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SUMMARY

It has long been accepted that differential radial
thickening of guard cells plays an important
role in the turgor-driven shape changes required
for stomatal pore opening to occur [1–4]. This
textbook description derives from an original
interpretation of structure rather than measure-
ment of mechanical properties. Here we show,
using atomic force microscopy, that although
mature guard cells display a radial gradient of stiff-
ness, this is not present in immature guard cells,
yet young stomata show a normal opening
response. Finite element modeling supports the
experimental observation that radial stiffening
plays a very limited role in stomatal opening. In
addition, our analysis reveals an unexpected
stiffening of the polar regions of the stomata
complexes, both in Arabidopsis and other plants,
suggesting a widespread occurrence. Combined
experimental data (analysis of guard cell wall
epitopes and treatment of tissue with cell wall
digesting enzymes, coupled with bioassay of guard
cell function) plus modeling lead us to propose that
polar stiffening reflects a mechanical, pectin-based
pinning down of the guard cell ends, which
restricts increase of stomatal complex length
during opening. This is predicted to lead to an
improved response sensitivity of stomatal aperture
movement with respect to change of turgor
pressure. Our results provide new insight into the
mechanics of stomatal function, both negating an
established view of the importance of radial
thickening and providing evidence for a significant
role for polar stiffening. Improved stomatal
performance via altered cell-wall-mediated me-
chanics is likely to be of evolutionary and agro-
nomic significance.
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RESULTS AND DISCUSSION

Analysis of Stomatal Mechanical Properties Reveals
Patterns of Cell Wall Modulus
Atomic forcemicroscopy (AFM) was performed on leaves of Ara-

bidopsis using a 5-nm-diameter pyramidal indenter on a canti-

lever of nominal 45N/m stiffnessmounted on a JPKNanoWizard

3 instrument. Probing the surface generated forcemaps in which

it was possible to identify stomata at various stages of develop-

ment (Figure 1A) [5], ranging from guard mother cells (GMCs) un-

dergoing the final symmetrical division to form two guard cells

(Figure 1C), young stomata (characterized by an approximately

equal length:width ratio) (Figure 1F), and more mature stomata

(complex length greater thanwidth; Figure 1I). Visual observation

of the stiffness patterns indicated by apparent modulus values

(Ea) suggested that although the more mature guard cells had

the expected gradient of stiffness in which the inner radial region

of each guard cell was stiffer than the outer radial part of the cell

(Figure 1I), this pattern was not obvious in the younger stomata

(Figure 1F). Quantitative analysis of Ea across the maximum

diameter of stomata supported these observations. Thus, the

Ea of mature stomata showed clear peaks in the inner radial

regions of the guard cells relative to the outer radial regions (Fig-

ure 1J). A similar analysis of younger stomata did not reveal any

such gradient (Figure 1G). By determining the difference in max

Ea at the inner and outer radial regions across the width of the

guard cells, values for Ea gradient were calculated (Figure S1A).

For the more mature guard cells, the median Ea gradient was 4

MPa/mm (n = 14), whereas for younger guard cells, the median

gradient was essentially 0 MPa/mm (n = 18). Statistical analysis

using a Mann-Whitney test indicated that the mature guard cells

displayed a significantly higher stiffness gradient (p < 0.001). We

were able to analyze only two GMCs, and these showed a single

peak of Ea in the center of the forming stomatal complex in the

position of the dividing wall (Figure 1D). The value of the Ea for

the dividing wall of GMCs was not higher than the outer cell

wall of the GMCs, suggesting that there is no radial gradient of

stiffness in the guard cells at formation.

To investigate whether the observed differences in radial Ea

between young and mature guard cells reflected any differ-

ence in function, we performed bioassays on epidermal strips,
thors. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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using depleted CO2 to trigger stomatal opening and elevated

CO2 to close stomata [6]. These results indicated that both

young and mature stomata are able to open and close in

response to an external trigger (Figure 1B). The absolute

values for pore aperture were clearly lower for young stomata

compared with mature stomata. Comparison of the measured

maximal pore aperture attained under low CO2 conditions with

the theoretical maximal aperture predicted from pore geometry

indicated that the younger stomata were just as capable as

mature stomata of opening their pores; thus, the lower abso-

lute values for pore aperture most likely simply reflected sto-

matal size differences between young and mature stomata

(Figure S1B).

