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MINIMAL FIBRATIONS OF DENDROIDAL SETS

IEKE MOERDIJK AND JOOST NUITEN

Abstract. We prove the existence of minimal models for fibrations between
dendroidal sets in the model structure for∞-operads, as well as in the covariant

model structure for algebras and in the stable one for connective spectra.
We also explain how our arguments can be used to extend the results of [6],

and give the existence of minimal fibrations in model categories of presheaves
over generalised Reedy categories of a rather common type. Besides some
applications to the theory of algebras over ∞-operads, we also prove a gluing
result for parametrized connective spectra (or Γ-spaces).

1. Introduction

A classical fact in the homotopy theory of simplicial sets – tracing back to
J. C. Moore’s lecture notes from 1955-56 – says that any Kan fibration between
simplicial sets is homotopy equivalent to a fiber bundle [1, 12, 16]. This is proven
by deforming a fibration onto a so-called minimal fibration, a Kan fibration whose
only self-homotopy equivalences are isomorphisms. Such minimal fibrations provide
very rigid models for maps between simplicial sets – in particular, they are all fiber
bundles – which are especially suitable for gluing constructions.

Essentially the same method allows one to construct minimal categorical fibra-
tions between ∞-categories as well (cf. [14, 15]). In fact, these two constructions
are particular cases of a general statement on the existence of minimal fibrations in
certain model structures on presheaves over Reedy categories, proved by Cisinski
in [6]. The case of dendroidal sets is not covered by this result however, due to the
presence of nontrivial automorphisms in the base category Ω.

The aim of this note is to show that the basic theory of minimal fibrations extends
naturally to the setting of dendroidal sets. We say that an operadic fibration
p : Y → X of dendroidal sets (cf. [7]) is minimal if all weak equivalences over X

Y

p �� ��

∼ // Y

p����

X

are isomorphisms. This terminology is justified by the fact that any trivial cofibra-
tion from another fibration into the fibration p

Ỹ

�� ��

// ∼ // Y

p
����

X
1
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is an isomorphism. Indeed, any such trivial cofibration i admits a retraction r with
the property that the composite ir : Y → Y is a self-weak equivalence of Y over X
and therefore an isomorphism.

The presence of nontrivial automorphisms in Ω makes the discussion of minimal
fibrations a bit more delicate. For instance, the pullback of a minimal fibration
need no longer be minimal again (see Remark 3.11 below). Our main result asserts
that an operadic fibration can nonetheless be retracted onto a weakly equivalent
minimal fibration, although Quillen’s argument [21] showing that this retraction is
a trivial fibration no longer applies in general:

Theorem 1.1. Let p : Y → X be an operadic fibration between dendroidal sets with
normal domain. Then the following holds:

(a) p admits a minimal fibration M → X as a fiberwise strong deformation
retract.

(b) the retraction r : Y → M is a trivial fibration of dendroidal sets when the
codomain X is normal.

The proof of this theorem appears in Section 3 and proceeds by induction along
the skeletal filtration of the domain Y , analogously to the classical case of simplicial
sets.

One may also find minimal models for the fibrations in the covariant and stable
model structures [3] on dendroidal sets, or any other left Bousfield localization of
the operadic model structure on dendroidal sets. Indeed, any fibration p : Y → X
in a left Bousfield localization of the operadic model structure is in particular an
operadic fibration. The associated minimal operadic fibration is a retract of p and
therefore a local fibration. It is minimal in the localized model structure since the
local weak equivalences between local fibrations over X coincide with the operadic
weak equivalences.

The same argument shows that any left fibration Y → X of dendroidal sets
admits a minimal model. Such a left fibration is not quite a fibration in a certain
model category, but instead it defines a fibrant object in the covariant model struc-
ture on the over-category dSet/X. This model structure has been constructed
in [13], where it is also shown to be Quillen equivalent to the model category of
algebras (in sSet) over the simplicial operad associated to X.

A map f : X → X ′ between dendroidal sets induces a Quillen pair between the
covariant model structures

f! : dSet/X
//
dSet/X ′ : f∗oo

which is a Quillen equivalence whenever f is an operadic weak equivalence ([13],
Prop. 2.4). As such, one obtains a functor

Alg : dSetop //ModelCatR X � //(dSet/X)
cov

taking values in model categories with right Quillen functors between them. We
use the theory of minimal fibrations to prove the following

Proposition 1.2. The functor Alg preserves homotopy pullbacks. More precisely,
for any diagram of dendroidal sets X1 ← X0 → X2 in which both arrows are
cofibrations, the natural adjoint pair

colim: dSet/X1 ×
h
dSet/X0

dSet/X2
//
dSet/X1 ∪X0 X2 : pullbackoo
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establishes a Quillen equivalence between the homotopy pullback model structure and
the covariant model structure on dSet/X1 ∪X0 X2.

Informally, this proposition asserts that algebras over a homotopy pushout of∞-
operads can equivalently be described as (homotopy) matching triples of algebras
over the individual pieces of the homotopy pushout. We will explain and prove
Proposition 1.2 in Section 4, where we also use the theory of minimal left fibrations
to give an elementary proof of a result from [13] about weak equivalences between
left fibrations.

In Section 5, we briefly discuss how the arguments of the present paper yield
a general existence theorem for minimal fibrations over a large class of so-called
generalised Reedy categories, providing a common generalization of Cisinski’s result
for strict Reedy categories [6] and ours for dendroidal sets. As an application of
this extended result, we have included a gluing result for parametrized connective
spectra, analogous to Proposition 1.2.

Acknowledgements. Both authors thank the referee for his careful reading and
various useful comments which helped improving the exposition. The second author
was supported by NWO.

2. Preliminaries on dendroidal sets

Recall that the category dSets of dendroidal sets is the category of set-valued
presheaves on the category Ω of finite rooted trees [17, 18, 19]. The category Ω
comes equipped with two wide subcategories Ω+ and Ω− whose intersection Ω+∩Ω−

consists of the isomorphisms in Ω. The maps in Ω− are given by finite compositions
of isomorphisms and degeneracy maps, i.e. maps σv : T → T\v obtained by picking a
vertex v of T with a single input, removing that vertex and identifying the incoming
and outgoing edges. Similarly, the maps in Ω+ are given by finite compositions of
isomorphisms and the following two kinds of face maps:

(1) for every inner edge e of a tree T , i.e. an edge connecting two vertices, an
inner face map ∂e : T/e→ T obtained by contracting e.

(2) for every external vertex v of a tree T , i.e. a vertex with an adjacent edge e so
that all other adjacent edges are outer edges, an outer face map ∂v : T/v →
T obtained by removing v, as well as all edges attached to it except e. Note
that the edge e is the unique inner edge attached to v, except when the tree
T is an n-corolla Cn. In the latter case, there are n + 1 outer face maps,
one associated to each edge of Cn.

For any finite rooted tree T , the degree of T is given by the number of vertices of
T . It is immediate that non-invertible arrows in Ω+ (resp. Ω−) raise (resp. lower)
the degree. Furthermore, every map in Ω factors essentially uniquely as a map in
Ω−, followed by a map in Ω+. Altogether, this gives the category Ω the structure
of a (generalised) Reedy category [4].

Lemma 2.1. Any map in Ω− is a split epimorphism and two maps σ, τ : T → S
in Ω− are the same if they have the same set of sections.

Proof. Observe that a degeneracy σv : T → T \ v admits precisely two sections,
obtained by choosing an edge above or below the vertex v and considering the face
map induced by contracting this edge. This immediately implies that all maps in
Ω− are split epimorphisms.
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A map of trees is completely determined by its effect on the set of edges, so that
the sections of a map σ : T → S in Ω− form a subset of the set of sections of the
induced surjection σ∗ : Edge(T )→ Edge(S). On the other hand, any section i of σ∗
is induced by the iterated face map δ : S → T that contracts all edges of T which
are not contained in the image of i. This face map is a section since σδ induces
the identity map on colours. It follows that sections of a map σ in Ω− correspond
bijectively to sections of the associated surjection between sets of edges. Since
surjections of sets are uniquely determined by their sets of sections, we conclude
that the maps in Ω− are uniquely determined by their sections. �

Recall that a pushout square is called absolute if every functor (or equivalently,
the Yoneda embedding) sends it to a pushout square. The following lemma is taken
from [17]. For completeness we give a compact replacement of the proof given in
loc. cit.

Lemma 2.2. Any pair of maps σ : S → S′, τ : S → T in Ω− fits into an absolute
pushout square

(2.1)

S
σ //

τ

��

S′

τ ′

��

T
σ′

// T ′

in which σ′ and τ ′ are in Ω− as well.

Proof. Since absolute pushout squares can be pasted, it suffices to check this when
σ = σv : S → S \ v and τ = σw : S → S \ w are degeneracy maps. In this case, one
can easily check that the required pushout square (2.1) can be produced by taking
T ′ = S \ {v, w} and σ′ (resp. τ ′) the degeneracy removing the vertex v (resp. w)
and identifying the ingoing and outgoing edge. In the case where v = w, the maps
σ′ and τ ′ are simply the identity maps.

