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Abstract

Australia’s iconic Great Barrier Reef (GBR) continues to suffer from repeated impacts of

cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish

(COTS), losing much of its coral cover in the process. This raises the question of the ecosys-

tem’s systemic resilience and its ability to rebound after large-scale population loss. Here,

we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facili-

tate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding

its continued recovery. These reefs (1) are highly connected by ocean currents to the wider

reef network, (2) have a relatively low risk of exposure to disturbances so that they are likely

to provide replenishment when other reefs are depleted, and (3) have an ability to promote

recovery of desirable species but are unlikely to either experience or spread COTS out-

breaks. The great replenishment potential of these ‘robust source reefs’, which may supply

47% of the ecosystem in a single dispersal event, emerges from the interaction between

oceanographic conditions and geographic location, a process that is likely to be repeated in

other reef systems. Such natural resilience of reef systems will become increasingly impor-

tant as the frequency of disturbances accelerates under climate change.

Author summary

Australia’s Great Barrier Reef is a large coral ecosystem consisting of more than 3,800

reefs. Coral populations inhabiting these reefs are connected by larvae that are dispersed

by ocean currents. Modelling regional connectivity patterns reveals reefs that can act as

prominent larval sources and supply larvae to other coral populations in the area. Coral

populations on reefs are also subject to various disturbances, such as bleaching and out-

breaks of the coral-eating crown-of-thorns starfish. These disturbances tend to have spa-

tially explicit patterns, resulting in different levels of impact among reefs. In this study,

we first use high-resolution dispersal simulations of larvae to identify the reefs most

likely to support regional recovery processes due to their high connectivity. We then use
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oceanographic and climate models to show which reefs are likely to have a lower risk of

exposure to coral bleaching and starfish outbreaks. Finally, we combine these results to

find reefs that are not only likely to be good sources by being well connected but also

more likely to have adult breeding stocks needed to provide the necessary larval supply.

This information can support decision-making that aims to allocate management

resources and prioritise sites important for the resilience of the entire reef system.

Introduction

Marine ecosystems are characterised by high levels of larval connectivity among populations

linked by ocean or coastal currents [1]. Ensuring functioning and resilient ecosystems requires

that processes of connectivity are maintained, particularly when the metapopulation has been

widely depleted and individual patches must recolonise from neighbours [2]. Circumstances

of large-scale metapopulation depletions are commonly found on coral reefs that are vulnera-

ble to mass thermal stress events that elicit coral bleaching on scales of hundreds to thousands

of kilometres [3–5]. Yet much of the science of coral reef resilience has focused on reducing

the exposure of reefs to stressful conditions, be they physical pollutants or the impacts of eco-

system exploitation [6–8]. While the importance of regional connectivity of larvae is a widely

recognised process of recovery [9,10], it has rarely been operationalised for building resilient

ecosystems, although methods exist [11,12]. In principle, marine reserve networks might

incorporate the most important sources of replenishment with a view to promoting region-

wide recovery after disturbance [12–16]. We refer to this process as building systemic resil-

ience, in the sense that protecting these sources will promote resilience of a wider system and

facilitate metapopulation recovery after major disturbances [17]. Much of the discussion

of systemic resilience has focused on recognizing the cascades of failures that could lead to

catastrophic transitions of the entire system to an undesirable state [17]. Here, however, we

focus on the recovery side of the story, looking for potential local refugia that can drive cascad-

ing processes of large-scale recovery and provide novel intervention points for ecosystem

management.

Three criteria would need to be met to maximise the likelihood that a reef would success-

fully contribute to recovery of the wider ecosystem (Fig 1). First, a source population should

be able to supply other populations, including other sources, and thus make an exceptional

contribution to the recovery of large portions of the system. Moreover, while demographic

connections in marine systems tend to be variable and transient [18], a source should be able

to provide consistent replenishment under a variety of oceanographic conditions. Second, a

source should exhibit a lower exposure to disturbances so that it can maintain the adult brood

stock required to initiate the recovery process of affected areas [19,20]. Third, a source that pri-

marily helps replenishment should distribute desirable organisms but also not distribute unde-

sirable organisms such as pests or invasive species [21]. Simultaneously meeting the first and

third requirements is particularly challenging because the connectivity of multiple marine taxa

is often highly correlated and driven by the same dispersal mechanisms [22], making high lev-

els of oceanic connectivity a ‘double-edged sword’ that can both help and hinder recovery.

Reefs that meet all 3 criteria would confer resilience to a wider coral reef system by facilitating

rapid large-scale recovery after major disturbances. However, we are unaware of any study

into the relationship between source-sink characteristics of reefs and their exposure to distur-

bances. Whereas areas of high flow and upwelling have been associated with lower risks of

coral bleaching [23], the role of reefs as larval sources is geographically complex, integrating
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the distribution and sizes of reefs with respect to the speed and, critically, the directions of flow

[24]. There is, therefore, no a priori reason to expect that any reefs will meet our 3 desirable

criteria in practice. We describe our underlying assumptions about these criteria in the Materi-

als and methods (see also S1 Table).

Here, we explore connectivity and disturbance properties of the world’s largest coral reef

system, the Great Barrier Reef (GBR). Despite its size, the combined effects of multiple stress-

ors including coral bleaching [5,16,25,26], cyclones [16,27,28], and outbreaks of corallivorous

crown-of-thorns starfish (Acanthaster sp., or COTS) [26,29,30] have caused significant declines

in coral cover in recent decades [31]. Yet we discover that the GBR also possesses a level of sys-

temic resilience in there being a system of reefs that meet all 3 desirable criteria of reduced dis-

turbance exposure and high recovery potential owing to a common link among oceanography,

geography, and connectivity.