To extend our understanding of the physics of stomatal

opening/closing, we exploited a recently developed finite

element model (STAR Methods). In the baseline model, the

guard cells have a circular cross-section and uniform wall

thickness and, thus, uniform mechanical properties (Fig-

ure 2A). Under these conditions, as the epidermal and internal

pressure (turgor) of the guard cells are increased from zero,

the system moves slightly away from the starting geometry,

but even as the guard cell turgor pressure rises above the

epidermal pressure (limited here to 0.5 MPa), there is initially

no increase in pore aperture (Figure 2B). When the guard

cell turgor pressure reaches about 1.3 MPa, the stomatal

aperture starts to increase, approaching a maximum as pres-

sure increases above 5 MPa. When the model is adjusted so

that the cells have a geometry more in keeping with that

described in the literature [7], leading to differential wall thick-

ness along the inner radial wall (variable wall thickness, VWT

model) (Figure 2A), there is a slight shift in the aperture-

response curve, favoring larger aperture at a lower pressure

and smaller aperture at higher pressure, but the changes

are relatively small (Figure 2B). When we explored the sensi-

tivity of the VWT model to altered wall thickness, there was

a very limited response to this parameter. Thus, increasing

or decreasing inner wall thickness in the VWT model by
Figure 1. Stomata Show Stage-Dependent Patterns of Modulus

(A) Forcemap of a leaf epidermis showing the spatial pattern of Ea. Stomata (indic

epidermis and show different patterns of Ea, indicated by relative signal value (ye

(B) Bioassays of young and mature stomata indicate that they both respond to low

asterisk indicates significant difference p < 0.01, n > 23; double asterisk indicates

‘‘mature’’ datasets, followed by a Tukey test). Error bars indicate SEM.

(C) Force map of a guard mother cell (GMC) showing the symmetrical cross wall

(D) Distribution of Ea across the diameter (as shown in schematic) of the GMC sho

three walls of the GMC.

(E) Distribution of Ea around the circumference of the GMC shown in (C), with the s

observed.

(F) Force map of a young stomata consisting of two separated guard cells.

(G) Distribution of Ea across the diameter of the stomatal complex shown in (F). F

cells. The maximum peak value is similar for all four walls.

(H) Distribution of Ea around the circumference of the stomatal complex shown in (F

shoulder on the second peak corresponds to the junction with the epidermal cel

(I) Force map of a mature stomata consisting of two guard cells.

(J) Distribution of Ea across the diameter of the stomatal complex shown in (I). Fo

cells. The maximum Ea value for the inner radial walls is higher than the peak Ea

(K) Distribution of Ea around the circumference of the stomatal complex shown in (

minor third peak corresponds to the junction with the epidermal cell on the right-ha

(I–K) guard cells are shown. Force maps were obtained from a total of 14 young

See also Figures S1 and S2.
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10% had essentially no outcome on the aperture/pressure

response curve (Figure 2C).

An increased thickening of the inner radial wall of guard cells

was observed in early botanical studies, leading to the widely

accepted view that this leads to a stiffening of the wall, which

is required for the curling displayed by guard cells as they

expand due to increased turgor pressure [1–4]. Although

this interpretation has been challenged [8, 9], lack of measure-

ment of guard cell mechanics has limited the scope for

discussion. AFM provides a means of assessing mechanical

properties that has become increasingly used in the analysis of

biological material, including plants [10–13]. Although care

must be taken in the interpretation of such data (since the values

obtained are influenced by a range of factors, including the ge-

ometry and mechanical properties of the tips used, and factors

intrinsic to the complex composition and geometry of the

tissue), AFM provides a robust method for estimating relative

stiffness across cellular dimension [13–16]. We report stiffness

as an apparent modulus, Ea, not inferring a specific modulus of

the material being indented. Our results support the interpreta-

tion that the observed thickening of the inner radial wall leads

to a gradient of stiffening across the guard cell [1–4]; however,

this gradient is only observed in relatively mature cells. Younger

guard cells do not display any consistent gradient of radial stiff-

ening, yet ourmeasurements of pore aperture indicate that these

stomata are able to respond to appropriate triggers by opening

the stomatal pore at least as widely as the calculated theoretical

maximum (Figure S1B). Coupled with our modeling indicating

that increased stiffening of the inner radial wall has a minimal

outcome on stomatal movement, we propose that radial stiff-

ening of guard cells is not required for stomatal opening.

This raises the question of what function it might play. The

finite element modeling approach allows prediction of strain/

stress patterns within the guard cells as they undergo move-

ment. These data indicate that, in the baseline model, large

gradients of strain/stress are generated across the inner radial

wall of the guard cell during stomatal opening (Figures 2E
ated by asterisks) at different stages of differentiation are distributed across the

llow, high; red/black, low).