To see that the resulting pushout square is an absolute pushout square, it suffices
to find sections α of σ and α′ of σ′ which are compatible in the sense that τα = α′τ ′

(see e.g. [26]). When the vertices v and w are the same, one can just pick any section
of σ = σv and take the identity section of σ′ = id. If v is different from w and v
is not connected to w by a single edge, one can take both α and α′ to be the face
map contracting the edge below the vertex v (seen as a vertex in S, resp. S \ w).

We are left with the case that the vertices v and w are connected by a single
edge. If v is the vertex directly above w, compatible sections are provided by letting
α and α′ be the face maps contracting the edge above v (again seen as a vertex in
S, resp. S \w). If v is the vertex direcly under w, one can take α and α′ to be the
face maps contracting the edge below v. �

We identify elements of a dendroidal set X with maps x : Ω[T ] → X, where
Ω[T ] is the presheaf represented by the tree T . An element x : Ω[T ]→ X is called
degenerate if it factors as Ω[T ] → Ω[S] → X, where T → S is a non-invertible
map in Ω−. It follows easily from Lemma 2.2 that any element of a dendroidal
set decomposes essentially uniquely as a map Ω[T ] → Ω[S] in Ω−, followed by a
nondegenerate element Ω[S]→ X (see e.g. Prop. 6.7 in [4]).

For every tree T , there is an action of the automorphism group Aut(T ) on the set
of nondegenerate elements Ω[T ] → X. If x : Ω[T ] → X is an element of X, define
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its automorphism group Aut(x) ⊆ Aut(T ) to be the isotropy group of the element
x under this action. A map of dendroidal sets f : X → Y induces a (necessarily
injective) map Aut(x)→ Aut(fx).

A monomorphism i : A → B between dendroidal sets is called normal if a non-
degenerate element of B has a trivial automorphism group whenever it does not
factor through i. In other words, Aut(T ) acts freely on the set of nondegenerate
elements in B(T ) \ A(T ). A dendroidal set X is called normal if the map ∅ → X
is a normal monomorphism. If B is a normal dendroidal set, any monomorphism
A→ B is normal.

Remark 2.3. In fact, for a normal monomorphism i : A → B the group Aut(T )
acts freely on the set of all elements Ω[T ]→ B that do not factor through i (Prop.
1.5 in [7]). This implies that any map with a normal codomain also has a normal
domain.

Skeletal filtration. Let tn : Ω≤n → Ω be the inclusion of the full subcategory of
Ω on the objects of degree ≤ n. The n-skeleton of a dendroidal set X is given by
X(n) := tn!t

∗
nX. The skeleta of X fit into a natural skeletal filtration

(2.2) ∅ = X(−1) // X(0) // X(1) // · · · // X.

Because every element of a dendroidal setX factors in an essentially unique way as a
map in Ω−, followed by a nondegenerate element, the maps in the skeletal filtration
(2.2) are all monomorphisms and the colimit of this sequence of inclusions is the
original dendroidal set X. Indeed, X(n) is the subobject of X consisting of those
elements Ω[T ] → X that factor through some tree S of degree ≤ n. For example,
the boundary ∂Ω[T ] of a representable presheaf is defined as the (n − 1)-skeleton
Ω[T ](n−1), where n is the degree of the tree T . Explicitly, ∂Ω[T ](S) is the set of
maps S → T in Ω that factor through a face map (up to isomorphism).

When x : Ω[T ] → X is an element of X, define the boundary ∂x of x to be the
restriction of x to ∂Ω[T ]. The following is a straightforward variation of Lemma
2.6 in [6]:

Lemma 2.4. Let x, y : Ω[T ] → X be two degenerate elements of a normal den-
droidal set X. If the boundaries of x and y agree then x and y are the same.

Proof. Write x = σ∗x and y = τ∗y where x : Ω[S] → X and y : Ω[S′] → X are
nondegenerate and σ : T → S and τ : T → S′ are non-invertible maps in Ω−. Let
α be any section of σ and let β be any section of τ . Since the boundaries of x and
y agree, we have that

x = α∗x = α∗y = (τα)∗y

and similarly y = (σβ)∗x. If the composite map τα in Ω could be factored as a
non-invertible map in Ω−, followed by a map in Ω+, then x would be a degenerate
element. In other words, the map τα : S → T → S′ is contained in Ω+ and in
particular the degree of S is less than or equal to the degree of S′. Applying the
same argument to the composite σβ shows that the degrees of S and S′ agree,
which in turn implies that τα and σβ are isomorphisms. Furthermore, we have
that

(τα)∗(σβ)∗x = (τα)∗y = x.

Since x is a nondegenerate element of a normal dendroidal set, it has no nontrivial
automorphisms. From this we conclude that
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(⋆) for any choice of sections α ∈ Γ(σ) and β ∈ Γ(τ), the map σβ is inverse to τα.

We claim that σ = σβτ , in which case we conclude that

y = τ∗y = τ∗(σβ)∗x = σ∗x = x.

To see that σ = σβτ , it suffices to check that both maps in Ω− have the same set
of sections, by Lemma 2.1. Our conclusion (⋆) shows that α is a section of σβτ as
soon as α is a section of σ. For the converse, suppose that α is a section of σβτ .
Since σβ is an isomorphism, we have that τα is an inverse to σβ and consequently
ασβ is a section of τ .

But now observe that (⋆) implies that the isomorphism σβ is actually indepen-
dent of the chosen section β ∈ Γ(τ). This means that σβ = σ(ασβ), which in turn
implies that α is a section of σ. �

When X is a normal dendroidal set, the skeletal filtration (2.2) can be obtained
by attaching cells [4]. More precisely, each inclusion X(n−1) → X(n) fits into a
pushout square

∐

|Tα|=n ∂Ω[Tα] //

��

X(n−1)

��
∐

|Tα|=n Ω[Tα]
(xα)

// X(n).

We will call the resulting elements xα : Ω[Tα] → X generating nondegenerate el-
ements. For every nondegenerate element x of X there is a unique generating
nondegenerate element xα, together with a unique automorphism φ of Tα such that
x = φ∗xα.

Tensor product. The category Ω can be seen as a full subcategory of the cate-
gory Oper of operads in sets [18]. The inclusion of Ω in Oper induces a functor
N : Oper→ dSet called the dendroidal nerve, with left adjoint τ . The dendroidal
nerve extends the usual simplicial nerve of a category, in the sense that it fits into
a commuting diagram

(2.3)

dSets
τ //

Oper
N

oo

sSets
τ //� ?

OO

Cat.
N

oo

� ?

OO

Recall that the category Oper of operads in sets carries a monoidal structure given
by the Boardman-Vogt tensor product ⊗BV . This induces a tensor product ⊗ on
the category of dendroidal sets by defining

X ⊗ Y = N
(

τX ⊗BV τY
)

for representable X and Y and by requiring that ⊗ preserves colimits in each of its
variables. We will mainly need the following pushout-product property of the tensor
product (which is not part of a monoidal structure): for a normal monomorphism
A → B of dendroidal sets and a monomorphism of simplicial sets K → L, the
induced map of dendroidal sets

(2.4) L⊗A
∐

K⊗A K ⊗B // L⊗B
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is again a normal monomorphism [7, Prop. 1.9] (see also [9]).

Model structures. The category of dendroidal sets admits a left proper model
structure (called the operadic model structure) which is Quillen equivalent to the
model structure on simplicial operads [7, 8]. The cofibrations of this model struc-
ture are given by the normal monomorphism and the fibrant objects are given by
the ∞-operads, which are defined by extension properties with respect to certain
dendroidal inner horn inclusions. More details on horn inclusions in the setting of
dendroidal sets will be given when we need them in Section 4.

We will call the fibrations in this model structure operadic fibrations. To get
some feeling for their behaviour, denote by J the dendroidal nerve of the groupoid
{0 ≃ 1} with objects 0 and 1, together with a unique isomorphism between them.
The operadic fibrations then have the right lifting property with respect to the
pushout-product map

(2.5) J ⊗A ∪{i}⊗A {i} ⊗B // J ⊗B

where i = 0, 1 and A→ B is a normal monomorphism. Stated differently, the above
map is a trivial cofibration for all normal monomorphisms A→ B. Conversely, by
[7], a map between∞-operads is an operadic fibration if and only if it has the right
lifting property against all maps (2.5) induced by normal monomorphisms A→ B,
as well as the right lifting property with respect to the inner horn inclusions (see
Section 4).

There are two other model structures on the category of dendroidal sets, ob-
tained from the operadic model structure by left Bousfield localization. The co-
variant model structure has fibrant objects given by those ∞-operads that also
have the extension property against certain left horn inclusions (Section 4) and is
Quillen equivalent to the model category of E∞-algebras (in spaces) [13]. The stable
model structure is a further Bousfield localization of the covariant model structure,
whose fibrant objects have the extension property with respect to all horn inclusions
(Section 4). This model category is equivalent to the model category of grouplike
E∞-spaces, or equivalently connective spectra [3].

