations with mapped actual score:

. correlate v5_u3_`c´ v5_u3
7. }

The output from the first two passes of the loop is reproduced below; the full results
are summarized in the first column of table 1, which also gives results for other model
choices.

7. The variable u3hat was constructed as the prediction from a tobit model with lower and upper
limits equal to the theoretical EQ-5D-3L bounds (−0.594 and 1) conditional on the EQ-5D-3L
descriptive items. This model has been used here for illustration only; it has been shown not to be
adequate for modeling EQ-5D-3L data (Hernández Alava, Wailoo, and Ara 2012).
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Bandwidth = .01, Specification = copula, Data = NDB
Predicted UK scores...
No direction specified: default is 3->5
No 5L value set specified: default is UK
No 3L value set specified: default is UK
Summary of inputs to eq5dmap:
The 5-level value set is: UK
The age covariate is contained in input variable: age
The gender covariate is contained in input variable: male
Mapping from v3 to v5
The 3-level value set is: UK
The 3-level score is contained in input variable: u3hat
The bandwidth is: .01
Unweighted mean of predicted 5L score within selected sample

Variable Obs Mean Std. Dev. Min Max

v5_u3_1 38,590 .4973598 .2307445 -.2247076 .8946413

Warning: It was not possible to find a valid point using the current bandwidth.
Missing values generated.

(obs=38,590)

v5_u3_1 v5_u3

v5_u3_1 1.0000
v5_u3 0.8458 1.0000

Bandwidth = .03, Specification = copula, Data = NDB
Predicted UK scores...
No direction specified: default is 3->5
No 5L value set specified: default is UK
No 3L value set specified: default is UK
Summary of inputs to eq5dmap:
The 5-level value set is: UK
The age covariate is contained in input variable: age
The gender covariate is contained in input variable: male
Mapping from v3 to v5
The 3-level value set is: UK
The 3-level score is contained in input variable: u3hat
The bandwidth is: .03
Unweighted mean of predicted 5L score within selected sample

Variable Obs Mean Std. Dev. Min Max

v5_u3_3 41,310 .4819085 .2487869 -.2247076 .8379605

(obs=41,310)

v5_u3_3 v5_u3

v5_u3_3 1.0000
v5_u3 0.8923 1.0000

(output omitted )
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Table 1. Summary statistics for NDB and EQG mapped values for EQ-5D-5L

Mapping model based on . . .

Statistic Copula Gauss
NDB EQG NDB EQG

Mapping actual UK utility score
Mean predicted EQ-5D-5L score 0.476 0.408 0.461 0.400
Minimum predicted EQ-5D-5L score −0.225 −0.243 −0.218 −0.239
SD predicted EQ-5D-5L score 0.261 0.280 0.257 0.265

Mapping predicted UK utility score: bandwidth = 0.01, n = 38590
Mean predicted EQ-5D-5L score 0.497 0.432 0.482 0.422
Minimum predicted EQ-5D-5L score −0.225 −0.243 −0.218 −0.239
SD predicted EQ-5D-5L score 0.231 0.252 0.228 0.239
Correlation with mapped actual score 0.846 0.872 0.858 0.895

Mapping predicted UK utility score: bandwidth = 0.03, n = 41310
Mean predicted EQ-5D-5L score 0.482 0.417 0.468 0.407
Minimum predicted EQ-5D-5L score −0.225 −0.243 −0.218 −0.239
SD predicted EQ-5D-5L score 0.249 0.268 0.246 0.257
Correlation with mapped actual score 0.892 0.912 0.902 0.928

Mapping predicted UK utility score: bandwidth = 0.05, n = 41310
Mean predicted EQ-5D-5L score 0.482 0.416 0.467 0.407
Minimum predicted EQ-5D-5L score −0.225 −0.243 −0.218 −0.239
SD predicted EQ-5D-5L score 0.247 0.266 0.245 0.255
Correlation with mapped actual score 0.899 0.917 0.908 0.933