Results

Criterion 1: Important sources of larvae

The connectivity of larvae across the approximately 3,800 reefs of the GBR was modelled using

ocean circulation simulations and generated 208 networks, each representing a unique combi-

nation of taxa, intra-, and inter-seasonal variability that can influence patterns of dispersal

[32–34]. In order to find reefs that satisfy the first criterion of being important sources of

Fig 1. Conceptual diagram describing the process for identifying robust source reefs in a coral reef system. Ocean

currents disperse larvae and create interpopulation connectivity links among reefs, leading to an emergence of source reefs

with high potential to support coral replenishment. For robust sources, high connectivity will be complemented by a reduced

chance of being affected by disturbances, such as thermal stress–induced bleaching, and COTS outbreaks. COTS, crown-

of-thorns starfish.

https://doi.org/10.1371/journal.pbio.2003355.g001
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replenishment, we examined the resulting connectivity patterns to identify key source reefs

that provide consistent replenishment across a range of dispersal conditions and life history

strategies (details in the Materials and methods and S2 Table). Each reef’s importance as a

source of replenishment was classified using a set of graph-theoretic measures, with the aim of

capturing both short-term and long-term outlooks of a reef’s importance to GBR-wide con-

nectivity and prioritising connections that resupply other well-connected sources in the sys-

tem. Although reefs needed to satisfy an array of connectivity conditions in space and time in

order to qualify, we found that 545 reefs (14%) meet the criterion of being strong, consistent

sources to a large numbers of reefs, including many major source reefs downstream (Fig 2A).

Most of these key sources were located in offshore and mid-shelf regions of the GBR, which is

broadly consistent with oceanographic patterns of inflow of oceanic water from the South

Equatorial Current [35].

Criterion 2: Lower thermal stress and exposure to coral bleaching

We then asked which of these key source reefs met our second criterion of naturally lower

exposure to acute thermal stress such that their coral populations are likely to remain in rela-

tively good condition even after bleaching events. We focus on corals not only because of their

intrinsic importance for biodiversity but because they are the principal engineers of reef habi-

tats [36]. Reefs with healthy coral also harbour higher densities of many vertebrate and inverte-

brate taxa [37], which increases the potential of such reefs to replenish community diversity.

We examined patterns of thermal stress during all 10 known warming events between 1982

and 2017 (including the most recent bleaching events [5]) using conventional measures of

degree heating weeks (DHW). Preliminary observations from the recent GBR bleaching epi-

sodes suggest that coral mortality on the GBR starts to occur once thermal stress exceeds 6

DHW (measured in ˚C–weeks) in a season (personal communication, Mark Eakin to KH).

We therefore set a conservative criterion that target reefs would never have experienced >6

Fig 2. Identifying reefs that exhibit high connectivity and low disturbance exposure. (A) Locations of key source reefs on the GBR

with high replenishment potential. (B) Classification of key source reefs according to bleaching risk (>6 DHW) during major bleaching events

between 1982 and 2017. (C) Classification of key sources according to their predicted supply of COTS larvae. Data provided in S1 Data.

COTS, crown-of-thorns starfish; DHW, degree heating weeks; GBR, Great Barrier Reef.

https://doi.org/10.1371/journal.pbio.2003355.g002
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DHW during the full 36-year time series. Across the entire GBR, 1,258 reefs (33%) met this

condition. Of the 545 ‘key source’ reefs identified under the first criterion, 45% (245) also met

the second criterion of being a refuge from thermal stress (Fig 2B).

It is worth noting that while elevated sea temperature is the primary cause of coral bleach-

ing, areas that experience eutrophication can also have an elevated risk of bleaching [38],

although this will not necessarily always be the case [5]. Importantly, the offshore location of

the identified ‘cool’ source reefs would also limit their exposure to terrestrial runoff [39],

which reinforces the notion of low bleaching risk on these reefs.

Criterion 3: Lower risk of conveying COTS outbreaks

Our third criterion for an ideal source of coral replenishment is that the reef disperses larvae of

desirable species (e.g., coral) rather than pests. COTS are the most important pest on the GBR,

and their outbreaks are a system-wide problem [26]. Large numbers of adult COTS found dur-

ing outbreak conditions can strip a reef of its corals [30,40]. Ocean currents then spread the

starfish larvae from reefs with ongoing outbreaks, causing large-scale outbreak events which

eventually lead to widespread decline in coral [30,31,41]. If a reef important for coral replen-

ishment is exposed to COTS larvae and experiences an outbreak, it could simultaneously lose

its value as a source of coral larvae and exacerbate the widespread coral loss by serving as a hub

for dispersing COTS larvae. Clearly, such characteristics would be at odds with the role of lar-

val sources important for promoting coral recovery.

To assess the risk that potential sources of coral replenishment might also double as harm-

ful sources of COTS larvae, we began by using recent COTS population surveys to validate the

predictions of a COTS connectivity model. Because the dispersal simulated in our models

(2008–2013) immediately predates the period of intense COTS surveys (2013–2015), reefs pre-

dicted to have received more COTS larvae should have higher population densities of adult

COTS owing to progressive buildup of COTS populations [30] and have adult COTS densities

that imply an active COTS outbreak [42]. We performed a classification analysis contrasting

the predicted larval supply against field survey observations to determine the threshold for

influx of COTS larvae below which reefs would be unlikely to experience COTS outbreaks (see

Materials and methods; S1 Fig). We found that reefs predicted to be consistently in the bottom

30th percentile according to relative larval supply only had an 8% chance of being in an out-

break state. Thus GBR reefs were divided into 2 categories—‘low’ and ‘high’—with respect to

the risks of a COTS outbreak linked to relatively high larval supply. As expected, surveyed

reefs with high predicted supply of COTS larvae had higher population densities of adult

COTS, experiencing on average 4 times higher maximum adult densities (N = 137, t = 4.6,

p< 0.0001; Fig 3A and 3B; S3 Table; external import of larvae was the only significant predic-

tor in the model). Also, the odds ratio that reefs with high import of larvae will have outbreaks

versus those with low import was 14.6. This validation of our models was also supported by

analysis of a second dataset from COTS eradication efforts, which showed the same pattern of

higher densities of COTS adults on reefs with high predicted supply of COTS larvae (S4

Table). We conclude that the reefs in the bottom 30% in terms of relative larval supply satisfied

the third criterion of having low risk of experiencing COTS outbreaks, and therefore also pre-

sented a lower risk of becoming sources of COTS larvae in the system.