CO2 by increasing pore area and to high CO2 by decreasing pore area. Single

significant difference p < 0.001, n > 23 (ANOVA was performed on ‘‘young’’ or

separating the two daughter guard cells.

wn in (C). Three peaks of Ea of similar value are detected, corresponding to the

tart point at the equator (as shown in the schematic). A series of peaks of Ea are

our peaks are detected, corresponding to the pairs of walls defining the guard

). Twomain peaks of Ea are observed at the poles of the stomatal complex. The

l on the right-hand guard cell.

ur peaks are detected, corresponding to the pairs of walls defining the guard

for the outer radial walls.

I). Twomain peaks of Ea are observed at the poles of the stomatal complex. The

nd guard cell. Representative images and analyses of young (F–H) andmature

and 18 mature guard cells. Scale bars in (A), (C), (F), and (I), 10 mm.
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and 2F). The geometry (and associated differential wall thick-

ening) in the VWT model leads to a non-intuitive dissipation of

these strain/stress gradients so that the maximum stress occurs

away from the inner radial wall and the stress gradient is dimin-

ished (Figures 2G and 2H). Due to the vital role that stomata play

in the control of plant gas and water relations, they must repeat-

edly adjust their aperture to the ambient environment [17]; thus,

the guard cells must undergo extensive and repeated strain. We

suggest that the differential thickening of the inner radial wall in

mature stomata generated as a consequence of guard cell ge-

ometry acts primarily to alleviate the potential formechanical fail-

ure, helping to maintain cell wall integrity as it undergoes

repeated stress/strain cycles. This structural modification has

an associated outcome of slightly altering the aperture response

to turgor pressure.

Polar Stiffening Modulates Stomatal Function
An unexpected observation from our analysis was the apparent

stiffening of the polar regions of both young (Figure 1H) and

mature (Figure 1K) stomata. As far as we are aware, this has

not previously been observed. An analysis of tomato and maize

leaves revealed comparable patterns of stiffening, suggesting

that this phenomenon might be widespread (Figures S2A–

S2D), and higher-resolution imaging did not reveal any overt sur-

face features that might lead to such localized regions of high

Ea (Figures S2E and S2F). To investigate the function of such

polar stiffening, we further explored the model described in Fig-

ure 2. As shown in Figure 3A, both the baseline and VWTmodels

predict that as turgor pressure increases (and, as a conse-

quence, pore width increases), stomatal complex length should

increase. However, analysis of samples incubated under

differing CO2 concentrations to open or close the stomatal

pore indicated no trend for change in complex length at different

pore widths (Figure 3B), as also observed by other authors [18].

This is in contrast to measured pore length, which showed a
Figure 2. Finite Element Modeling Indicates Only a Minor Role for Radi

matal Poles Has a Major Influence on Aperture Response to Change o

(A) Cross-sections through guard cells modeled using the baseline parameters (c

(VWT) model in which a rounded triangular geometry leads to differential inner wa

by cellulose micro-fibrils embedded in an isotropic matrix. The micro-fibrils are o

(B) Modeled relationship of stomatal aperture to guard cell turgor pressure. In the

1.3MPa, reaching amaximum value as pressure exceeds 5MPa. Both epidermal a

turgor increases. Modification of the model to include a VWT (shown in A) leads

lower turgor pressure and the maximal aperture attained is slightly lower.

(C) Exploration of the VWTmodel by increasing or decreasing the inner (ventral) wa

response curve (lines superimposed).

(D) Modification of the baseline model (purple) so that the poles of the guard cell

curve (blue) in which pore opening occurs at a lower turgor pressure and the fina

(E) Effective Lagrange strain for the inside of a guard cell modeled using the bas

different regions of the cell, with a gradient of strain occurring across the cell rad

(F) Effective stress pattern in the guard cell modeled in (E). A radial stress patter

(G) As in (E) but with VWT parameters used in the model. A decreased strain gra

(H) Effective stress pattern in the guard cell modeled in (G). The stress pattern obse

stress occurring in a medial region.

(I) As in (E) but with the stomatal poles fixed (as in D). The pattern is modified from

poles.

(J) Effective stress pattern in the guard cell modeled in (I). Steeper stress gradie

the strain is dimensionless and is capped at 1 for consistency across the figures.

the polar wall exceed this value. Strain is a dimensionless tensor describing

change per length. Stress is a tensor which characterizes the internal forces withi

1 Pa = 1 Nm�2.
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strong positive correlation with pore width under the same treat-

ments (p < 0.0001, n = 360) (Figure 3C). The experimental data

suggested to us that the measured local stiffening observed in

Figures 1F and 1I might reflect a pinning down of the poles so

that complex length does not change during opening/closure

of the stomata. We therefore modified the model to impose a re-

striction on stomatal complex length change during pore open-

ing/closure (blue line in Figure 3A), better capturing experimental

reality. This had a dramatic outcome on aperture change in

response to increase in turgor pressure, with opening occurring

at a lower pressure, a greater increase in aperture per unit pres-

sure being achieved, and a larger final aperture being attained

(‘‘fixed poles’’ curve in Figure 2D).