Mapping predicted UK utility score: bandwidth = 0.10, n = 41310
Mean predicted EQ-5D-5L score 0.482 0.416 0.467 0.407
Minimum predicted EQ-5D-5L score −0.189 −0.223 −0.187 −0.211
SD predicted EQ-5D-5L score 0.243 0.261 0.240 0.251
Correlation with mapped actual score 0.904 0.923 0.913 0.939

Using the smallest bandwidth, 0.01, eq5dmap gives a warning. For 7% of the obser-
vations, matches could not be found within the bandwidth, generating missing mapped
values. These observations tend to be at the extremes of the EQ-5D-3L distribution,
where the gaps between consecutive utility values are substantial.8 Even this small
number of missing values is enough to distort the mean because missingness is not sym-
metric across the upper and lower tails of the utility distribution. For that reason, it
is usually unwise to use a very small bandwidth when utility values are approximate.
In this case, a slightly larger bandwidth of 0.03 resolved the existence issue, and in our
artificial example, larger bandwidths generated a result more highly correlated with the
result of an exact mapping of actual scores: compare the rows of table 1 for bandwidths

8. The largest gap between two EQ-5D-3L values is found at the top of the distribution, between the
full health value of 1 and its preceding value of 0.883. At the bottom of the distribution, the gaps
are smaller but more numerous.
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0.03, 0.05, and 0.1. The mean of the predicted scores is fairly stable for different band-
widths, and, as expected, the SD decreases as the bandwidth increases. Note that, for
any bandwidth, the mean of the mapped approximate utility is systematically above
the mean of the mapping from the actual utility score. This happens to be due to
the arbitrary method we used to generate hypothetical utility values; it is not inherent
in the mapping approach.9 Specific guidance on the bandwidth choice when mapping
a single overall mean utility from EQ-5D-3L to EQ-5D-5L is given in Pennington et al.
(Forthcoming). Based on the two available reference datasets, it is shown that small
bandwidths, no larger than 0.1 but large enough to cover the full health value of 1,
work well when the overall mean utility E(υ3) in the trial is in the interval (1, 0.7] (this
guarantees that a full health response in EQ-5D-3L is included in the distance-weighted
average in an area where there is a large gap in the EQ-5D-3L distribution). If the mean
utility is in the interval (0.7, 0.6], a larger bandwidth of 0.2 is preferred; for mean utili-
ties below 0.6, an even larger bandwidth of about 0.4 is preferable. Figure 1 compares
the kernel densities of the mapped values using exact matching of the EQ-5D-3L util-
ity values and three alternative bandwidth choices: 0.03, 0.10, and 0.20. The figure
illustrates how using too large a bandwidth when mapping from utility scores that are
higher up in the distribution artificially pushes the expected values down because of
the large gap between full health and the adjacent utility value and the relative high
frequency of utility values at full health in this dataset.
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Figure 1. Kernel densities of mapped values for EQ-5D-5L using the copula mixture
model and the NDB reference dataset; exact matching of individual EQ-5D-3L utility
values versus approximate utility values for alternative bandwidths

9. The hypothetical utility values were generated using a tobit model that has been shown to produce
biased predictions of EQ-5D-3L (Hernández Alava, Wailoo, and Ara 2012). Mapping from EQ-5D-
3L values that are biased will generally result in poor EQ-5D-5L predictions.
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The second important issue that should be considered in choosing a bandwidth
for mapping from an approximate utility score υ̂3 is monotonicity. If a trial estab-
lishes that procedure 1 gives a better expected EQ-5D-3L outcome than procedure 2,
there will be serious difficulty in implementing cost-effectiveness analysis if the mapped
EQ-5D-5L measure reverses that ranking, purely because of the choice of bandwidth.10

Perverse outcomes of this type can be avoided if the mapping function υ̂5 (υ̂3) gener-
ated by eq5dmap is monotonically increasing. The relationship between monotonicity
and bandwidth choice can be illustrated by applying eq5dmap over a grid of values
υ̂3 = −0.594, . . . , 1.0 for alternative bandwidths; figure 2 plots the 3L → 5L mapping
function for alternative bandwidths, using the NDB copula-mixture model applied to a
hypothetical 40-year-old male. In this case, the function is monotonic only for band-
widths of 0.207 or larger; if we switch to the same model based on the EQG reference
dataset, monotonicity applies for bandwidths above 0.190.