Given that our model of COTS dispersal has empirical support, we then evaluated the risk

that key source reefs that satisfied the first criterion would become supplied with COTS larvae

and experience an outbreak. Despite the fact that key sources were identified on account of

their high downstream connectivity for multiple taxa, nearly half (48%, or 262) of them were

found to have low upstream connectivity and therefore a low risk of becoming hubs of COTS

Systemic resilience of the Great Barrier Reef
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Fig 3. Linking connectivity and COTS abundance estimates from field surveys. (A) A map of the GBR region

surveyed for COTS in 2013–2015. Reefs with low predicted supply of COTS larvae (triangles; N = 48) were more likely to

have low levels of adult COTS or no adult COTS detected (blue symbols). The highest incidence of COTS outbreaks (red)

was observed on reefs with high potential supply of COTS larvae (circles; N = 89). Note that, although the outbreaks

originated in the area north of Cooktown and spread southwards, latitude and longitude were not significant predictors in

the analysis, but they were kept in the model as covariates to ensure that any spatial pattern observed in the figure did not

affect the observed effect of connectivity. (B) Reefs with high predicted supply of COTS larvae had significantly higher

densities of adult COTS. The outbreak threshold of 1,500 adult COTS km−2 is shown as a red line [30]. The box plots show

medians (black diamonds) and quartiles (blue box). The analysis also included a datum in the high category with an

estimated COTS density of >30,000 per km2. Data provided in S1 Data. COTS, crown-of-thorns starfish; GBR, Great

Barrier Reef.

https://doi.org/10.1371/journal.pbio.2003355.g003
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larvae (Fig 2C). The fact that some key sources also have low upstream connectivity can be

attributed to the interaction between their geographic location and oceanography: strong

incoming currents originating from the open ocean limit upstream connectivity of outer parts

of the reef shelf and therefore also reduce the chance of external colonisation by COTS larvae.

Thus, while both COTS and coral larvae rely on the same hydrodynamic forces for dispersal,

differences in the supply of COTS larvae lead to a decoupling between the potential sources of

both COTS and coral larvae and those more likely to serve as sources of coral larvae alone.

Integrating connectivity and disturbance patterns

To qualify as an important source of replenishment even when the system is affected by distur-

bances, which we term a ‘robust source’, a reef must meet all 3 of the listed desirable criteria. A

total of 112 reefs met all criteria (Fig 4A), primarily in outer shelf positions because strong cur-

rents from the open ocean bring cooler waters while also facilitating the dispersal of coral lar-

vae landward and avoiding some COTS dispersal problems because of the paucity of upstream

reefs (Fig 4B).

While testing for a significant association among the 3 criteria could conceivably be used to

evaluate the likelihood of finding this many robust sources on the GBR, the presence of spatial

Fig 4. Identifying robust sources on the GBR. (A) Robust sources are the reefs that possess high replenishment potential while also

having low risk of bleaching and COTS outbreaks. (B) When robust sources are superimposed on estimates of acute thermal stress, the

region of lower stress in the southern GBR is clearly visible. Most robust sources are located in a region where cooler oceanic water of the

SCJ, and to a lesser extent the NCJ, of the South Equatorial Current flushes the GBR reef matrix [35]. Data provided in S1 Data. COTS,

crown-of-thorns starfish; GBR, Great Barrier Reef; NCJ, North Caledonian Jet; SCJ, South Caledonian Jet.

https://doi.org/10.1371/journal.pbio.2003355.g004
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autocorrelation within each data layer (key sources of coral larvae, thermal stress, and risk of

COTS) as well as among data layers makes it unclear whether statistically robust conclusions

could be drawn from such analyses. Moreover, since every reef in the GBR was evaluated for

the 3 criteria, the benefits of a statistical test that would use random subsamples of reefs to

determine the null likelihood of a reef meeting all 3 criteria are unclear even if a test could be

devised to account for the difficult problems of spatial autocorrelation. As such, rather than

evaluating the significance of finding a certain number of robust sources, we instead evaluated

their potential importance for supplying larvae to the wider GBR.

Although robust sources comprise a small proportion (3%) of the GBR, they can supply

around 19% of all reefs after a single reproductive event if the larval duration is short (Fig 5A,

1 day), increasing to 47% of reefs for longer larval durations (Fig 5B, 30 days). Such high scal-

ability reflects the value of using stringent connectivity criteria in the site selection process.

These estimates of potential impact (supplying 19%–47% of reefs) only consider direct connec-

tions from sources during a single dispersal event, and direct replenishment would amplify

over time as the coral metapopulation recovers (Fig 5B and 5C). If we consider the importance

of replenishment over successive colonisation steps following a stepping-stone pattern, then

the number of reefs benefiting from robust sources escalates rapidly (Fig 5). For example, with

a maximum larval duration of 30 days, >80% of all GBR reefs were within 2 colonisation steps

from robust sources, and>95% were within 5 colonisation steps (Fig 5C). While these num-

bers will be contingent on how long the larvae can survive during dispersal, once larval survival

exceeded 10 days, the pattern of replenishment was fairly consistent up to maximum investi-

gated survival duration of 1 month (Fig 5C).

It should be noted that this analysis describes the best-case recovery scenario in which cor-

als are able to colonise sink reefs while also assuming that there are no system-wide distur-

bances between successive colonisation steps to impede regional recovery. While the recovery

dynamics will inevitably be more complex than this and foster spatial heterogeneity in recovery

Fig 5. Distance of reefs on the GBR from robust sources in terms of colonisation steps. (A) Number of colonisation steps needed to reach reefs

from robust sources after 1 day of dispersal. (B) Number of colonisation steps needed to reach reefs from robust sources after 30 days of dispersal. (C)

Percentage of reefs that can be reached in a given number of consecutive colonisation steps as a function of maximum dispersal duration (measured in

days since release). Values for a single colonisation step correspond to direct links. After 30 days of dispersal, >80% of the reefs were within 2, and >95%

of the reefs were within 5, colonisation steps away from robust sources. Data provided in S1 Data. GBR, Great Barrier Reef.

https://doi.org/10.1371/journal.pbio.2003355.g005
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rates, consistently high connectivity of robust sources across multiple spawning seasons and

life history traits makes them the most likely candidates to fulfil this role in the system.

Discussion

While the GBR benefits from one of the most ambitious sets of no-take reserves for coral reefs

[43], we find that it also has an inherent level of systemic resilience: a set of robust source reefs

that are positioned to facilitate processes of coral recovery throughout much of the wider eco-

system. This list of around 100 reefs is both a tangible and feasible set of intervention points to

form part of a strategy for maintaining the systemic resilience of an ecosystem that is thou-

sands of kilometres in scale. While the presence of such reefs on the GBR is encouraging, the

fact that only 3% of the reefs meet all 3 criteria underlines the need for effective local protection

and reduction of global stressors in order to support their ongoing role in the ecosystem.

Given that larval transport and thermal bleaching are important characteristics of coral reef

ecosystems worldwide, similar synergistic effects of ocean circulation are likely to be observed

in other coral reef systems.