Replacing the terminal dendroidal set by an arbitrary dendroidal set X, one can
also obtain the covariant model structure on dSet/X as a Bousfield localization of
the operadic model structure. This model structure has fibrant objects given by the
left fibrations Y → X, which are characterized by the right lifting property against
the left horn inclusions (Section 4). It is equivalent to the model category of algebras
(in spaces) over the simplicial operad corresponding to X under the forementioned
Quillen equivalence between dendroidal sets (operadically) and simplicial operads.

Cylinders and homotopies. Taking the tensor product of X with the functors
{0, 1} → J → ∗ provides a factorization of the fold map

X
∐

X ≃ {0, 1} ⊗X // J ⊗X
σ // X.

When X is a normal dendroidal set, the first map is a cofibration and the second
map is an operadic weak equivalence, by the pushout-product properties (2.4) and
(2.5). The functor J ⊗ (−) therefore provides a cylinder construction for normal
dendroidal sets, which furthermore preserves colimits.

The cylinder J ⊗ (−) induces the usual variants of the notion of homotopy. For
example, let p : Y → X be a map and let y0, y1 : Ω[T ] → Y be two elements of Y .
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Then a fiberwise homotopy between y0 and y1, relative to the boundary ∂Ω[T ], is
given by a map H which fits into a commuting diagram

J ⊗ ∂Ω[T ]

��

σ // ∂Ω[T ] // Y

p

��

J ⊗ Ω[T ]
σ

//

H

55

Ω[T ] // X

whose restriction to {i} ⊗ Ω[T ] agrees with the map yi (for i = 0, 1).

Lemma 2.5. Let p : Y → X be an operadic fibration. Then fiberwise homotopy
relative to the boundary provides an equivalence relation on the set of elements
Y (T ). More generally, for any monomorphism A→ B between normal dendroidal
sets the notion of fiberwise homotopy relative to A provides an equivalence relation
on Hom(B, Y ).

Proof. This is a standard argument using the homotopy extension and lifting prop-
erty. For later reference (cf. the proof of Proposition 3.3), we prove transitivity in a
slightly more general setting. Let x, y, z : B → Y be maps and suppose that there
are fiberwise homotopies g : x ≃ y and h : y ≃ z, where h is a fiberwise homotopy
rel A. Then x ≃ z via a homotopy that agrees with g when restricted to A. Indeed,
consider the diagram

J ⊗
(

J ⊗A ∪ {0, 1} ⊗B
)

∪ {0} ⊗
(

J ⊗B
)

��

H // Y

p

��

J ⊗ (J ⊗B) //

L

33

B // X.

In this diagam, the mapH is given heuristically byH(s, t, a) = g(t, a) on J⊗(J⊗A),
while it is given on J ⊗

(

{0, 1} ⊗B
)

∪ {0} ⊗
(

J ⊗B
)

by

H(s, 0, b) = x(b) H(s, 1, b) = h(s, b) H(0, t, b) = g(t, b).

The left vertical map is of the form (2.5) for the normal monomorphism

J ⊗A
∐

{0,1}⊗A{0, 1} ⊗B // J ⊗B

which is itself of the form (2.4). It follows that the left vertical map is a trivial
cofibration, so that there is a lift L as indicated since p was an operadic fibration.
The restriction of L to {1}⊗ (J ⊗B) provides a fiberwise homotopy between x and
z, which agrees with g when restricted to A. �

3. Existence of minimal fibrations

This section contains the proof of Theorem 1.1, which asserts that any fibration
of dendroidal sets Y → X admits a minimal fibration as a deformation retract, at
least when Y is normal. The idea of the proof is to construct a deformation retract
of the fibration Y → X which is skeletal (Definition 3.1) by induction over the
skeletal filtration of Y . We then show that any such skeletal fibration is a minimal
fibration.



MINIMAL FIBRATIONS OF DENDROIDAL SETS 9

3.1. Skeletal fibrations. The following definition is an immediate analogue of the
notion of ‘skeletality’ appearing in the classical literature on simplicial sets (where
it is usually called minimality, anticipating Corollary 3.7):

Definition 3.1. Let p : Y → X be an operadic fibration of dendroidal sets. We
will say that p is a skeletal fibration if for any two elements y0, y1 : Ω[T ] → Y
which are fiberwise homotopic relative to their boundary, there is an automorphism
φ ∈ Aut(T ) such that y0 = φ∗y1.

There is a second natural extension of the notion of ‘skeletality’ to dendroidal
sets, where one requires two homotopic elements to be equal. This condition is too
restrictive for our purposes. Indeed, the following example demonstrates that there
are dendroidal sets that cannot have a deformation retract satisfying this stricter
condition of skeletality:

Example 3.2. Let C2 be the 2-corolla and let η be tree with a single edge and no
vertices. Their associated dendroidal sets are Ω[C2] and ∆[0] := Ω[η]. The 2-corolla
C2 has a single nontrivial automorphism τ of order 2 and its boundary ∂Ω[C2] is
the disjoint union of three edges. Define J ⊗τ Ω[C2] to be the pushout

Ω[C2]
∐

Ω[C2] // //

(id,τ)

��

J ⊗ Ω[C2]

p

��

Ω[C2] // // J ⊗τ Ω[C2].

The bottom map defines an element of J ⊗τ Ω[C2] which is J-homotopic to its
conjugate by τ . On the other hand, J ⊗τ Ω[C2] is normal, since the top map in this
pushout diagram is a normal monomorphism and Ω[C2] is normal. Next, consider
the pushout

J ⊗ ∂Ω[C2] //

��

J ⊗ Ω[C2]
p

// J ⊗τ Ω[C2]

��

∆[0] // J ⊗τ Ω[C2]/J ⊗τ ∂Ω[C2]

Note that both J ⊗ ∂Ω[C2] and ∆[0] have no elements indexed by non-linear trees.
Since pushouts of dendroidal sets are computed objectwise, this implies that the
pushout J ⊗τ Ω[C2]/J ⊗τ ∂Ω[C2] is again a normal dendroidal set. Finally, let

J ⊗τ Ω[C2]/J ⊗τ ∂Ω[C2] //
∼ // X

be a fibrant-cofibrant replacement of this dendroidal set. The composite

x : Ω[C2] // // J ⊗τ Ω[C2] // J ⊗τ Ω[C2]/J ⊗τ ∂Ω[C2] // X

defines an element x of X with the property that x is homotopic (relative to the
boundary) to τ∗x, while x differs from τ∗x since X was assumed normal. This
property is shared by the image of x under a retraction r : X → M . We conclude
that any retraction of X admits two distinct (but conjugate) 2-corollas which are
homotopic relative to their boundary.

Proposition 3.3. Let p : Y → X be a fibration of dendroidal sets with normal
domain. Then p has a skeletal fibration q : M → X as a fiberwise strong deformation
retract (with respect to the functorial cylinder J).
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Proof. We construct the inclusion i : M ⊆ Y , the retraction r : Y → M and the
strong deformation retraction H : J ⊗ Y → Y all at the same time, by induction
along the skeleta of Y . Suppose that we have formed

M (n)
� � i

(n)
//
Y (n)

r(n)

oo and J ⊗ Y (n) H(n)
// Y

where H
(n)
0 is the inclusion of Y (n) into Y and H

(n)
1 is the composite i(n) ◦ r(n).

All maps are maps over the base X, where M (n) is considered as the domain of the
map pi(n) : M (n) → Y → X.

We start by producing M (n+1) and the inclusion i(n+1) : M (n+1) → Y (n+1).
Recall that Y (n+1) is obtained from Y (n) by attaching a set of generating nonde-
generate elements (together with their conjugates under the Aut(T )-action). For
each T ∈ Ω of degree n + 1, the set of generating nondegenerate y : Ω[T ] → Y
decomposes as the disjoint union of the following three subsets of Y (T ):

(A) those y whose boundary takes values in M (n) and which are not fiberwise
homotopic (relative to the boundary) to a degenerate element in M (n).

(B) those y which are fiberwise homotopic (relative to the boundary) to a de-
generate element of M (n) ⊆ Y .

(C) those y whose boundary ∂y : ∂Ω[T ] → Y does not take values in the sub-
object M (n).

The elements in C cannot be attached to M (n) and the elements in B should not
be attached to M (n) in the construction of M (n+1), since they would give rise to
homotopic elements which are not related by the action of Aut(T ).

We say that two elements y0 and y1 of the remaining set A are equivalent if y0
is fiberwise homotopic (relative the boundary) to φ∗y1, for some φ ∈ Aut(T ). This
defines an equivalence relation by Lemma 2.5. Let AM be a set of representatives
for each of the equivalence classes and let AY be its complement in A.