To investigate the molecular structure of the stomatal poles

that might underpin the observed stiffening, we took an in

situ labeling approach to characterize the spatial pattern

of cell wall epitopes. Recent work has identified a chitosan

oligosaccharide (COS488) probe that enables localization of

de-esterified homogalacturonic polymers in plant cell walls

[19]. Incubation of this probe with intact leaf epidermal tissue

revealed binding to the epidermal pavement cells and espe-

cially strong signal at the stomatal poles, with apparent exclu-

sion from the outer radial walls of the guard cells (Figure 4A;

Figure S3A). Treatment of tissue with polygalacturonase led

to loss of COS488 binding (Figure 4B; Figure S3B), corrobo-

rating that the probe was detecting a pectin motif in this region.

Our previous work using antibodies raised against pectins

revealed that guard cell walls are distinguished by the exclusion

of epitopes corresponding to methylated pectin and the

accumulation of epitopes corresponding to de-esterified pectin

[20]. Interestingly, following treatment with polygalacturonase,

the uniform signal observed around guard cells with antibodies

JIM7 and LM19 (which detect general levels of pectin and de-

esterified pectin, respectively [21]) was replaced by a pattern of

weak signal around the stomatal poles (Figures S3C–S3F).
al Stiffening in Stomatal Function but Demonstrates that Fixing Sto-

f Turgor Pressure

ircular cross-section and uniform wall thickness) or the variable wall thickness

ll thickness. The cell wall is modeled as an anisotropic material, parameterized

riented circumferentially in all models.

baseline model (purple), aperture increases as pressure increases above about

nd guard cell turgor are increased initially (gray area) after which only guard cell

to a slight alteration in curve shape (green) so that opening occurs at a slightly

ll thickness by 10% indicates essentially no outcome on the aperture/pressure

s are fixed to prevent stomatal complex elongation leads to a modified output

l aperture attained is larger than the baseline model.

eline parameters. The colored scale indicates the range of strain calculated in

ius with the inner radial wall having a high strain.

n is generated with high stress at points along the inner radial wall.

dient occurs across the cell.

rved in (F) is dissipated so that less extreme gradients are formed, withmaximal

(E) so that high strain gradients form in localized regions toward the guard cell

nts now form toward the guard cell poles compared to (F). In (E), (G), and (I)

Only the regions immediately neighboring the point at which the pore adjoins

the deformation of the material, which in simple cases is defined as length

n a material as force per area. In (F), (H), and (J) the unit of stress is MPa, where



Figure 3. Measured Change in Stomatal Dimensions duringOpening

and Closing Supports a Fixed Position of the Stomatal Poles

(A) Modeled change in stomatal complex length with increase in guard cell

pressure predicts a gradual increase in length at pressures above 1 MPa, both

for the baseline (purple) and the VWT model (green), whereas the fixed pole

model imposes a constant complex length (blue).

(B) Measured complex length in mature stomata triggered to close by elevated

CO2 (red), open by depleted CO2 (green), or incubated under ambient CO2

levels (blue). Complex length does not overtly change relative to pore width.

Regression analysis was used to calculate the line indicated but is supported

with only a low confidence value (p = 0.354, n = 360), suggesting a very limited

relationship of complex length and pore width.

(C) Measured pore length in mature stomata triggered to close by elevated

CO2 (red), open by depleted CO2 (green), or incubated under ambient CO2

levels (blue). Pore length increases with pore width. Regression analysis was

used to calculate the line indicated, which is supported with p < 0.0001

(n = 360), suggesting a close relationship of pore length and pore width.

Note that the size parameters used for the model are based on those from the

literature for Vicia faba, thus the absolute magnitudes of stomatal complex

length are greater in (A) than in (B).
Although both COS488 and LM19 detect de-esterified pectin, it

is likely that the signal observed depends on the degree of de-

esterification and the local matrix conformation, which may
restrict probe access [19, 22], complicating interpretation of

the patterns in signal observed. As a consequence of such

technical challenges, our detailed understanding of plant cell

wall molecular architecture is still somewhat limited [23, 24].