A potential drawback of high flow and advection at source reefs is a reduction in the level of

larval retention. Indeed, local retention in 80% of robust sources was lower than the GBR

median (S2 Fig). Whether such reductions might compromise the recovery rate of robust

sources is unclear, although their relatively low exposure to thermal stress implies that recov-

ery would be required infrequently.

Interestingly, robust sources seem to have relatively little exposure to another major source

of disturbance: cyclones. The spatial distribution of robust sources shows little congruence

with cyclone risk [28], which is greatest in the central GBR where the density of robust sources

is low (S3 Fig). This implies, firstly, that the term ‘robust sources’ as used here is relevant in the

context of cyclone disturbance as well as thermal stress. Secondly, while regions experiencing

frequent cyclone damage are associated with fewer robust sources, it is important to bear in

mind the large-scale colonisation potential of robust sources for the wider coral reef network,

in which only 3% of reefs have the potential to supply 15 times as many reefs in a single dis-

persal event (Fig 5). Thus, while stochastic cyclones will inevitably ‘decommission’ several

robust sources at any given time, the geographic spread and strength of the network should

help mitigate such impacts.

Although robust sources have been identified across the GBR, a distinct cluster occurs in

the south. When considering the combined spatial patterns of exposures to multiple stressors,

the offshore parts of the southern GBR appear to be a regional refuge, notably from recent

bleaching and COTS outbreaks that primarily affected the northern regions [5,30], as well as

from cyclones (S3 Fig). That this region also possesses many robust sources implies that the

southern GBR is likely to be exceptionally resilient and also positioned to stimulate recovery

elsewhere (Fig 5). Although not explicitly considered here, this region is also less likely to be

affected by local anthropogenic impacts such as decreased water quality caused by agricultural

runoffs from rivers, as it tends to be located far offshore where the effects of poor water quality

should be less pronounced [39,44–47]. However, global-scale stressors such as changes in car-

bonate chemistry owing to ocean acidification [48,49] or changes in ocean current patterns

[50,51] might yet have a notable effect on the GBR’s systemic resilience.

We build on the applications of graph theory in conservation and the role of connectivity in

metapopulation persistence. A key focus in many literature examples has been to identify

metapopulation network robustness to random perturbations and the identification of cut-

nodes that maintain system coherence [33,52–57]. We extend these approaches by proposing

specific sites of importance based on spatial heterogeneity in both connection strength and
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stress rather than on random perturbations. Another application of graph theory and connec-

tivity has been to disrupt the spread of pests, pathogens, and invasive species [41,58–62]. We

do not address the question of how to disrupt COTS here, but future studies might provide an

integrated approach that attempts to optimize the maintenance of system recovery (this paper)

while simultaneously attempting to disrupt pests like COTS. In the meantime, it would be pru-

dent to prioritise protection from anthropogenic and other manageable stressors, including

fishing [63,64], anchoring, and COTS to ensure that the resident coral populations on robust

sources continue to play a role in system replenishment. Fortunately, robust sources are

already overrepresented in the current set of no-take zones of the GBR: the current zoning

plan [65], which affords no-take status to 33% of reef area and 27% of individual reefs, includes

46% of all robust sources in its no-take regions (S4 Fig).

The approach described here attempts to operationalize the idea of systemic resilience in a

marine system [17], as failures in recruitment may result in a cascade of failures across the sys-

tem [66]. The science of systemic resilience is fairly young and lacks firm guidelines; here, we

opted to use stringent criteria that resulted in 3% of reefs being designated as robust sources.

Yet, many reefs will remain moderately functional even if they fail to meet our strict criteria

[4,25,27]. Thus, future work will consider how systemic resilience attenuates as the underlying

criteria are relaxed. Equally, estimates of systemic resilience will need to consider additional

stressors, including water quality, biogeochemistry, and differences in key ecosystem processes

(e.g., herbivory) and reef-level coral community composition as such data become available

and integrated with ecological models.

Our approach implicitly assumes that coral larvae emanating from reefs that experience rel-

atively low thermal stress are able to replenish populations subjected to higher thermal stress.

This assumption has never been tested formally, though it seems reasonable. Supporting evi-

dence includes the fact that coral populations disperse over broad thermal environments on

both ecological [12] and evolutionary [67] scales and that juvenile corals appear to be particu-

larly robust to thermal stress [68]. Moreover, transgenerational plasticity may generate hardier

offspring, providing that corals can survive long enough to reproduce [69]. Yet, contrary

mechanisms might include genetic adaption to lower stress levels in robust sources [70] and

genetic homogenization as total population size declines [71].

That we identified a series of reefs that appear to play a disproportionately important role

in driving regional recovery does not imply that the GBR, and its robust sources, will be

immune to future disturbances. For example, while robust sources have had demonstrably

lower risk of thermal stress over the past 36 years, the efficacy of their role will likely change in

the future. The GBR has recently experienced major bleaching events over 2 consecutive years

(southern hemisphere summers of 2015–2016 and 2016–2017), the first of which had an

unprecedented spatial pattern, severely affecting the northern reef for the first time [5]. Indeed,

the paucity of robust sources in this region reflects the impact of the anomalous 2016 bleaching

event. Thus, a key objective for future analyses is to estimate the spatial patterns and return

times of major bleaching events and their potential impact on the functioning of the GBR as a

resilient system. This is a daunting challenge, as it requires careful downscaling of global cli-

mate models that are currently unable to resolve meaningful spatial patterns of future warming

on a GBR scale [72].

Validating predictions of systemic resilience is challenging. Formal tests would require

simultaneous data on the dynamics of multiple source-sink reefs, yet less than 3% of reefs are

actively monitored (albeit, in the largest monitoring effort of any coral reef system). Rather, we

must rely on the efficacy of the inputs—each of which have experienced some level of testing

in their own right—and the conservative way in which criteria were applied (see also S1

Table). Firstly, while there has never been an empirical demonstration of the ability of a coral
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connectivity model to predict demographic effects and realized larval supply, there have been

a number of studies to test the predictions of oceanographic particle dispersal models for pre-

dicting coral gene flow [67,73], which found high—albeit imperfect—levels of congruence

between models and population data, especially in identifying areas of restricted gene flow.