We now construct M (n+1) and i(n+1) : M (n+1) → Y (n+1) by attaching one copy
of Ω[T ] to M (n) for every equivalence class of elements in the set A and mapping it
to its representing element in AM ⊆ Y (T ). This defines M (n+1) together with an
inclusion into Y (n+1). This inclusion fits into the following diagram, in which the
two solid squares are pushouts:

(3.1)

∐

AM

∂Ω[T ]

��

// M (n) i(n)
//

��

Y (n)

��
∐

AM

Ω[T ] // M (n+1) //

i(n+1)

&&

M (n+1) ∪M(n) Y (n)

��

∐

AY ,B,C

∂Ω[T ]

��

oo

Y (n+1)
∐

AY ,B,C

Ω[T ]oo

The resulting map M (n+1)∪M(n) Y (n) → Y (n+1) is obtained by attaching those cells
of Y (n+1) that we have not yet attached in our construction of M (n+1). This is
pictured by the dotted pushout diagram in (3.1), where the attaching maps indexed
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by the sets AY and B take values in M (n) and the ones indexed by C take values
in Y (n).

Having constructed the inclusion M (n+1) → Y (n+1), our next task is to extend
the deformation retraction H(n). The constant homotopy on M (n+1) and the ho-
motopy H(n) on Y (n) (relative to M (n)) together define a homotopy

J ⊗
(

M (n+1) ∪M(n) Y (n)
)

// Y.

We extend this homotopy along each of the cell attachments that constitute the
dotted pushout diagram in (3.1):

Case AY : we attach a generating nondegenerate element y : Ω[T ] → Y which
is fiberwise homotopic (relative to the boundary) to the conjugate of an element
in AM . Since we constructed M (n+1) by attaching the elements in AM (and their
conjugates), it follows that y is homotopic to an element in M (n+1). The extension
of H(n) to the element y is given by a choice of such a fiberwise homotopy (relative
boundary).

Case B: we attach a generating nondegenerate element y : Ω[T ] → Y which is
fiberwise homotopic (relative boundary) to a degenerate element which is contained
in M (n) and therefore in M (n+1). The extension of H(n) to the element y is then
given by a choice of such fiberwise homotopy (relative boundary).

Case C: we attach a generating nondegenerate element y : Ω[T ] → Y whose
boundary is not contained in M (n). We can use the restriction of H(n) to the
boundary of y, together with the element y itself to form the commuting diagram

J ⊗ ∂Ω[T ] ∪ {0} ⊗ Ω[T ]
(H(n)◦∂y,y)

//

��

Y

��

J ⊗ Ω[T ] // Ω[T ] // X.

Since Y → X is a fibration, there is a lift h : J ⊗ Ω[T ] → Y which provides a
fiberwise homotopy between y and an element z : Ω[T ] → Y whose boundary is
the evaluation of H(n) ◦ ∂y at 1, which takes values in M (n). By construction,
this fiberwise homotopy h extends the deformation retraction H(n) applied to the
boundary of y.

When z is an element of M (n+1) we use the homotopy h to extend H(n) to the
element y. When z is not contained in M (n+1), we have already constructed a
homotopy k (relative to the boundary) between z and an element m in M (n+1) in
the previous two steps. We can compose the two homotopies h and k (as in the
proof of Lemma 2.5) to produce a homotopy between y and m which agrees with
H(n) on the boundary. Use this homotopy to extend H(n) over the element y.

In this way we produce a fiberwise strong deformation retraction

H(n+1) : J ⊗ Y (n+1) // Y

extending H(n). By construction, the restriction of H(n+1) to {1}⊗ Y (n+1) factors
as i(n+1) ◦ r(n+1) for some retraction r(n+1) : Y (n+1) → M (n+1). Proceeding by
induction on the skeleton, we thus obtain a fiberwise strong deformation retract of
Y onto some subobject M .
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It remains to check that the resulting map q = pi : M → X is a skeletal fibration.
Since M is a fiberwise retract of Y , it follows that the map q : M → X is a fibration.
To see that it is skeletal, let x, y : Ω[T ]→M be two elements ofM that are fiberwise
homotopic relative to their boundary. If both maps are degenerate, then they must
be the same since their boundaries are the same (Lemma 2.4). We may therefore
assume that x is nondegenerate.

Applying the inclusion i, we see that x and y determine homotopic elements
(relative boundary) in Y , whose boundary lies in the n-skeleton M (n). By the con-
struction of M (n+1) it follows that y is nondegenerate as well: indeed, we removed
all nondegenerate elements from Y that were fiberwise homotopic (relative bound-
ary) to degenerate elements in M . But then the construction of M implies that
x = φ∗y for some φ ∈ Aut(T ), since we attached only one generating nondegenerate
element to M (n) for each equivalence class of nondegenerate elements in Y . �

3.2. Minimal fibrations. Let p : Y → X be a skeletal fibration with normal do-
main. To check that p is a minimal fibration, it suffices to check that any fiberwise
self-homotopy equivalence of p is an isomorphism. In turn, this is guaranteed by
the following

Proposition 3.4. Let p : Y → X be a skeletal fibration with normal domain. If
f : Y → Y is an endomorphism of p which is fiberwise homotopic to the identity
map on Y , then f is an isomorphism.

We prove this by induction on the skeleton of Y , the case Y (−1) being trivial.
The inductive step follows from the following two lemmas:

Lemma 3.5. Let p : Y → X be a skeletal fibration with normal domain Y and
let h : J ⊗ Y → Y be a fiberwise homotopy from an endomorphism h0 of p to the
identity map. If h0 induces an isomorphism on the n-skeleton Y (n), then h0 is
injective on the (n+ 1)-skeleton of Y .

Proof. Let T ∈ Ω be of degree n+ 1 and let x, y : Ω[T ]→ Y be two elements such
that h0x = h0y. We have that px = py and by inductive hypothesis ∂x = ∂y. We
may clearly assume that one of the two, say x, is a nondegenerate element.

Take the (fiberwise) homotopies h(x) and h(y) from h0x to x and from h0y to
y, together with the constant homotopies on ∂x = ∂y and h0(x) = h0(y). Together
these give a map K which fits into a commuting square

J ⊗
(

J ⊗ ∂Ω[T ] ∪ {0, 1} ⊗ Ω[T ]
)

∪ {0} ⊗
(

J ⊗ Ω[T ]
)

��

K // Y

��

J ⊗
(

J ⊗ Ω[T ]
)

//

L

22

Ω[T ] // X.

This square allows for a diagonal map L because Y → X is a fibration. The
composite

{1} ⊗
(

J ⊗ Ω[T ]
)

// J ⊗ (J ⊗ Ω[T ])
L // Y

determines a fiberwise homotopy between x and y, relative to ∂Ω[T ]. The fibration
p is skeletal, so x = σ∗y for some σ ∈ Aut(T ). But then we also have that
h0(x) = σ∗h0(y) = σ∗h0(x). Since Y is normal, this either means that σ = 1 (if
h0(x) is nondegenerate) or h0(x) is degenerate.
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In the latter case, there is a degenerate z such that h0(x) = h0(z), since h0 was
assumed to be an isomorphism on Y (n). Repeating the previous argument shows
that x = τ∗z for some τ ∈ Aut(T ). Since x was assumed nondegenerate, this
cannot happen and we conclude again that σ = 1. This shows that x = y. �

Lemma 3.6. Let f : Y → Y be a fiberwise homotopy equivalence from a skeletal
fibration p : Y → X with normal domain to itself. If f induces an isomorphism on
Y (n), then f induces a surjective map on elements of degree n+ 1.

Proof. Let f : Y → Y be a fiberwise homotopy equivalence from p to itself. Factor
f = qi where i : Y → Z is a cofibration and q : Z → Y is a trivial fibration. Since
Y is normal, so is Z and i is the inclusion of a fiberwise strong deformation retract
over X, with retraction r : Z → Y over X.

Let T ∈ Ω be of degree n + 1 and take x : Ω[T ] → Y . Because f induces
an isomorphism on the n-skeleton of Y , there is a map y : ∂Ω[T ] → Y such that
fy = ∂x. Since q is a trivial fibration, there is a map z : Ω[T ]→ Z such that qz = x
and ∂z = iy:

∂Ω[T ]

��

y
// Y

i // Z

q

��

Ω[T ]
x

//

z

66

Y.

Let w = r(z). Then ∂f(w) = fr(∂z) = fri(y) = ∂x, and f(w) is fiberwise
homotopic to x (rel ∂Ω[T ]):

f(w) = fr(z) = qir(z) ≃rel ∂Ω[T ] q(z) = x

Since p was skeletal it follows that f(w) = σ∗x for some σ ∈ Aut(T ), so that
x = f(σ−1∗w). �

Proof (of Theorem 1.1). Let p : Y → X be an operadic fibration with normal do-
main. By Proposition 3.3 p admits a skeletal fibration q : M → X as a fiberwise
strong deformation retract, with inclusion i : M → Y and retraction r : Y → M .
The object M is normal, being the retract of a normal object. It then follows from
Proposition 3.4 that q is a minimal fibration.