However, taken together, the data in Figure 4A and Figure S3

are consistent with the hypothesis that stomatal poles in Arabi-

dopsis have a distinct cell wall pectin structure, which might

define the localized regions of stiffness detected in our AFM

analysis. Modeling of the fixed pole model indicated that it

would lead to an altered pattern of strain/stress during stomatal

opening, with a focusing of gradients toward the polar regions

of the guard cells (Figures 2I and 2J). Whether guard cell wall

composition/structure is modified in these regions to cope

with these predicted strain/stress patterns awaits further

analysis.

To investigate whether the localized difference in pectin struc-

turewas related to the observed polar stiffening, and thus the role

of polar stiffening in stomatal function, we treated leaf explants

with cell-wall-modifying enzymes [25]. Treatment of tissue with

buffer alone did not overtly change the pattern of stiffness

observed in mature stomata (Figure 4C). Quantitative analysis

of Ea across the diameter and around the circumference of

mature stomata revealed normal patterns, with a radial gradient

in the guard cells and twopeaks of Ea in the polar regions (Figures

4D and 4E). Similarly, treatment with exogenous cellulase for 4 hr

did not alter the stiffness patterns in a major fashion from those

observed in control tissue (Figures 4F–4H). However, treatment

with polygalacturonase led to major changes in stiffness pattern.

With respect to the stomata, there was an accentuation in the

apparent relative gradient of radial stiffening of the guard cells,

and polar stiffening was less marked (Figure 4I). Quantitation of

the radial and circumferential patterns of Ea substantiated these

observations. Thus, the Ea peaks corresponding to the outer

radial walls of the guard cells tended to be diminished (Figure 4J;

Figure S4A), and the polar peaks of Ea tended to be narrower and

much smaller in absolute value (Figure 4K; Figure S4B).

We performed opening/closing assays to test the outcome of

enzyme treatment on stomatal function. After all treatments,

guard cells retained the ability to increase pore aperture

following exposure to depleted (low) CO2 levels (Figure 4B);

however, the basal aperture under ambient conditions was

significantly lower in the polygalacturonase-treated stomata

than in those treated with cellulase or buffer alone (ANOVA

with post hoc Tukey, p < 0.001, n = 40, experiment repeated

three times). The maximal aperture achieved by both polyga-

lacturonase- and cellulase-treated stomata was smaller than

that achieved in control tissue (ANOVA with post hoc Tukey,

p < 0.05, n = 40).

A decrease in stomatal pore aperture relative to control after

enzyme treatment could occur via a number of mechanisms.

For example, treatment with polygalacturonase led to an altered

gradient of stiffness across guard cells (Figures 4I and 4J), but

our finite element modeling suggested that alteration in radial

stiffness has only a very moderate effect on stomatal opening

(Figure 2C). It was also apparent that treatment with polygalac-

turonase led to a decreased relative stiffness in all epidermal

cell walls (compare Figure 4I with Figures 4C and 4F); however,

it is not obvious how such a change would lead to a decrease

in pore aperture under ambient conditions. Epidermal cells
Current Biology 27, 2974–2983, October 9, 2017 2979
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surrounding stomata are expected to exert a mechanical advan-

tage [26, 27], so, if anything, weakening of these supporting cells

might lead to an increased pore aperture for any given guard cell

turgor pressure, the opposite of the phenotype observed.

Decreased pressure within the guard cells under ambient condi-

tions would obviously lead to a decreased pore aperture, but it is

not apparent why this would be a primary outcome following

treatment with polygalacturonase (and which was not observed

after cellulase treatment). A final possibility is that the loss of po-

lar stiffening observed after polygalacturonase treatment (Fig-

ure 4K; Figure S4B) underpins the shift in stomatal dynamics.

Considering the pore aperture response to altered turgor pres-

sure depicted for the baseline and fixed pole models (Figure 2D),

it is clear that, above 1 MPa, a loss of polar stiffening leads to a

large decrease in aperture for any given pressure as the stomatal

dynamics shift from the ‘‘fixed poles’’ to the ‘‘baseline’’ curve.

This would account for the decreased aperture under ambient

conditions recorded in stomata treated with polygalacturonase

(Figure 4B). It should be noted that our model predicts that after

loss of polar stiffening and consequent shift to the baseline

model, stomata are still able to open, but the final aperture is ex-

pected to be smaller than in the fixed poles model. The experi-

mental data in Figure 4B support this prediction. Cellulase treat-

ment of stomata led to results intermediate between control and

polygalacturonase-treated samples (Figure 4B). There was no

evidence of decreased aperture under ambient conditions, but

the maximal aperture obtained under conditions favoring open-

ing was lower than control. We suspect that this decrease in

maximal aperture might reflect a gradual loss in tissue integrity

after cellulase treatment, as previously observed [28]. Overall,

our observations are consistent with the proposal that polar stiff-

ening, mediated at least in part by localized accumulation of de-

esterified pectin, plays a role in stomatal function. Stiffening of
Figure 4. Polar Cell Wall Structure Plays a Role in Stiffening and Stom

(A) Labeling of stomata with the COS488 probe reveals a high level of signal (gree

leads to loss of COS488 binding (right).