The same procedure can be used to examine monotonicity of 5L → 3L mapping. We
would expect to be able to use a smaller bandwidth in that case because the UK EQ-5D-

5L value set in Devlin et al. (2018) is much finer than the EQ-5D-3L value set in Dolan
(1997). That proves to be the case, as shown in figure 2. For the same hypothetical
individual, monotonicity is found for bandwidths above 0.041 (NDB) or 0.060 (EQG).

(a) 3L → 5L (b) 5L → 3L

Figure 2. The effect of bandwidth choice on monotonicity of mapping functions (copula-
mixture model; NDB reference data; 40-year-old male)

Although users of eq5dmap will want to investigate the sensitivity of results to al-
ternative choices of bandwidth, we would strongly advise caution with mapping from
an approximate utility score—it should be avoided in favor of exact individual-level
mapping if at all possible; and, where unavoidable, it should not be done using band-
widths substantially less than 0.2 for 3L → 5L mapping or 0.05 for 5L → 3L mapping if
monotonicity is required. As discussed above, exceptions to this rule of thumb should
be made if the trial subjects are believed to be concentrated at either extreme of the
health distribution. We recommend that sensitivity analysis always be carried out and
reported.

10. Nonmonotonicity is also a possibility in exact Y 3 → υ5 mapping, and the possibility is inherent in
the difference between the health description and utility tariff of 3L and 5L.
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5.4 Sensitivity of mapping outcomes to the choice of reference data-
set

A reference dataset is one that contains simultaneous observations on the two versions of
EQ-5D. From that dataset, our estimate of the joint distribution of EQ-5D-3L and EQ-5D-

5L responses is derived, which in turn is used to form a conditional predictor of EQ-5D-5L.
Different reference datasets will yield different mapping results, and it is important to
know how great those differences might be to give some indication of robustness. We
compare results based on the NDB dataset, which covers North American patients with
rheumatoid arthritis, with results based on EQG, which is an assemblage of ad hoc
samples collected in several European countries. Do these very different samples give
a similar picture of the relationship between responses to the three-level and five-level
versions of EQ-5D? We also investigate the effects of model choice by comparing mapping
results from the copula-mixture and Gaussian specifications.

We again examine the two types of mapping implemented in eq5dmap, beginning
with Y 3 → υ5 mapping. The following code runs eq5dmap, using four loops to repeat
the analysis over two values of age (40 and 70), both genders, and the two choices for
model specification and dataset. Correlations between the mapped results using the
two different reference datasets are also computed.

. foreach a of numlist 40 70 {
2. forvalues m=0/1 {
3. // Loop over model specification and dataset

. foreach spec in gauss copula {
4. foreach dat in NDB EQG {
5. display "Age = `a´, Gender = `m´, Specification = `spec´, Data = `dat´"
6. // eq5dmap produces means, etc. of predicted EQ-5D-3L utility scores across

> health states
. eq5dmap v5_`spec´_`dat´_`a´_`m´ if age==`a´ & male==`m´,
> covariates(age male) model(`dat´`spec´)
> items(Y3_1 Y3_2 Y3_3 Y3_4 Y3_5)

7. }
8. }
9. // Compute correlations between results for different reference datasets

. correlate v5_gauss_NDB_`a´_`m´ v5_gauss_EQG_`a´_`m´ if age==`a´ & male==`m´
10. correlate v5_copula_NDB_`a´_`m´ v5_copula_EQG_`a´_`m´ if age==`a´ & male==`m´
11. }
12. }

(output omitted )

Table 2 summarizes the results in terms of the mean score, minimum score, and SD

across EQ-5D-5L health states, together with the correlations between predictions pro-
duced by each model specification on the two reference datasets. The mean prediction is
always larger using the NDB rather than the EQG dataset and the mixed copula rather
than the Gaussian model. The differences in the mean predicted scores are slightly
larger at age 70 than at 40. The correlations across the datasets are generally high but
are slightly lower for older individuals.
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Table 2. Summary statistics for NDB and EQG mapped values for EQ-5D-5L

Mapping model based on . . .