It remains to check that the retraction r : Y →M is a trivial fibration when the
base X is a normal dendroidal set. This is proven exactly as in Quillen’s paper
[21], which treats the analogous result for simplicial sets. Consider a diagram of
the form

(3.2)

∂Ω[T ]

��

y
// Y

r

��

Ω[T ]
x

// M

Then ix provides a lift making the bottom triangle commute, but the boundary of
ix agrees with iry : ∂Ω[T ] → Y , which is only fiberwise homotopic to y using the
the deformation retraction H between ir and the identity on Y .
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We therefore replace ix by a homotopic element of Y whose boundary agrees
with y. Since p : Y → X is a fibration, there is a lift in the diagram

{0} ⊗ Ω[T ] ∪ J ⊗ ∂Ω[T ]
(ix,H)

//

��

Y

��

J ⊗ Ω[T ] //

K

66

X.

Let z : Ω[T ] → Y be the restriction of the lift K to {1} ⊗ Ω[T ]. We claim that
z : Ω[T ]→ Y provides a lift in diagram (3.2).

Indeed, ∂z = y and the deformation retraction H gives a homotopy from ir(z) to
z. This means that i(x) and ir(z) are fiberwise homotopic to z, both via a homotopy
which is given by H when restricted to the boundary ∂Ω[T ]. But then there is a
fiberwise homotopy between ir(z) and ix which is constant on the boundary (using
an argument similar to the proof of Lemma 2.5). It follows that r(z) is homotopic
(relative boundary) to x. Because q : M → X was a skeletal fibration, we conclude
that x = φ∗r(z) for some automorphism φ of T .

Applying q, we see that q(x) = φ∗qr(z) = φ∗q(x). But X is a normal dendroidal
set, so φ must be the identity automorphism. We conclude that x = r(z), which
means that z : Ω[T ]→ Y provides a diagonal lift in diagram (3.2). �

Corollary 3.7. Let p : Y → X be a fibration with normal domain. Then p is a
minimal fibration iff p is a skeletal fibration.

Proof. All skeletal fibrations are minimal fibrations, so assume that p is a minimal
fibration. Then there is a trivial cofibration i : M → Y such that pi is a skeletal
fibration. By minimality of p, the map i is an isomorphism and one finds that p is
skeletal. �

Remark 3.8. In particular, the notion of skeletal fibration from Definition 3.1 is
independent of the chosen cylinder, as long as it preserves colimits and has the
properties mentioned in Section 2.

Corollary 3.9. Let f : X ′ → X be a map of dendroidal sets with the property that
for any element x : Ω[T ]→ X ′, the map Aut(x)→ Aut(fx) is bijective. If Y → X
is a minimal fibration with normal domain, then the base change f∗Y → X ′ is a
minimal fibration as well.

Proof. This follows immediately from the corresponding property for skeletal fi-
brations: indeed, let p : Y → X be a skeletal fibration (with normal domain) and
consider the pullback square

f∗Y
f ′

//

p′

��

Y

p

��

X ′
f

// X.

If x, y : Ω[T ] → f∗Y are fiberwise homotopic, then f ′x and f ′y are fiberwise
homotopic as well. It follows that there is an element φ ∈ Aut(T ) such that
f ′x = φ∗f ′y. Projecting to X, we find that φ is an automorphism of the element
pf ′x = fp′x : Ω[T ] → X. By the assumption that f induces a bijection on auto-
morphism groups, it follows that φ∗p′y = φ∗p′x = p′x. Since Y ′ is the pullback of
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Y and X ′ over X, this implies that x = φ∗y. We conclude that Y ′ → X ′ is indeed
skeletal. �

Example 3.10. The condition of Corollary 3.9 is satisfied by monomorphisms
and by all maps between normal dendroidal sets (whose elements all have trivial
automorphism groups). Furthermore, it is satisfied by all maps whose domain is a
simplicial set, i.e. a dendroidal set without elements indexed by nonlinear trees. In
particular, if p : X → S is a minimal fibration, then the fiber Xc of p over a colour
c : ∆[0]→ S is a minimal ∞-category.

Remark 3.11. Minimal (or skeletal) fibrations are not stable under base change
along an arbitrary map. For example, consider the normal∞-operadX constructed
in example 3.2 and let M be a skeletal deformation retract of it. The dendroidal
set M comes equipped with a 2-corolla x : Ω[C2]→M which is homotopic (relative
to its boundary) to τ∗x, where τ is the nontrivial automorphism of C2.

Now let p : E∞ → ∗ be a trivial fibration with normal domain. Then the map
M → ∗ is a skeletal fibration, but the base change M ×E∞ → E∞ is not. Indeed,
let y : Ω[C2] → E∞ be a lift of the unique map Ω[C2] → ∗. Then the element
(x, y) : Ω[C2]→M × E∞ is fiberwise homotopic (rel. boundary) to (τ∗x, y), but it
is not related to (τ∗x, y) via an automorphism of C2.

4. Applications

By way of example, we give two applications to the theory of left fibrations be-
tween dendroidal sets. Before stating these, we will recall the definitions of the
relevant types of fibrations between dendroidal sets and the corresponding den-
droidal horn inclusions.

4.1. Fibrations between dendroidal sets. Recall from Section 2 that every
tree T comes equipped with two kinds of face maps: inner face maps ∂e : T/e→ T
contracting an inner edge e, and outer face maps ∂v : T/v → T removing an outer
vertex and all the outer edges attached to it. Each such face map determines a
monomorphism of dendroidal sets ∂α : Ω[T/α] → Ω[T ] whose image we denote by
∂αΩ[T ] ⊆ Ω[T ] and call the face opposite α.

The union of all faces of Ω[T ] is precisely the boundary ∂Ω[T ] discussed in Section
2. If α is an inner edge of T or an outer vertex of T , we define the α-horn of Ω[T ],
denoted by Λα[T ], to be the union of all faces of Ω[T ] except the face opposite
α. All horn inclusions Λα[T ] → Ω[T ] are normal monomorphisms, since Ω[T ] is
normal.

When e is an inner edge, we will call Λe[T ] → Ω[T ] an inner horn inclusion. A
map of dendroidal sets is called an inner fibration if it has the right lifting property
against all inner horn inclusions and is called inner anodyne if it has the left lifting
property with respect to all inner fibrations. The pushout-product property for
normal monomorphisms mentioned in Section 2 now admits the following refinement
[7, Prop. 3.1]: if A→ B is a normal monomorphism of dendroidal sets and K → L
is a monomorphism of simplicial sets, then the pushout-product map

(4.1) L⊗A
∐

K⊗A K ⊗B // L⊗B

is inner anodyne if one of the two maps is inner anodyne.
A dendroidal set X is called an ∞-operad if the map X → ∗ to the terminal

object is an inner fibration. As we already remarked in Section 2, the ∞-operads
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are precisely the fibrant objects of the operadic model structure on dendroidal sets.
The fibrations in this model structure, i.e. the operadic fibrations, are all inner
fibrations but not every inner fibration is an operadic fibration. For example, as we
remarked in Section 2 the operadic fibrations between ∞-operads are those inner
fibrations that furthermore have the right lifting property against pushout-products
of a normal mononomorphism and an inclusion {i} → J .

The left horn inclusions consist of the inner horn inclusions, together with the
horn inclusions Λv[T ] → Ω[T ] indexed by a leaf vertex of T (in the case that T is
not a corolla) and the horns Λv[Cn] → Ω[Cn] consisting of all faces indexed by a
leaf of Cn. Because the other horns of the corolla play no role in our discussion, so
we will ignore the ambiguity in the notation Λv[Cn].

A map of dendroidal sets is called a left fibration if it has the right lifting property
against all left horn inclusions and left anodyne if it has the left lifting property
with respect to all left fibrations. An inspection of the proof of [7, Prop. 3.1] shows
that the pushout-product map (4.1) is left anodyne if either A→ B is left anodyne
or K → L is a left anodyne map of simplicial sets (see also [13, Appendix A.2]). It
follows that left fibrations have the right lifting property against pushout-products
of a normal monomorphism and the map {i} → J , which is a left anodyne map
of simplicial sets. In particular, all left fibrations over an ∞-operad are operadic
fibrations.

As we already remarked in Section 2, for any dendroidal set X the left fibrations
Y → X form the fibrant objects of the covariant model structure on dSet/X.
The fibrations in this model are in particular left fibrations, but the converse need
no hold in general. An operadic weak equivalence of dendroidal sets f : X → X ′

induces a Quillen equivalence f! : dSet/X ⇄ dSet/X ′ : f∗ between the covariant
model structures [13]. Applying this to an operadic weak equivalence X → X ′ into
an ∞-operad and using that left fibrations over ∞-operads are operadic fibrations,
one can conclude that all left fibrations are operadic fibrations.