(B) Bioassays after pre-treatment with buffer (control), cellulose, or polygalacturo

CO2 after all treatments, but the stomatal aperture attained after PGase treatme

ANOVA was performed across all samples with post hoc Tukey. Columns indica

confidence limit (n = 40). Error bars indicate SEM.

(C) Forcemap of epidermis from a control sample showing the spatial pattern of Ea

(yellow) to low (red/black).

(D) Distribution of Ea across the diameter (as shown in schematic in Figure 1) of the

the pairs of walls defining the guard cells. The maximum peak value for the inner ra

(peaks 1 and 4).

(E) Distribution of Ea around the circumference (as shown in schematic in Figure 1)

poles of the stomatal complex.

(F) Force map of epidermis showing the spatial pattern of Ea after 4 hr incubation

(red/black).

(G) Distribution of Ea across the diameter of the stomata indicated by asterisk in

guard cells. The maximum Ea for the inner radial walls is higher than the peak va

(H) Distribution of Ea around the circumference of the stomatal complex shown in

(I) Forcemap of epidermis showing the spatial pattern of Ea after 4 hr incubation of

low (red/black).

(J) Distribution of Ea across the diameter of the stomata indicated by asterisk in (I).

radial walls of the two guard cells. The peaks corresponding to the outer radial w

(K) Distribution of Ea around the circumference of the stomatal complex shown in (

Ea value of these peaks is lower than those observed in (E) and (H). Representat

ygalacturonase-treated tissue (I–K). The analyses were repeated at least three tim

10 mm.

See also Figures S3 and S4.
guard cell poles limits stomatal complex extension under open-

ing conditions, leading to a mechanical system that shows a

greater response in pore aperture per change in guard cell

pressure.

Such a system would be expected to be evolutionarily advan-

tageous. Plants adapt stomatal aperture to changing environ-

ments, and limits in the rapidity with which they can do this leads

to inefficiencies [17]. Indeed, it has been proposed that one of the

reasons for the evolutionary success of some plant groups is that

their stomata have evolved to be able to respond more rapidly to

changing environment [26]. Whether the structure of the guard

cell wall in the stomatal poles has played an evolutionary role

in improving stomatal efficiency awaits elucidation, but our

work sets the foundation for this future research. Due to the

importance of stomata in plant water relationships, a deeper un-

derstanding of the properties of guard cell walls in setting the

mechanical response to external triggersmay also help in the se-

lection and engineering of improved crops [20, 29, 30].

In conclusion, the results reported here negate a widely held

view on the importance of radial guard cell wall thickening in sto-

matal opening, provide an alternative view on the importance of

guard cell geometry in dissipating cell wall stress gradients, and

identify polar stiffening of stomata as a potentially widespread

phenomenon that leads to improved stomatal response to

altered guard cell turgor pressure.
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nase (PGase) indicate that stomata retain the ability to open in response to low
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ted with the same letter cannot be distinguished from each other at the 0.05

after 4 hr incubation of tissue in buffer. Relative signal value is indicated by high

stomata indicated by asterisk in (C). Four peaks are detected, corresponding to

dial walls (peaks 2 and 3) is higher than the peak value for the outer radial walls

of the stomatal complex shown in (C). Twomain peaks of Ea are observed at the

of tissue in cellulase. Relative signal value is indicated by high (yellow) to low
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Two broad, asymmetric peaks are detected, with the highest values at the inner

all (peaks 1 and 4) are only barely detectable.