Secondly, DHW has been a widely used metric for exploring the effects of thermal stress on

coral assemblages and, although low levels of DHW may be associated with bleaching, they

tend to elicit limited coral mortality [4,74–76]. There is, however, scope to improve the func-

tioning of algorithms to predict the likelihood of coral mortality, such as including the effects

of solar radiation and recent thermal trajectories [77]. Finally, in this paper we evaluated the

efficacy of connectivity models to predict COTS dispersal dynamics though comparisons with

field observations of emergent COTS outbreaks. We point out that advances in the use of

machine learning and other tools (e.g., semiautomated image analysis, especially when com-

bined with citizen science initiatives [78]), will likely provide a greater opportunity to test

model projections in the future.

Our discovery of systemic resilience in the form of reefs with high recovery potential com-

plements another recently discovered resilience mechanism: pulses of warm water that precede

major thermal stress and help prepare corals to tolerate heat stress and diminish the impacts of

bleaching [77]. Although the protective role of prewarming pulses is projected to weaken and

possibly even disappear under business-as-usual greenhouse gas emissions, robust sources are

likely to be some of the most persistent sources of replenishment because of their low suscepti-

bility to warming events. Yet, uncertainty about disturbance patterns means that the impor-

tance of mitigating greenhouse gas emissions remains vital for ensuring prolific corals in the

GBR’s future [36]. Furthermore, since reef recovery is not only driven by larval supply, postset-

tlement processes at sinks may strongly determine successful recruitment and growth [79,80].

Therefore, local practices to improve water quality [45–47], stabilise rubble [81], and avoid

ecosystem overfishing of herbivores [63,64,80], as well as global initiatives to reduce the ulti-

mate burdens on reefs, such as human impacts on the environment and climate [71,82,83], all

have a role to play in assisting successful coral recovery. The importance of supporting such

natural recovery processes will likely increase in the future as climate change reduces the aver-

age size of coral populations and the need for recolonization becomes more frequent.

Materials and methods

Design of dispersal and connectivity models

To obtain patterns of population connectivity across the GBR, Lagrangian dispersal simula-

tions were performed using Connie2, a high-resolution advection/diffusion oceanographic

model of the entire GBR region. The technical aspects of the hydrodynamic dispersal model

have been previously described in detail and published elsewhere (see also www.csiro.au/

connie2/ for a web interface) [41,84]. In the simulations, individual reefs of the GBR were rep-

resented as the convex polygons that encompassed all GIS coordinates that define the actual

GBR reefs [41]. To account for inter- and intra-seasonal differences in oceanographic circula-

tion, dispersal was simulated for 16 distinct spawning events (4 spawning events per summer,

i.e., December to March, for 2008–2009, 2010–2011, 2011–2012, and 2012–2013). To obtain a

connectivity network for a specific spawning event, 10 dispersal simulations of 103 particles

each were run for each of the 3,806 reef polygons. Spatial displacement of particles was

resolved in hourly intervals using the fourth-order Runge-Kutta scheme that advected the par-

ticles across raster grid with 4 km resolution of oceanographic forces. Particles were dispersed

passively by the oceanographic forces (complex swimming or homing behaviours were not

explicitly modelled) and were also considered to be negatively buoyant (dispersed at a constant
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depth of 0.5 m; although particles remained negatively buoyant during dispersal, the underly-

ing oceanographic model included 3-dimensional representation of currents, e.g., upwelling,

that could affect horizontal displacement of particles). This dispersal modelling framework has

previously been successfully employed to infer COTS dispersal patterns on the GBR [41,61].

The current set of simulations was substantially expanded to cover a much broader range of

dispersal characteristics and spawning events.

While the majority of connectivity models have focused on static connectivity relationships,

in many ecosystems where dispersal relies on ephemeral forces, such as marine larvae dis-

persed by ocean currents, connectivity tends to be highly variable and transient [18]. In order

to identify sources that help with recovery of the wide range of coral reef organisms and condi-

tions, we designed our models to be inclusive of a wide range of life history characteristics. Lar-

val survival and competency can be affected by numerous factors, many of which have only

been ascertained in laboratory conditions and may be very different in the field [22,34]. Even

within a taxon, dispersal potential can vary both between and within seasons with parameters

such as temperature and nutrient availability but also due to more ephemeral conditions like

river outflows that dynamically affect larval survival and competency [29,34]. Using a fixed set

of parameters for each species therefore means obtaining a connectivity pattern of a species

that may only represent dispersal patterns under a specific set of conditions while ignoring all

other possible combinations. To address these complexities with our models, we opted to base

our analyses on a wide range of competency curves and spawning times rather than use a few

parameter combinations to explicitly characterise individual species (as noted later, we used a

certain range of these parameters, rather than specific values, for COTS).

Gamma functions were used to model larval competency (all scale parameters equal to 1;

see S2 Table for shape parameters). Three different daily mortality rates (constant rates of 0.05,

0.1, and 0.2) were tested to cover a range of empirically determined values for invertebrate lar-

vae [85]. Since most of the connectivity measures were relative (for example, determining

whether a reef had stronger or weaker connectivity links than average), connectivity results

were found to be robust for the range of mortality rates, with the same reefs being identified as

key sources in 95% of the cases. Mortality rate of 0.1/day was used in the presented analyses.

Parameter values for larval competency and mortality were then combined to define 13 differ-

ent survival-competency curves for each of the 16 spawning events. These curves were diverse

enough to represent life histories of different organisms, from those whose larvae only remain

competent for a few days to those whose larvae can spend weeks in the water column.

Inclusion of competency and mortality made it possible to treat the individual particles not

as individual larvae, but rather as a pool of larvae that were competent and surviving at any

point in time that could disperse from the source along the recorded trajectory. The proximity

of particles to reefs was checked every 12 hours after release. When a particle was located<1

km away from a reef polygon, it was considered to be ‘arrested’ by the reef. Particles arrested

by a reef did not move any further and instead contributed to the connectivity between reefs

proportionally to the amount of larvae determined to be competent and surviving at the time

of arrival. This process continued until the maximum number of days the larvae could survive

during dispersal (see S2 Table). Arresting the particles in proximity of reefs also served as a

simple proxy for any potential fine-scale hydrodynamics around reefs or short-range homing

behaviours [86–88] and thereby ensured that the reefs were treated as physical obstacles to

dispersal.

A combination of competency, survival, and seascape characteristics meant that only about

0.0002% of the larvae in our models settled after day 25. While such low levels of settling larvae

as those observed during the later stages of the simulations could be detected with methods

examining genetic connectivity and allelic composition of populations [67], they are unlikely
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to have a major effect on replenishment of populations after disturbances when many more

larvae are generally needed to produce a demographic effect. Although some organisms,

including some coral species, are known to have larvae that can survive in the water column

for extended periods of time, the focus on demographically relevant connectivity meant that

the maximum period during which the larvae could settle in our simulations was therefore

limited to 30 days (see S2 Table).