It follows that the covariant model structure on dSet/X has the same cofibra-
tions as the operadic model structure, but less fibrant objects. This means that the
covariant model structure is a Bousfield localization of the operadic model struc-
ture, which in particular implies that the covariant weak equivalences between left
fibrations agree with the operadic weak equivalences.

4.2. Gluing left fibrations. Let X be a simplicial set and let A and B be two
subobjects of X which cover X. The class of Kan fibrations satisfies a certain
‘homotopy descent’ condition, which asserts that Kan fibrations over A and B can
be glued - up to homotopy - to yield a fibration over their union X. More precisely,
consider two Kan fibrations YA → A and YB → B and a homotopy equivalence
between their restrictions to the intersection A ∩ B. Then there exists a Kan
fibration Y → X whose restrictions to A and B are homotopy equivalent to the
original two fibrations.

This homotopy descent property is a special case of a result about homotopy
colimits of simplicial sets stated in [22], which appears in [20] in terms of topological
spaces. It reflects the fact that Kan fibrations are local in nature: a map Y → X
is a Kan fibration whenever its restriction to each simplex of X is a Kan fibration.
One may therefore expect a similar gluing result to hold for fibrations between
dendroidal sets which have the same locality property. Operadic fibrations do not
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have this property, but left fibrations do since they are defined by the right lifting
property with respect to left horns, which are subobjects of representables.

With this in mind, the homotopy descent property for left fibrations of dendroidal
sets follows by a straightforward reduction to the situation where all left fibrations
are minimal.

Proposition 4.1. Consider a diagram of dendroidal sets

(4.2)

Y1

����

Y0
oo //

����

Y2

����

X1 X0
oooo // // X2

in which the vertical maps are left fibrations and the bottom horizontal maps are
cofibrations. Suppose that both squares are ‘homotopy cartesian’, in the sense that
the maps Y0 → Yi ×Xi

X0 are weak equivalences in the covariant model structure
over X0. Then there exists a left fibration over the pushout X1 ∪X0

X2, whose
pullback to each of the Xi is weakly equivalent to the left fibration Yi → Xi in the
covariant model structure over Xi.

Proof. We can replace the above diagram by any weakly equivalent diagram of left
fibrations over the Xi. In particular, we can assume that all dendroidal sets Yi are
cofibrant.

We can further reduce to the case where all vertical maps are minimal left fibra-
tions. Indeed, we can first replace Diagram (4.2) by a diagram of the form

M0

j

��}} !!

Y1

����

Y0
oo //

����

Y2

����

X1 X0
oo // X2

where j is the inclusion of a minimal fibration with cofibrant domain. The resulting
diagram of left fibrations remains homotopy cartesian. Next, replace this diagram
by a diagram of the form

(4.3)

Y1

r1

��

M0
oo //

|| ""

����

Y2

r2

��

M1

����

M2

����

X1 X0
oo // X2

where r1 and r2 are fiberwise retractions onto minimal fibrations (with cofibrant
domains). The vertical maps in the resulting diagram remain left fibrations and
the maps M0 →Mi ×Xi

X0 are given by the composition

M0
// Y0

// Yi ×Xi
X0

// Mi ×Xi
X0.

The composition of the first two maps is an operadic weak equivalence and the
second map is the base change of a fiberwise deformation retract over Xi. It follows
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that the composite is a weak equivalence between two minimal fibrations over X0,
which means that it must be an isomorphism. In other words, the two solid squares
in Diagram (4.3) are both pullback squares.

Taking the pushout of the top and bottom row gives a map

p : M1 ∪M0
M2

// X1 ∪X0
X2.

Because both squares in Diagram (4.3) are cartesian, the pullback of this map to
each of the Xi reproduces the fibration Mi → Xi, up to a canonical isomorphism.
Since left fibrations between dendroidal sets are local, it follows that the map p is a
left fibration over X1 ∪X0 X2 whose pullback to each of the Xi is weakly equivalent
to the original left fibration Yi → Xi. �

Proposition 4.1 has a simple model-categorical consequence, which we will now
explain. The covariant model structures over all dendroidal sets assemble into a
functor

Alg: dSetop // ModelCatR; X
� //

(

dSet/X
)cov

Given a diagram X of dendroidal sets of the form

X1 X0
f

oo
g

// X2

we thus obtain a diagram of (combinatorial, left proper) model categories and right
Quillen functors between them

Alg(X1)
f∗

// Alg(X0) Alg(X2)
g∗

oo

Any such diagram of right Quillen functors admits a ‘homotopy pullback’ model
category Alg(X1)×

h
Alg(X0)

Alg(X2), whose underlying category is the lax pullback

of the above diagram of categories [2]. More precisely, the homotopy limit model
category has objects given by triples of objects Yi ∈ Alg(Xi) together with two
structure maps in Alg(X0)

α : Y0
// f∗Y1 β : Y0

// g∗Y2.

The maps are maps of triples Yi → Zi that are compatible with the two structure
maps. This category carries a model structure in which the trivial fibrations are
triples of trivial fibrations Yi → Zi, while the fibrant objects are given by triples
of fibrant objects Yi, together with structure maps α and β which are weak equiv-
alences.

In the present situation, where each of the categories Alg(Xi) is just the category
of dendroidal sets over Xi, this means that the category underlying the homotopy
pullback Alg(X1)×

h
Alg(X0)

Alg(X2) is simply the overcategory
(

dSet1←0→2
)

/X

whose objects are diagrams of shape (4.2). The model structure described above
agrees with the model structure for which

• cofibrations are projective cofibrations between the underlying diagrams of
dendroidal sets.
• fibrant objects natural transformations Y → X such that each Yi → Xi is a

left fibration and each map Y0 → Yi×Xi
X0 is a covariant weak equivalence

over X0.
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• weak equivalences between fibrant objects are degreewise weak equiva-
lences.

This homotopy pullback model category comes equipped with a Quillen pair

colim:
(

dSet1←0→2
)

/X
//
dSet/ colimX : pullbackoo

to the covariant model structure over the pushout of the diagram X. The right
adjoint sends a map over colimX to its pullbacks to each of the Xi. Proposition
4.1 now has the following reformulation:

Corollary 4.2. When X1 ← X0 → X2 is a diagram of cofibrations between den-
droidal sets, the above Quillen pair is a Quillen equivalence.

Proof. The derived unit is easily checked to be a natural weak equivalence and
the proof of Proposition 4.1 shows that the derived counit map is a natural weak
equivalence. �

Remark 4.3. The same result holds when only one of the two arrows is a cofibra-
tion. Indeed, this follows from the fact that the operadic model structure is left
proper [7], the covariant model structures over weakly equivalent dendroidal sets
are Quillen equivalent and the fact that two (naturally) Quillen equivalent diagrams
of model categories have Quillen equivalent homotopy pullbacks [2].

4.3. Weak equivalences between left fibrations. As another application, we
give an alternative, self-contained proof of the result from [13] that the weak equiv-
alences between left fibrations of dendroidal sets are precisely the fiberwise weak
equivalences.

Proposition 4.4. Let p : X → S be a left fibration between normal dendroidal sets.
Then p is a trivial fibration iff for every colour c : η → S, the fiber Xc = X ×S η is
a contractible Kan complex.

Corollary 4.5. Consider a map of left fibrations over S

X
f

//

��

Y

q
��

S

Then f is a weak equivalence iff for every colour c : η → S the map between fibers
Xc → Yc is a weak equivalence of Kan complexes.

Proof. By Brown’s lemma, weak equivalences between left fibrations are preserved
by the right Quillen functor taking the base change along c : η → S. A weak
equivalence between left fibrations is therefore a fiberwise weak equivalence. For
the converse, we can assume that X and Y are normal. Factor the fiberwise weak
equivalence f as a covariant trivial cofibration X → X̃, followed by a covariant
fibration X̃ → Y . Because X̃ → S is a left fibration, the trivial cofibration X → X̃
is a fiberwise weak equivalence. This implies that the covariant fibration X̃ → Y
is a fiberwise weak equivalence as well.

For every colour c : η → Y , the fiber X̃ ×Y {c} is isomorphic to the fiber over
{c} of the map between simplicial sets

X̃ ×S {qc} // Y ×S {qc}.
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This map is a trivial fibration between Kan complexes because X̃ → Y is a left fi-
bration and a fiberwise weak equivalence. The left fibration X̃ → Y has contractible
fibers, so it follows from Proposition 4.4 that it is a trivial fibration. �

The proof of Proposition 4.4 uses a more restrictive notion of homotopy, which is
particularly useful in the setting of left fibrations. Recall that a linear order [n] can
be viewed as a tree with n bivalent vertices (this induces the vertical inclusions in
Diagram (2.3)). We will denote the associated dendroidal set by ∆[n] and denote
the tree associated to [0] by η. The following definition is taken from [7]:

Definition 4.6. For any tree T and any number k ≥ 0, let Ω[T ] ⋆ ∆[k] be the
dendroidal set represented by the tree T ⋆ [k] obtained by adding a vertex below the
root of T and grafting the result on top of the linear order [k].