I). Twomain peaks of Ea are observed at the poles of the stomatal complex. The

ive images and analysis are shown for control (C–E), cellulase (F–H), and pol-

es with similar results (data shown in Figure S4). Scale bars in (A), (C), (F), and (I),
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

JIM7 http://www.plantprobes.net/index.php JIM7

LM19 http://www.plantprobes.net/index.php LM19

Cos488 [19] Cos488

Anti-rat-IgG-FITC Sigma-Aldrich F6258-2ML

Chemicals, Peptides, and Recombinant Proteins

Exo-polygalacturonase (6,500 U/mL) Megazyme E-PGALUSP

Endo-cellulase (700 U/mL) Megazyme E-CELTR

LR White Resin London Resin Company AGR1280

Experimental Models: Organisms/Strains

Arabidopsis thaliana col-0 NASC; https://www.arabidopsis.org/

portals/mutants/stockcenters.jsp

col-0

Software and Algorithms

JPKSPM Data Processing software JPK JPK Instruments, DE; v. spm 5.0.69

FEBio https://febio.org/ N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andrew

Fleming (a.fleming@sheffield.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant Growth and Tissue Treatments
For bioassay, immunolabeling and AFM experiments performed at Sheffield, Col-0 Arabidopsis thaliana seeds were stratified for

7 days at 4�C then germinated on 3:1 M3 compost:perlite in 6cm diameter, 8cm deep square pots and grown under 12hr light

(200mmolm-2 s-1) with 22�Cday temperature, 16�Cnight temperature at 60%humidity. For AFMexperiments performed at the Sains-

bury Laboratory Cambridge University, Col-0Arabidopsis thaliana seedswere grown on compost as above except growth conditions

were 170mmol m-2 s-1, 21�C day temperature, 17�C night temperature at 60% humidity. Leaves were taken from plants at 3-5 weeks

for the various assays performed.

METHOD DETAILS

Stomatal Aperture Measurements
Epidermal peels of mature leaves were removed at least 2 hours into the photoperiod and floated onto opening buffer (50 mM KCl,

10 mMMES, pH 6.2). Samples were maintained at 22�C with 200 mmol m-2 s-1 of light. Air was bubbled into the opening buffer con-

taining either 0 ppmCO2 (CO2 free treatment), ambient CO2 or elevated CO2 (1000 ppm) . Epidermal peels were imaged after 2 hours

using an Olympus BX51 microscope and DP70 digital camera and stomatal apertures measured. For standard assays, 40 stomatal

apertures were measured for each treatment in each of three independent experiments, with similar results beiong observed in each

experiment. For each experiment epidermal peels were taken from at least 6 plants of each genotype. For enzyme treatments,

dissected leaf blocks (approximately 5mm square) were treated for 4h at room temperature in buffer (10mM KCl, 0.1mM CaCl2,
10mM MES pH 6.2,) containing exo-polygalacturonase (Megazyme, 6500U/ml) or endo-cellulase (Megazyme, 700U/ml) diluted

1/20 (v/v) in buffer, or incubated in buffer alone prior to analysis [28]. Calculation of theoretical maximal aperture was done according

to [31] whereby amax = 0.25p.l2 where l = stomatal pore length under conditions of maximal opening (depleted CO2).

Immunolabeling
For immunolabeling, leaf samples (3 mm diameter leaf discs) were fixed in 4% (w/v) formaldehyde in PEM buffer (0.1 M PIPES, 2 mM

EGTA, 1 mMMgSO4, adjusted to pH 7) by vacuum infiltration then dehydrated in an ethanol series (30 min each at 30%, 50%, 70%,

100% EtOH) and infiltrated with LR White Resin (London Resin Company) diluted in ethanol (45 min each at 10%, 20%, 30%, 50%,

70%&90%resin then3x8hat 100%). Leaf discswere stackedvertically in gelatine capsules filledwith resin andallowed topolymerize

f-
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or 7 days at 37�C.Sectionswere cut to a thickness of 2mmusing aReichert-JungUltracut E ultramicrotome using aglass knife. Further

processing and incubationwith the JIM7 and LM19 antibodies was as previously described [20]. Briefly, sectionswere incubatedwith

3% (w/v) milk protein (Marvel, Premier Beverages, UK) in phosphate-buffered saline solution (PBS, pH 7.2) (hereafter known as PBS/

MP). Sections were then incubated with a ten-fold dilution of primary monoclonal antibody in PBS/MP for 1 h at room temperature.

Samples were washed 3 times with PBS and secondary antibody was added (100-fold dilution in PBS/MP) for 1 h. Samples were

kept in the dark from this step. For the JIM- and LM- series of antibodies anti-rat-IgG (whole molecule) coupled to fluorescein isothio-

cyanate (FITC) was used. Samples were counterstained with 0.25% (w/v) Calcofluor White solution diluted ten-fold in PBS for 5 min

beforemounting on slideswithCitifluor AF1 anti-fade solution (Agar Scientific, UK). Imageswere captured using aDP51 camera. FITC

was visualized using a filter set with 460-490 nm excitation filter, a 510-550 nm emission filter and a 505 nm dichroic mirror. COS488

probe labeling of intact tissue sampleswas aspreviously described [19]. Briefly, fresh leaf tissuewas submerged in a 1/1000dilution of

theCOS488 probe in 50mMMESpH5.8 for 15minutes, thenmounted inwater for imaging on anOlympusFV1000 confocalmicroscope

using a 488nm argon laser and an FITC filter set. Images were captured using Olympus Fluoview FV-ASW software.