The relative contribution from a specific source reef to a specific sink reef was then used as

the strength of a connection between these reefs in a connectivity network. The information

on the asymmetry in source-sink exchanges was retained in the networks, resulting in all con-

nectivity networks being directed (digraphs). A set of 208 directed connectivity networks was

obtained by combining multiple spawnings and competency curves. Taken together, these

connectivity networks were therefore not only capable of representing dispersal of a broad

spectrum of coral reef organisms using different spawning regimes and life history strategies

but could also emulate cases when local conditions would alter the dispersal pattern of a taxon

[29,34]. Consistency in connectivity relationships was then used to determine which connec-

tivity links were less likely to be affected by the inherent transience of marine dispersal and

empirical uncertainty surrounding dispersal parameters.

Connectivity network analysis

A broad spectrum of connectivity patterns represented by the connectivity networks was used

to identify key sources that can facilitate the recovery of a wide range of coral reef organisms.

Since different graph theory metrics can capture different aspects of source reef’s replenish-

ment potential, 5 properties were identified in each connectivity network to make the analysis

comprehensive (graph theory analogues provided in parentheses): (1) number of reefs a source

supplied (node’s out-degree), (2) total amount of supply a source provided (node’s strength),

(3) number of links through which a source provided more than 10% of the relative supply to a

sink (node’s out-degree when considering only links that provide >10% of supply to a respec-

tive sink) [22], (4) number of other sources a source could supply (node’s out-degree when

counting only links to major sources that were identified by using the properties 1, 2, and 3),

and (5) the number of other reefs in a network that could be reached via a directed path from a

source (node’s out-component) [41]. These 5 connectivity properties were measured for all

reefs and across 208 scenarios representing multiple life-history characteristics and seasons of

dispersal. There are many ways in which these data could be used to identify ‘key larval

sources’, and our decision reflected certainty over their importance. Although a reef could in

theory be considered ‘well connected’ if it only satisfied 4 of the specified criteria, we wanted

the identified reefs to exhibit high potential for both short-term and long-term recovery as

well as supporting a recovery ‘cascade’ by supplying other sources. As such, we wanted to be

strict in that a reef needed to exhibit all 5 connectivity criteria to meet our aim of being an

effective source that is also connected to other major sources, thereby maximising the rate at

which replenishment can occur across the reef system. We therefore specified that all 5 con-

nectivity criteria must always be met. This left 2 other decisions: how much should a reef excel

within any individual connectivity metric (i.e., where does it rank within the 3,806 GBR

reefs?), and over how many of the possible scenarios should it excel? Currently, there is no

empirical demographic justification available for selecting a critical threshold because rigorous

testing of larval dispersal models for predicting rates of realised larval supply in the field has

never been undertaken anywhere for logistical reasons. Therefore, we specified a somewhat

arbitrary threshold in that a reef must have scored above average (top 50th percentile) in all 5

connectivity metrics and do so in above average (top 50th percentile) number of scenarios in
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order to qualify as having high potential for recovery of the system. Implementing these crite-

ria served as a strong filter as only 14% of reefs succeeded in being designated as ‘key sources’.

Since demographically relevant levels of connectivity do not tend to occur over the entire

length of the GBR, the ranking of the reefs according to their replenishment potential was per-

formed within the natural resource management areas that are used to manage the GBR by the

GBR Marine Park Authority [65].

In order to estimate a reef’s potential to be supplied by other reefs or through local retention

of larvae, we also determined the relative amount of supply a reef received from other reefs as

well as the relative level of local retention of larvae (the amount of settled larvae for which the

destination reef was the same as the source reef). External supply was used to determine the

predicted supply of COTS larvae to the reef. Reefs that had low potential of local retention in

most of the networks could therefore exhibit a reduced potential for recovery. Low local reten-

tion of larvae could also be indicative of high levels of flushing and different flow regimes expe-

rienced by reefs (S3 Fig).

Thermal stress analysis

Mass coral bleaching has been shown to be caused by prolonged periods of thermal stress

which is typically expressed using the DHW metric. DHW is a cumulative measurement of the

intensity and duration of acute thermal stress and is expressed in the unit ˚C-weeks. Here, we

used 2 satellite sea surface temperature datasets to estimate maximum annual (1982–2017)

DHW across the GBR: For the years 1982–2012, DHW was calculated using Version 5 of the

Coral Reef Temperature Anomaly Database (CoRTAD) [75], a weekly 4 km product. CoRTAD

DHW was derived using the methods adopted by NOAA Coral Reef Watch that accumulates

any hot spots>1˚C over a 12-week window. For years 2013 to 2017, we used ReefTemp Next

Generation (RTNG), a high resolution (0.02˚) daily product developed by the Australian Gov-

ernment’s Bureau of Meteorology as a key component of the Great Barrier Reef Marine Park

Authority’s (GBRPMA’s) Early Warning System [89].

The maximum annual DHW was extracted for each of the pixels from the 2 datasets that

intersected GBR reef polygons, corresponding to 5,059 pixels from CoRTAD and 14,324 from

RTNG. Next, we defined significant thermal stress events as those years where >50% of all reef

pixels experienced DHW> 0, which occurred in 10 summers (1982, 1986, 1987, 1992, 1998,

2002, 2010, 2011, 2016, and 2017) of the 36-year time series. Finally, thermal stress refugia

reefs (N = 1,258) were defined as those reefs that did not experience a DHW > 6 across 75% of

their area during those same 10 years. In other words,�75% of the reef area did not experience

thermal stress associated with bleaching mortality. Although the threshold above which some

reefs will bleach is usually taken to be 4 DHW [4,23,74], during the recent widespread bleach-

ing events on the GBR, significant mortality from bleaching was observed above 6 DHW

threshold (personal communication, Mark Eakin to KH).

To estimate the relative levels of thermal stress over time, reef polygons were also ranked by

their mean DHW over the same years. These rankings were standardized between 100 (highest

DHW) and 1 (lowest DHW), providing a thermal stress ranking index that was used to illus-

trate the correspondence between the relative levels of acute thermal stress and the approxi-

mate locations of major ocean currents that flush the GBR in Fig 4B.