(4.4) extra

k + 1

0

1

2

k
[k]

T

Each dendroidal set Ω[T ] ⋆ ∆[k] comes equipped with an iterated degeneracy
map σ : Ω[T ] ⋆ ∆[k] → Ω[T ] which removes the linear order and the extra vertex
from T ⋆ [k]. We will be particularly interested in the case where n = 0, in which
case the dendroidal set Ω[T ⋆ η] = Ω[T ] ⋆∆[0] has three types of faces:

(0) the face ∂0 : Ω[T ] → Ω[T ⋆ η] associated to the inner edge marked by 0 in
(4.4).

(1) the face ∂1 : Ω[T ]→ Ω[T ⋆ η] opposite the root vertex.
(2) for every face ∂αΩ[T ]→ Ω[T ], a face ∂αΩ[T ] ⋆∆[0]→ Ω[T ] ⋆∆[0].

The first two face maps for k = 0 can be used to give another notion of homotopy
between two elements of a dendroidal sets, which is discussed in [19]:

Definition 4.7. Let p : X → S be a map of dendroidal sets and let β, β′ : Ω[T ]→ X
be two elements of X with the same image in S. A fiberwise homotopy along the
0-edge from β to β′ is a commuting diagram

Ω[T ⋆ η]

σ

��

H // X

p

��

Ω[T ]
p(β)

// S

such that ∂1H = β and ∂0H = β′ and where σ is the degeneracy removing the
root vertex. Furthermore, we say that H is a fiberwise homotopy relative to the
boundary if the restriction of H to each face of the form ∂αΩ[T ] ⋆∆[0] factors over
the degeneracy ∂αΩ[T ] ⋆∆[0]→ ∂αΩ[T ].
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Lemma 4.8. Let p : X → S be an operadic fibration and suppose that H : Ω[T ⋆η]→
X is a fiberwise homotopy along the 0-edge between elements β and β′, relative to
the boundary. Then β and β′ are fiberwise homotopic (relative to their boundary)
with respect to the cylinder J from Section 2.

Proof. One can deduce the existence of such a homotopy either from Theorem B.2
in [7], or use the following argument. Observe that H and the constant homotopy

Ω[T ⋆ η]
σ // Ω[T ]

β
// Y

agree on all faces of Ω[T ⋆ η], except for the face ∂0 : Ω[T ] → Ω[T ⋆ η] obtained by
contracting the edge ‘0’ above the root vertex (on which the value of H was β′,
rather than β). Both of these homotopies therefore provide a diagonal lift for the
same diagram

Λ0[T ⋆ η] //

��

Y

��

Ω[T ⋆ η] // X

where the inner horn Λ0[T ⋆ η] excludes the face that contracts the ‘0’-edge. But
in the operadic model category, as in any model category with a choice of cylinder,
lifts along inner horn inclusions are unique up to fiberwise J-homotopy, relative
to the horn. In particular, we have that ∂0H = β′ and ∂0(σβ) = β are fiberwise
J-homotopic relative to their boundary. �

With this notion of homotopy at hand, we turn to the proof of Proposition 4.4.

Proof (of Proposition 4.4). Let i : M → X be the inclusion of a minimal fibration
into X. The fibers of pi : M → S are weakly equivalent to those of p : X → S and
the composite pi is a trivial fibration iff the original fibration p is a trivial fibration.
We can therefore reduce to the case where p : X → S is a minimal fibration with
normal codomain. Note that a minimal fibration with contractible fibers actually
has trivial fibers, i.e. its fibers are isomorphic to η.

We will prove that any minimal left fibration p : X → S with trivial fibers is
an isomorphism. It is immediate that p induces a bijection on colours and a left
fibration inducing a surjection on colours is always an epimorphism. We show by
induction that p induces a monomorphism on all n-skeleta.

Assume that p : X → S induces an isomorphism on (n − 1)-skeleta and let
α : Ω[T ] → S be a (possibly degenerate) element of degree n. We have to show
that any two lifts of the element α to X, which exist by surjectivity of p, agree.
The proof of this uses another inductive argument: we will say that an element
α : Ω[T ]→ S has a trunk of height 0 ≤ k ≤ n if there is a factorization

Ω[T ]
α // S

Ω[T ′] ⋆∆[k − 1] // Ω[T ′]

α

OO

The left vertical isomorphism asserts that the tree T has the form of picture (4.4)
and the rest of the diagram asserts that α : Ω[T ] → S factors over the degeneracy
that collapses the linear order at the bottom of T . Note that having a trunk of
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height 0 is no condition, so it suffices to prove by decreasing induction on the
number k that α has a unique lift to X.

If α has a trunk of height n, then α : ∆[n] → S is a degenerate n-simplex in S.
Such a simplex indeed has a unique (fully degenerate) lift since the fibers of X → S
over each colour are trivial. Now take k < n and assume that all elements with a
trunk of height l > k have a unique lift.

Suppose that α : Ω[T ]→ X has a trunk of height k and let β, β′ : Ω[T ]→ X be
two lifts of α. Since p induces an isomorphism on (n − 1)-skeleta, the boundaries
of β and β′ are the same. To conclude that β and β′ are the same, it suffices to
show that β and β′ are fiberwise homotopic relative to their boundary, since we
assumed that p : X → S was a minimal left fibration. By Lemma 4.8 it suffices
to provide a fiberwise homotopy from β to β′ along the 0-edge, relative to the
boundary (Definition 4.7).

Pick any leaf vertex v of the tree T . The idea will be first to construct a fiberwise
homotopy H which is constant on all faces except the face opposite v and then to
use our inductive hypothesis to conclude that this homotopy is also constant on this
remaining face. We will construct the homotopy H as a diagonal lift in a diagram

(4.5)

Λv[T ⋆ η]

��

// X

��

Ω[T ⋆ η] //

H

55

Ω[T ]
α

// S

using the fact that X → S is a left fibration. In order to obtain this diagram,
observe that the horn Λv[T ⋆η] opposite the leaf vertex v of T ⋆η fits into a pushout
square

Λv[T ]
∐

Λv[T ]
(∂0,∂1)

//

��

Λv[T ] ⋆∆[0]

��

Ω[T ]
∐

Ω[T ] // Λv[T ⋆ η].

This follows immediately from the description of the faces of Ω[T ⋆ η] given just
above Definition 4.7. The elements β and β′, as well as the constant homotopy on
the horn Λv[T ] define maps

Ω[T ]
∐

Ω[T ]
(β′,β)

// X Λv[T ] ⋆∆[0]
σ // Λv[T ]

Λv(β)
// X

that agree on Λv[T ]
∐

Λv[T ]. The induced map Λv[T ⋆ η]→ X out of the pushout
fits into a commuting diagram of the form (4.5), whose diagonal H : Ω[T ⋆ η]→ X
provides a fiberwise homotopy between β and β which is contant on all faces except
∂vΩ[T ].

The restriction of H to the remaining face ∂vΩ[T ] ⋆∆[0] gives a homotopy (rel
boundary) from the face ∂vβ to the face ∂vβ

′. This restriction fits into a commu-
tative diagram

∂vΩ[T ] ⋆∆[0]
∂vH // X

��

∂vΩ[T
′] ⋆∆[k − 1] ⋆∆[0] // ∂vΩ[T

′]
α

// S.
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The left equality uses that the element α had a trunk of height k. In other words,
the element ∂vH provides a lift of the degenerate element

∂vΩ[T
′] ⋆∆[k] = ∂vΩ[T

′] ⋆∆[k − 1] ⋆∆[0] // ∂vΩ[T
′]

α // S

which is of degree n and has a trunk of height k+1. But by the inductive assump-
tion, elements with a trunk of height k + 1 have unique lifts. It follows that H is
degenerate, which means that the homotopy H is also constant on the remaining
face ∂vΩ[T ].

The map H : Ω[T ⋆ η] → X thus provides a fiberwise homotopy (along the 0-
edge) between β and β′ which is contant on the boundary. Using Lemma 4.8 and
the fact that p : X → S is a minimal fibration, this gives that β = φ∗β′ for some
φ ∈ Aut(T ). Using p to project to S, we find that φ induces an automorphism of
the element α. But S was assumed to be normal, so φ is the identity and α indeed
has a unique lift. �

5. Other examples

Recently Cisinski [6] has shown that the theory of minimal fibrations of simplicial
sets can be generalised to model categories of presheaves over certain ‘Eilenberg-
Zilber type’ Reedy categories ([6], 2.1), in which the cofibrations are the monomor-
phisms. Such Reedy categories share the combinatorial properties of the simplex
category ∆ that provide presheaves over them with a well-behaved skeletal filtra-
tion, the crucial tool used in the construction of minimal Kan fibrations.