Atomic Force Microscopy
Dissected and plasmolysed (0.55 M mannitol; minimum 45 min) leaf blocks (approximately 5mm square) from 3-4 week old plants

were indented using a Nano Wizard 3 AFM (JPK Instruments, DE) mounted with a 5 nm diameter pyramidal indenter (Windsor Sci-

entific, UK) on a cantilever of nominal 45 N/m stiffness. Cantilever stiffness was determined by thermal tuning prior to experiment

initiation. Tip sensitivity was calibrated by first performing indentations on a clean glass slide, and varied between experiments.

For each leaf, areas of 100x100 mm2 were indented with 128x128 points on the adaxial surface. Indentations were performed with

1000 nN of force yielding an indentation depth range of 100-1000 nm. Sample numbers for each experiment are given in the figure

legends and text. Force indentation curves were analyzed using JPKSPM Data Processing software (JPK Instruments, DE; v. spm

5.0.69) using the following steps: voltage readings were converted to force using calibrated sensitivity and cantilever stiffness values,

baseline subtraction and tilt correction, vertical displacement offset adjustment, indentation calculation by subtraction of cantilever

bending from piezo position during indentation, and indentationmodulus was calculated by fitting a Hertzian indentationmodel to the

approach curve. The Hertz model assumes the indented surface is an infinite homogeneous half space, which is clearly not the case

for the geometrically complex leaf surface. Hence the results of indentation experiments are quoted as an apparent modulus, Ea.

Control experiments carried out at lower indentation rates and at lower indentation depths revealed similar results, and analysis

did not reveal any surface topography which might easily account for the Ea patterns observed around or within the guard cells.

Retraction curves were not analyzed due to numerous adhesion difficulties during tip removal from the surface. All AFM images

shown are derived from force maps, with an indication of the calculated Ea values according to the heatmaps adjacent to the images.

Modeling
Each guard cell is modeled as a hollow, deformed torus with ellipses describing the stomatal and pore outlines, and solid walls at the

poles separating the two guard cells. In the baseline model, the cell wall thickness is uniform and is set to 1 mm (in the initial state) so

that the guard cell cross-section is an annulus (Figure 2A). The model dimensions and cell wall thicknesses were set so that they

matched observations for Vicia faba stomata [7, 32, 33]. The polar wall thickness in each guard cell is set to 0.3 mm. From the geom-

etry, we used a custom script to create a mesh for the guard cells that was suitable for finite element calculations, which resulted in

each guard cell being divided into approximately 20000 elements. We approximated the guard cell wall using the transversely-

isotropic Veronda-Westmann material model [34] in FEBio [35] for our simulations. In short, this is an anisotropic elastic model

that permits the independent paramerisation of the circumferential cellulose micro-fibrils (CMFs) and the isotropic cell wall matrix.

The CMFs impart anisotropy to the cell wall. This material model is fully described in the documentation for FEBio with model cell

wall parameters described in [36]. In the model, strain is a dimensionless tensor and characterizes the deformation of the material.

Stress is a tensor which characterizes the internal forces within a material (force per area) in units of N/m2 = Pa. FEBio uses the effec-

tive Lagrange strain and effective Cauchy stress to summarize these tensor measures.

QUANTIFICATION AND STATISTICAL ANALYSIS

For bioassay analyses, stomatal apertures were measured for each treatment in three independent experiments, with similar results

beiong observed in each experiment. For each experiment epidermal peels were taken from at least 6 plants of each genotype. Data

were analsysed by ANOVAwith a post hoc Tukey analysis using commercial software (Graphpad 7) with significance being accepted

at p% 0.05. The confidence limits and and sample size, n, for each experiment are given in the figure legends. For immunolabeling,

experiments were performed at least three times on independent biological samples with similar results being observed.

For AFM, force curves were initially analyzed using JPKSPM Data Processing software (JPK Instruments, DE; v. spm 5.0.69). The

number of force maps analyzed is stated in the appropriate figure legends. For the comparison of radial stiffness gradients a Mann-

Whitney test was performed using the number of observations stated in the figure legend.

DATA AND SOFTWARE AVAILABILITY

AFM datasets, stomatal bioassay data and the guard cell FE model are available on request.
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