COTS spatial dynamics and analysis of field surveys

COTS is a corallivorous asteroid native to the GBR whose rapid increase in numbers can lead

to reef-damaging outbreaks that can lead to>90% local coral mortality [30]. The GBR under-

goes a major spate of COTS outbreaks every 14–17 years. First outbreaks in such large-scale
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events tend to appear in the Cooktown-Cairns region of the northern GBR (see Fig 3A for the

most recent case and the reefs surveyed in response). Outbreak initiation is most likely pre-

ceded by a local buildup of larvae [30] and possibly also augmented by favourable nutrient

conditions that enhance larval survival [29]. Once initiated, COTS outbreaks then spread

through larval transport and eventually end up affecting large portions of the GBR, with prom-

inent effects on the overall health of the ecosystem [31,90]. As of this writing, the GBR is in the

middle of another major COTS outbreak event, with an escalating number of outbreaks since

the early 2010s.

While the larval transport is crucial for the widespread impacts of COTS, the exact parame-

ters of life history traits that define the dispersal of COTS larvae are not only uncertain but also

known to vary with local conditions such as temperature and nutrient availability [22,30,34].

In laboratory studies, COTS larvae typically become competent at around 9–11 days, but this

period can also be extended in conditions of nutrient scarcity or shortened due to nutrient

abundance [30,34]. COTS are also known to spawn several times during the GBR summer

months, but with no established regularity in timing of the spawning events [30]. To account

for these uncertainties and ensure that the simulations can capture the entire spectrum of pos-

sible developmental conditions, we approximated COTS larval supply using an entire range of

the simulated networks. Reefs were then classified according to whether they consistently had

a high or low supply of COTS larvae in more than half of the 16 simulated spawning events

that occurred during the 4 years before the field surveys began. With only 2 categories (high or

low predicted supply of COTS larvae, allowing ties), a total of 1,904 reefs had been classified to

have low risk of being supplied with COTS larvae.

Extensive field surveys performed in response to the ongoing series of outbreaks made it

possible to validate the predictions of high-resolution connectivity models with relevant esti-

mates of local population abundances from the field. The first of these surveys were under-

taken in 2013; however, COTS populations detected at that time probably underwent a period

of buildup for several years before that [30]. Modelling connectivity of COTS larvae during

2008–2013, which immediately predates the field surveys of COTS adults, therefore allowed us

to estimate levels of larval transport that would have taken place during that buildup period.

Surveys to estimate the COTS numbers and outbreak locations were performed using a

manta tow technique designed for rapid broad-scale surveys of COTS populations, in which

towed divers visually assess adult COTS numbers [30,42]. COTS population densities of

around 1,500 individuals/km2 were found to have damaging effects on coral cover and are

used operationally as an outbreak threshold by both scientists and managers [30]. The manta

tow survey data have been provided by the GBRMPA.

Classification of reefs according to outbreak risk

We evaluated the performance of different percentiles of relative larval supply with respect to

their ability to dichotomously classify risk of COTS outbreaks on reefs. For this, we first

ranked the surveyed reefs for each of the 208 networks in terms of the larval supply they

received from other reefs. We then classified reefs into 2 groups according to whether they

were ranked above or below a certain percentile threshold for a given network. We tested 19

percentile thresholds, from 5% to 95% in 5% intervals. Reefs that exceeded the specific

threshold in an above-average number of scenarios (top 50th percentile of observed maxi-

mum) were then classified as having ‘high’ supply for that threshold and the rest as having

‘low’ supply. Reefs with high supply were predicted to have a higher risk of outbreaks, as they

consistently received more larvae across a range of environmental conditions and possible

life histories.
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We then evaluated how well each of the percentile thresholds performed in terms of cor-

rectly identifying reefs that were determined to have adult COTS population densities below

the outbreak level of 1,500 individuals per km2 in field surveys. Of the 137 surveyed reefs, 61 of

them (44.5%) had outbreak densities of adult COTS. After comparing the performance of the

classification analysis for different larval supply thresholds [91], we found that only 8.2% of the

reefs consistently ranked in the bottom 30th percentile of larval supply had outbreak densities

of adult COTS (S1 Fig). Based on this result, the 30th percentile was used as a threshold that

could reliably identify reefs that are unlikely to have a high supply of COTS larvae and there-

fore exhibit a lower risk of both experiencing COTS outbreaks and spreading the COTS larvae

to other reefs.

Analysis of the CPUE data from COTS eradication efforts

To supplement the results of COTS surveys, a second set of analysis was also performed using

catch-per-unit effort (CPUE) values from eradication efforts undertaken between 2013 and

2015 by the Association of Marine Park Tourism Operators (AMPTO) aimed at controlling

the levels of adult COTS on reefs. Local eradication efforts have been organised and imple-

mented in response to the rising levels of COTS. While the eradication efforts have been

implemented in approximately the same region as the manta tow surveys, they were not per-

formed on the same set of reefs (though there is overlap). In contrast to the rapid broad-scale

surveys of large areas characteristic of manta tows, eradication efforts used intensive search

dives by trained divers to locate adult COTS over a small area. CPUE rates obtained during

these dives, especially during an initial visit of the eradication team to a reef, can be used as an

estimate of the densities of adult COTS present on a section of a reef; although, unlike for

manta tows, no firm threshold exists with regard to the expected CPUEs for outbreak versus

nonoutbreak conditions. These density estimates can then be used to evaluate the predictors of

COTS larval supply obtained from the connectivity networks. The dataset has been provided

by AMPTO.

The potential to receive COTS larvae was again an important predictor of CPUE rates for

adult COTS on individual reefs, with significantly higher CPUEs on reefs predicted to have

experienced a higher supply of COTS larvae (those above 30th percentile threshold) in the

years predating the eradication efforts (N = 94, F = 6.92, p = .01). Moreover, external supply of

COTS larvae was the only significant predictor in the statistical model. Test details are pro-

vided in S4 Table.

The importance of external supply of COTS as a predictor of subsequent densities of adult

COTS was therefore corroborated by 2 separate analyses that used 2 independent datasets

derived from different methods to estimate adult COTS numbers on reefs.

Key assumptions regarding 3 criteria for reefs to become robust sources

Our 3 criteria involve a number of assumptions that should be made explicit, even if they are

not particularly controversial. The main assumptions are listed in S1 Table.