The model structure on dendroidal sets does not entirely fit into this framework
for the simple reason that the category Ω of trees is not a strict Reedy category.
Our proof of Theorem 1.1 demonstrates how to take care of the automorphisms
in Ω during the construction of minimal fibrations. To analyse the scope of our
arguments, let us introduce the following notion of an ‘Eilenberg-Zilber type’ gen-
eralised Reedy category, which is closely related to the notion of a skeletal category
from [5] and that of an EZ-category from [4]:

Definition 5.1. A generalised Reedy category R is called an Eilenberg-Zilber cat-
egory if it satisfies the following two conditions:

(1) R− is the subcategory of split epimorphisms.
(2) two maps r → s in R− are the same if they have the same set of sections.

Example 5.2. The category of trees Ω is an Eilenberg-Zilber category by Lemma
2.1. Apart from Ω, the class of Eilenberg-Zilber categories includes well-known ex-
amples like the simplex category ∆, Segal’s category Γ [25], Connes’ cyclic category
Λ [10], the category of nonempty finite sets and all group(oid)s.

Furthermore, the product of two Eilenberg-Zilber categories is also one and for
any presheaf X on an Eilenberg-Zilber category R, the category of elements R/X
is again one.

One can observe that all the definitions in Section 2 make sense when Ω is
replaced by an arbitrary Eilenberg-Zilber category R, as defined above. Although
Lemma 2.2 need not hold for arbitrary R, the corollary that elements are essentially
unique degeneracies of nondegenerate elements still applies to normal presheaves
over R [5, Prop. 8.1.24]. It follows from this that any normal presheaf X on an
Eilenberg-Zilber category R admits a skeletal filtration, in which each inclusion
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X(n) → X(n+1) is a pushout of boundary inclusions ∂R[r]→ R[r] into presheaves
represented by objects r ∈ R of degree n+ 1 (see Ch. 8 of [5]). Lemma 2.4 (which
appears as Lemma 2.6 in [6] for strict Eilenberg-Zilber categories) shows that two
degenerate elements of a normal presheaf X are the same once their boundaries
agree.

One can apply the arguments from Section 3 and proceed by induction along the
skeletal filtration to prove the following generalisation of Theorem 1.1 (a):

Theorem 5.3. Let R be an Eilenberg-Zilber category and suppose that the cate-
gory PSh(R) of set-valued presheaves on R carries a model structure in which the
cofibrations are the normal monomorphisms. If p : Y → X is a fibration between
cofibrant objects in this model structure, then p admits a minimal fibration M → X
as a fiberwise strong deformation retract.

Example 5.4. Apart from the model structures on dendroidal sets, there are
many common model categories which are of this form. Examples include the
model structure on the category PSh(Λ) of cyclic sets from [11] and the model
structure on the category PSh(Fin) of symmetric simplicial sets from [23] (see also
the erratum [24]). One can produce many more examples by taking the category of
simplicial presheaves over an Eilenberg-Zilber category R and equipping it with the
generalised Reedy model structure [4] or any Bousfield localization thereof (viewed
as a model structure for the Eilenberg-Zilber category R ×∆). This includes the
model structures on Γ-spaces and (dendroidal) Segal spaces as important examples.

Remark 5.5. Part (b) of Theorem 1.1 does not hold in general: it crucially relies
on the fact that the category Ω/X is a strict Reedy category when X is normal,
in which case it is just a special case of Proposition 2.8 of [6]. This property is not
shared, for example, by the category Γ (or Γ×∆).

In Theorem 5.3, the notion of a fiberwise strong deformation retract can be
interpreted with respect to any model-categorical cylinder. However, the proof
requires a cylinder construction that shares the good properties of the cylinder
described in Section 2. More precisely, our proof in Section 3 needs a functorial
factorization X

∐

X := {0, 1} ⊗X → J ⊗X → X of the fold map in PSh(R) such
that

(i) the functor J ⊗ (−) : PSh(R)→ PSh(R) preserves all colimits.
(ii) for each r ∈ R, the pushout-product map

{0, 1} ⊗R[r] ∪{0,1}⊗∂R[r] J ⊗ ∂R[r] // J ⊗R[r]

is a normal monomorphism.
(iii) for each r ∈ R and i = 0, 1, the pushout-product map

{i} ⊗R[r] ∪{i}⊗∂R[r] J ⊗ ∂R[r] // J ⊗R[r]

is a trivial cofibration, where {i} ⊗R[r]→ J ⊗R[r] is the inclusion of the
relevant summand.

By [5, Prop. 8.1.35] the normal monomorphisms are the weakly saturated class on
the boundary inclusions ∂R[r]→ R[r], so that the above three properties guarantee
that the map X

∐

X → J ⊗X → X provides a cylinder for all normal X.
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Lemma 5.6. Let R be an Eilenberg-Zilber category and suppose that the category
PSh(R) carries a model structure whose cofibrations are the normal monomor-
phisms. Then there exists a functorial factorization X

∐

X → J ⊗X → X of the
fold map in PSh(R) satisfying the above three properties.

Proof. Since the functor J ⊗ (−) is required to preserve colimits, it suffices to
produce the functorial factorization for representables. The fold map provides a
natural transformation R[−]

∐

R[−] → R[−] of R-indexed diagrams in PSh(R).
The category R is a generalised Reedy category and PSh(R) carries a model struc-
ture with a set of generating cofibrations. The category of R-indexed diagrams in
PSh(R) therefore carries that part of the Reedy model structure (with respect to
the given model structure on PSh(R)) that allows us to factor this natural trans-
formation as a Reedy cofibration R[−]

∐

R[−] → J ⊗R[−], followed by a Reedy
trivial fibration J ⊗R[−]→ R[−]. Property (ii) follows immediately from the fact
that R[−]

∐

R[−]→ J ⊗R[−] is a Reedy cofibration.
Property (ii) immediately implies that the pushout-product map from property

(iii) is a cofibration. To see that it is a weak equivalence, we proceed by induction on
the degree of r. When r = 0 the given map is a section of the map J⊗R[r]→ R[r],
which was a trivial fibration by construction. Now suppose that property (iii) holds
for all r of degree < n and let s be of degree n.

This implies that the map {i} ⊗ X → J ⊗ X is a trivial cofibration for all
those normal presheaves X that can be obtained as iterated pushouts of boundary
inclusions in degree < n. This applies in particular to the boundary ∂R[s], so that
the first map in

{i} ⊗R[s] // {i} ⊗R[s] ∪{i}⊗∂R[s] J ⊗ ∂R[s] // J ⊗R[s]

is a trivial cofibration. Since the composite is the section of the trivial fibration
J ⊗R[s]→ R[s], property (ii) also follows for elements s of degree n. �

Remark 5.7. Model categories of presheaves often have a cylinder provided by the
so-called Lawvere interval [5, 1.3.9], i.e. by taking the product with the subobject
classifier. This does not work in our setting since it gives a factorization of the fold
map into a monomorphism, rather than a normal monomorphism, followed by a
weak equivalence.

Finally, we would like to illustrate the use of the theory of minimal fibrations by
means of the following application:

Example 5.8. Let us consider the following model for the homotopy theory of

connective spectra parametrized by a simplicial set S. The category
(

sSet/S
)Γop

of Γ-objects in sSet/S carries a model structure in which

• the cofibrations are the normal monomorphisms
• an object X : Γop → sSet/S is a fibrant object if it is Reedy fibrant (with
respect to the Kan-Quillen model structure on sSet/S) and the Segal maps

X(n) // X(1)×S X(1)×S · · · ×S X(1)

are trivial fibrations for all n ≥ 0, as is the shear mapX(2)→ X(1)×SX(1).

One can easily adapt the classical proof in simplicial sets (see e.g. [12]) to prove that
any minimal object in this model structure is a locally trivial bundle of Γ-spaces,
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i.e. a Γ-space over S whose pullback to a simplex ∆[n] is of the form ∆[n]× F , for
some Γ-space F .

Each map of simplicial sets S → S′ induces a Quillen pair

(

sSet/S
)Γop // (

sSet/S′
)Γop

oo

where the right adjoint pulls back a Γ-space over S′ to a Γ-space over S. This
Quillen pair is a Quillen equivalence whenever the map S → S′ is a weak equiv-
alence. Associating to each simplicial set S the above model category therefore
provides a functor

(5.1) sSetop // ModelCatR S � //
(

sSet/S
)Γop

A Γ-space over S is fibrant precisely when its pullback to each simplex of S is fibrant,
since the Reedy fibrancy conditions and the Segal conditions require certain maps
of simplicial sets over S to be (trivial) Kan fibrations. In other words, being fibrant
is a property ‘local’ in S, in the sense of Section 4.2. We can therefore apply
the proof of Proposition 4.1 to obtain the following variant of Proposition 1.2 for
parametrized Γ-spaces:

Corollary 5.9. The functor (5.1) sending a simplicial set S to the model category
of Γ-spaces parametrized by S, sends a homotopy pushout of simplicial sets to a
homotopy pullback of model categories.

This corollary remains true if one uses the covariant model structure on sSet/S
rather than the Kan-Quillen model structure, since being fibrant requires certain
maps of simplicial sets over S to be (trivial) left fibrations, which is again a property
local in S.
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