Statistic Copula Gauss
NDB EQG NDB EQG

Age 40, female
Mean predicted EQ-5D-5L score 0.459 0.413 0.450 0.407
Minimum predicted EQ-5D-5L score −0.225 −0.241 −0.218 −0.238
SD predicted EQ-5D-5L score 0.267 0.284 0.261 0.269
Correlation 0.971 0.980

Age 40, male
Mean predicted EQ-5D-5L score 0.475 0.423 0.466 0.413
Minimum predicted EQ-5D-5L score −0.217 −0.239 −0.208 −0.235
SD predicted EQ-5D-5L score 0.264 0.285 0.259 0.269
Correlation 0.971 0.979

Age 70, female
Mean predicted EQ-5D-5L score 0.473 0.390 0.455 0.390
Minimum predicted EQ-5D-5L score −0.220 −0.243 −0.215 −0.237
SD predicted EQ-5D-5L score 0.264 0.283 0.260 0.269
Correlation 0.958 0.970

Age 70, male
Mean predicted EQ-5D-5L score 0.489 0.402 0.471 0.396
Minimum predicted EQ-5D-5L score −0.208 −0.240 −0.203 −0.234
SD predicted EQ-5D-5L score 0.260 0.284 0.257 0.269
Correlation 0.958 0.968

Figure 3 plots the empirical distributions (kernel densities) of the mapped EQ-5D-5L

values for a 70-year-old male. For a given choice of model (the copula-mixture model
is illustrated), there are noticeable differences between the results for the two reference
datasets. For a given reference dataset (the NDB is illustrated), the difference between
the copula-mixture and Gaussian models is less pronounced, although there remain
differences at the higher end of the utility values.
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Figure 3. Comparison of kernel densities of mapped values for EQ-5D-5L for a 70-year-old
male

Next, we repeat the exercise for a υ3 → υ5 mapping using the entire dataset. First,
we use u3, the variable containing the actual UK utility scores corresponding to the
health states described by the variables Y3 1 to Y3 5. The following code produces
results that are summarized in the first section of table 1.

. // Actual UK 3-level utility scores:

. // loop over model specification and dataset

. foreach spec in gauss copula {
2. foreach dat in NDB EQG {
3. display "Specification = `spec´, Data = `dat´"
4. display "Actual UK scores..."
5. eq5dmap v5_`spec´_`dat´_actual,

> covariates(age male) model(`dat´`spec´)
> score(u3) bwidth(0.001)

6. }
7. }

(output omitted )

As before, all mappings using the NDB dataset produce higher-average mapped values
than those using the EQG dataset (see table 1). The smaller the bandwidth, the lower
the correlations with the values mapped from the actual utility scores and also the
smaller the SDs of the mapped values.

5.5 Mapping using weights

Our dataset contains a row for every possible EQ-5D-3L health state by age and gender.
The mean three-level utility score in this artificial dataset is 0.137. Such a low level
of utility is not typical of datasets encountered in practice, and it is due to the large
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proportion of health states in the three-level descriptive system with associated utility
scores around and below 0 (equivalent to death). Even disease-specific samples in very
severely affected subpopulations usually have much larger average three-level utility
scores: for example, the mean three-level utility values in the EQG and NDB samples
are 0.628 and 0.681, respectively, and the proportion of individuals with a negative
utility value is only 8% and 4%. This contrasts with the almost 35% health states with
negative utility values in the whole 3L descriptive system.

In this section, we demonstrate the use of the weighting option to calculate the
mean mapped five-level utility for the populations in the EQG and the NDB samples.
The variables fwEQG and fwNDB in the dataset contain frequency weights describing the
demographic composition of the EQG and NDB data, respectively. The following code
continues with the choice of the NDB mixed copula mapping model to map the EQ-5D-3L

descriptive items into a predicted five-level utility score, but it uses the EQG frequency
weights to calculate the weighted mean of the mapped utility score.