Estimating replenishment potential of the robust sources

To assess the potential of robust sources to replenish other parts of the GBR, we have deter-

mined the proportion of the GBR that can be supplied by such sources in an average year. We

only considered reefs that were directly supplied from robust sources; also, reefs that were sup-

plied from more than 1 robust source, e.g., in areas where robust sources were close to each

other, were only counted once. We further considered how many of the identified key sources

were supplied per year in order to emphasize the importance of the supply from robust sources
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on the wider supply cascade. In the context of replenishment and recolonization of disturbed

populations, space and density limitations at sinks should be a minor issue and even small lev-

els of supply could end up being locally important. As such, these analyses took into account

links of all strengths (that is, we did not impose an arbitrary demographic threshold on mini-

mum link strength). Since the number of reefs that can be supplied from robust sources will

also increase with longer dispersal times, we have performed these calculations for all of the

simulated larval survival durations (see S2 Table). The results of the analyses are presented in

Fig 5.

We have also examined the relative distance of all reefs on the GBR from the robust sources

in terms of the number of colonisation steps/stepping stones needed to reach them. This was

determined by identifying the directed shortest path from each of the robust sources to all

other reefs and then finding the directed shortest path with the fewest number of colonisation

steps/stepping stones from any robust source to every other reef on the GBR [57]. The results

of this analysis for different larval durations listed (see S2 Table) are shown in different panels

of Fig 5.

Statistical analyses

A linear model was used to determine whether predicted supply of COTS larvae during a puta-

tive buildup period can be used to explain the population densities of adult COTS later

observed on reefs during field surveys (N of reefs surveyed = 137). Densities of adult COTS

observed during a survey of each reef when maximum average levels of COTS were recorded

per manta tow were used as field estimates of COTS abundance. The geographical locations of

the individual GBR reefs were represented by the longitude and latitude of the centroids of

reef polygons. Observed coral cover was included as a covariate due to its potential effect on

observing COTS in manta tow surveys. Because COTS were not observed on many reefs, a

Tweedie distribution with a dispersion parameter of 3.58 was fitted to the data using the twee-
die package for the R platform (https://cran.r-project.org/web/packages/tweedie/index.html)

and used to model the zero-inflated frequency distribution of observed COTS densities [92].

The linear part of the model included 7 fixed factors. The factors included 5 continuous pre-

dictors: latitude, longitude, date of survey, observed coral cover, and reef size; and 2 categorical

predictors: predicted supply of COTS larvae from external sources and local retention of

COTS larvae with 2 levels for each (‘high’ and ‘low’) based on the relative rank in COTS con-

nectivity networks. The interaction between the 2 categorical predictors was also considered,

but was not significant. The analysis was then performed using the GLM package for the R

platform. Test details are provided in S3 Table.

A linear model was used to compare the predicted connectivity of COTS with the CPUE

values for adult COTS from the eradication efforts. The factors included 5 continuous predic-

tors: latitude, longitude, date of cull, observed coral cover, and reef size; and 2 categorical pre-

dictors: predicted supply of COTS larvae from external sources and local retention of COTS

larvae with 2 levels for each (‘high’ and ‘low’) based on the relative rank in respective connec-

tivity networks. Unlike manta tows during which many surveys did not observe adult COTS

on reefs, in nearly all cases at least some COTS were culled, resulting in a dataset with few

zeros, so a generalized linear model was used in the analysis. Since the culls were performed

using different boats that hosted the divers, boat ID was included in the linear model as a

random factor. Date of cull was added as COTS densities are likely to increase over time.

Observed coral cover was included as a covariate due to its potential effect on observing COTS

during culls. Due to the potential effect of previous eradication efforts on local COTS popula-

tion densities, only the CPUE recorded on a first visit to a reef by the divers was used in the

Systemic resilience of the Great Barrier Reef

PLOS Biology | https://doi.org/10.1371/journal.pbio.2003355 November 28, 2017 17 / 23

https://cran.r-project.org/web/packages/tweedie/index.html
https://doi.org/10.1371/journal.pbio.2003355


analysis. The interaction between the 2 categorical predictors was also considered but was not

significant. Test details are provided in S4 Table.

Supporting information

S1 Fig. Evaluating performance of different larval supply thresholds for predicting adult

COTS densities in surveys. The threshold of 30th percentile was found to perform the best as

it gives the lowest rate of false negatives (reefs that are classified as low risk due to low supply

of larvae but also had adult COTS outbreaks in the surveys). This percentile was then used as a

threshold to classify reefs that will have low risk of COTS outbreaks. COTS, crown-of-thorns

starfish.

(TIF)

S2 Fig. Classification of robust sources with respect to local retention of larvae. Black cir-

cles represent robust sources that have had consistently high local retention of larvae in dis-

persal simulations when compared to the GBR-wide average; red circles, well represented in

the outer shelf regions, represent robust sources that have had below average local retention

levels. The majority (80%) of the robust sources have low levels of local retention, possibly due

to high flushing regimes. GBR, Great Barrier Reef.

(TIF)

S3 Fig. Locations of robust sources and expected annual frequency of category�1 cyclones

on the GBR. Robust sources tend to be located outside of the regions with high expected

cyclone frequency (coloured background; adapted from data presented in Wolff et al. [28]).

GBR, Great Barrier Reef.

(TIF)

S4 Fig. Classification of robust sources with respect to their placement in no-take zones.

Black circles represent robust sources located in no-take zones; red circles represent robust

sources that are not located in no-take zones. Nearly half (46%) of the robust sources are

already located in no-take zones and awarded the highest level of protection under the current

GBR zoning plan [65]. GBR, Great Barrier Reef.

(TIF)

S1 Table. Key assumptions and rationales behind the 3 criteria used to identify robust

sources. COTS, crown-of-thorns starfish; DHW, degree heating weeks; GBR, Great Barrier

Reef.

(DOCX)

S2 Table. Parameters used for constructing survival-competency curves. All scale parame-

ters were equal to 1. Mortality rate was constant and equal to 0.1 per day in all analyses shown

in the text.

(DOCX)

S3 Table. Results of a general linear model test that tested the effect of connectivity predic-

tors on adult COTS densities observed in field surveys. Dispersion parameter for the fitted

Tweedie distribution was 3.384. COTS, crown-of-thorns starfish.

(DOCX)

S4 Table. Results of a general linear model that tested the effect of connectivity predictors

on adult COTS densities obtained from CPUE during COTS eradication efforts. Model

R2 = 20.82. COTS, crown-of-thorns starfish; CPUE, catch-per-unit effort.

(DOCX)
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