. eq5dmap v5_y3EQG [fw = fwEQG], covariates(age male) model(NDBcopula)
> items(Y3_1 Y3_2 Y3_3 Y3_4 Y3_5)
No direction specified: default is 3->5
No 5L value set specified: default is UK
Summary of inputs to eq5dmap:
The 5-level value set is: UK
The age covariate is contained in input variable: age
The gender covariate is contained in input variable: male
Mapping from Y3 to v5
The 3-level descriptive items are contained in input variables: Y3_1 Y3_2 Y3_3
> Y3_4 Y3_5
Weighted mean of predicted 5L score within selected sample

Variable Obs Mean Std. Dev. Min Max

v5_y3EQG 3,539 .7088379 .2298323 -.2170747 .9587727

Now, we carry out the same mapping but using the NDB frequency weights instead.

. eq5dmap v5_y3NDB [fw = fwNDB], covariates(age male) model(NDBcopula)
> items(Y3_1 Y3_2 Y3_3 Y3_4 Y3_5)
No direction specified: default is 3->5
No 5L value set specified: default is UK
Summary of inputs to eq5dmap:
The 5-level value set is: UK
The age covariate is contained in input variable: age
The gender covariate is contained in input variable: male
Mapping from Y3 to v5
The 3-level descriptive items are contained in input variables: Y3_1 Y3_2 Y3_3
> Y3_4 Y3_5
Weighted mean of predicted 5L score within selected sample

Variable Obs Mean Std. Dev. Min Max

v5_y3NDB 5,205 .7640676 .1689144 -.2246118 .9584147

The mean difference between three-level and five-level utility scores calculated for
the EQG and NDB sample compositions are fairly small—0.081 and 0.083, respectively.
In comparison, the average three-level or five-level difference is 0.339 when calculated
(unweighted) over all the 243 possible descriptive outcomes for EQ-5D-3L and all age-
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gender groups. This is consistent with the findings in Hernández-Alava and Pudney
(2017) and Hernández-Alava et al. (2018) of minor differences between three-level and
five-level EQ-5D at the top of their range but much larger differences at the bottom.

We now investigate the effect of using alternative weights on the correlations between
the mappings based on different reference datasets. The following code calculates the
correlations between the υ3 → υ5 mapped values in section 5.4 using the mixed copula
model.

. // calculate correlations - unweighted

. correlate v5_copula_NDB_actual v5_copula_EQG_actual
(obs=41,310)

v5_cop.. v5_cop..

v5_copula_.. 1.0000
v5_copula_.. 0.9549 1.0000

. // calculate correlations - weighted

. correlate v5_copula_NDB_actual v5_copula_EQG_actual [fw = fwNDB]
(obs=5,205)

v5_cop.. v5_cop..

v5_copula_.. 1.0000
v5_copula_.. 0.9967 1.0000

. correlate v5_copula_NDB_actual v5_copula_EQG_actual [fw = fwEQG]
(obs=3,539)

v5_cop.. v5_cop..

v5_copula_.. 1.0000
v5_copula_.. 0.9959 1.0000

The unweighted correlation between the mapped values using different reference
datasets is high (0.9549) when calculated unweighted across all possible EQ-5D-3L out-
comes, and it increases to a value close to 1 when the sample is weighted to either
the NDB or the EQG composition. This serves to demonstrate that inconsistencies be-
tween EQ-5D-3L and EQ-5D-5L utility scores are moderate in samples with a realistic
composition and that their main feature is difference in the mean rather than lack of
correlation.

6 Conclusion

In this article, we presented a new command, eq5dmap, that calculates the predic-
tion of EQ-5D-3L utility scores from observed or specified values of EQ-5D-5L (indi-
vidual items or utility score), age and gender, and vice versa. The predictive dis-
tribution was derived from a joint model of the two versions of EQ-5D developed in
Hernández-Alava and Pudney (2017) and applied to two different reference datasets
(Hernández-Alava et al. 2018). We illustrated use of the command through several ex-
amples. The first two examples demonstrated the basic use of the command. Further
examples illustrated the consequences of a) using different bandwidths when mapping
using approximate utility scores and b) using different reference datasets. The final
example demonstrated the use of weights.
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