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Abstract

Oblate-prolate shape-coexistence is well-known in the N = Z nucleus 72Kr. Furthermore, recent experimental data implies that

there is a rapid shape transition at very low spins in this nucleus. We reinvestigate this problem by using large-scale shell-model

calculations with the monopole interactions derived from the monopole-based universal force that contains the tensor force in the

Hamiltonian. We show that in 72Kr, states with nucleon-quartet excitation from the p f shell to the g9/2-d5/2 orbits, which favor

large prolate deformation, compete with those having the p f shell as the main configuration with oblate deformation. These shapes

can coexist if the two types of states reside closely in excitation energy. In 72Kr the tensor force is found to provide precisely such

a coexistence condition near the ground state. As the tensor effect changes dynamically with orbital occupation when the nucleus

rotates, a rapid shape transition can occur.

Keywords: Shape coexistence and transition, N = Z nuclei, Tensor force, Nucleon-quartet excitation, Large-scale shell model

PACS: 21.10.Sf, 21.30.Fe, 21.60.Cs, 27.50.+e

1. Introduction

The shape of a nucleus is an emergent phenomenon that re-

sults from the participation of many valence particles interact-

ing via strong correlations. Coexistence of different shapes near

the nuclear ground state is well known in various mass regions

of the periodic table [1]. In nuclei, ground states with prolate

deformation are found to be much more abundant than those

with oblate deformation [2]. However, at or close to the N = Z

line in the mass region of 70 ≤ A ≤ 80, two different shapes,

with a strong prolate and a weak oblate deformation, can co-

exist [3]. Moreover, for proton/neutron numbers 34, 36, and

38, these shapes can change drastically as a function of spin

and/or isospin [4]. 72Kr, with the nucleon number N = Z = 36,

is believed to form an acute example of a nucleus that changes

shape with increasing spin. For example, it has been suggest-

ed by various theoretical calculations to have a predominantly

oblate ground-state but with mixing of a prolate configuration

at low excitation energies [4, 5, 6, 7, 8, 9, 10], and to undergo

rapid shape changes with rotation. Already at spins I = 4− 6,

a robust prolate band was found to be developed [11, 12, 13],

this occurs because when the nucleus rotates, particles in the f p

shell are more easily excited to the deformation-driving g9/2 or-

bit.

One important indication for shape coexistence in even-even

nuclei is the observation of a second 0+ state, 0+2 at low excita-
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tion energy, which may be interpreted as the ground state of a d-

ifferent shape. The 0+2 state in 72Kr, with excitation energy 671

keV, was first observed [14] as a shape isomer and interpreted

as the band-head of the known rotational structure with prolate

deformation. Shape isomers [15] have generally very different

structures from the ground state, and in the case of 72Kr, it was

suggested [16, 17] that its existence may have consequences for

nucleosynthesis in the rapid-proton capture process [18]. Self-

consistent deformed mean-field calculations have shown that

shape coexistence takes place in Kr isotopes [19, 20, 21]. Lat-

er, in order to improve deficiencies of the single-particle spec-

tra from the earlier calculation, the tensor field was included in

the mean-field calculations [22, 23, 24, 25]. Beyond-mean-field

calculations [26, 27, 28] were performed to understand the de-

tailed structure of the shape isomer. Very recently, a large E2

transition rate, B(E2;4+1 → 2+1 ), has been observed [29], which

is 3.4 times larger than the previously reported B(E2;2+1 → 0+1 )
rate [30]. This strongly suggests that the 0+1 state in 72Kr does

not belong to the same shape as the yrast 2+1 and 4+1 states,

thereby providing an extreme example of a rapid shape transi-

tion near the ground state.

All the above works indicate that 72Kr is located in a region

of rapidly evolving nuclear shapes as a function of both spin

and isospin. It is thus important to find the physical reasons that

lead to these rapid dynamic changes. Through the studies of the

neutron-rich nucleus 68Ni, it has been recently suggested [31]

that shell evolution can occur within the same nucleus through

the combined effect of different major configurations and the
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tensor force acting on them. The tensor force has been known to

drive the shell evolution toward the exotic neutron-rich region

[32], which could bring novel effects to binding energies and

to spectra. The tensor driven monopole components are known

to be remarkable for neutron-rich nuclei where the last protons

and neutrons occupy different orbits. In 72Kr, the last protons

and neutrons occupy the same f5/2 orbit and the tensor driven

monopole terms give rise to a large repulsive interaction. We

will show that for such self-conjugate nuclei the tensor force

effect is significant and that in 72Kr it could play a key role in

changing the nuclear shape at low spin.

2. The shell-model framework

We have recently proposed [33] a unified realistic shell-

model Hamiltonian called PMMU, consisting of the pair-

ing+multipole Hamiltonian and the monopole interaction ob-

tained by empirical fits to the monopole-based universal force

[34]. It has been shown [33] that the PMMU model can be ap-

plied to the p f and p f5/2g9/2 (cited as p f g) shells. In Ref. [35],

the model was systematically examined for the p f g shell nuclei

by calculating various properties such as binding energies, ener-

gy levels, and electromagnetic transitions. However, for heavier

N ∼ Z nuclei toward the mass-80 region, the d5/2 orbit, which

strongly couples with g9/2 through large quadrupole matrix el-

ements, will be important for the description of large deforma-

tion [36, 37, 38]. In the present work, we carry out shell-model

calculations with the PMMU Hamiltonian in an enlarged mod-

el space p f5/2g9/2d5/2 (cited as p f gd hereafter). The single-

particle (s.p.) energies and force strengths in the present work

are adopted from our previous paper [35]. The low-lying states

for the odd-mass nuclei in the fpg shell are described well in

the fpg shell. Apart from single-particle (s.p.) energies and

strength parameters in the PMMU model [33, 35], the d5/2 s.p.

energy is set to be 1.55 MeV higher than the g9/2 orbit so as to

reproduce the recent observed large B(E2;4+1 → 2+1 ) value [29]

and the two-neutron shell gaps ∆ for Z = 31 and 32, defined

by ∆ = S2n(N = 52)−S2n(N = 50) [39]. This new s.p. energy

is close to 1.76 MeV chosen by Zuker et al. [40] so that the

ground state band becomes solidly prolate. According to Ref.

[40], the shell gap ∆ varies as a function of orbital occupantions

due to the monopole interaction, and the “monopole drift” de-

termines the d5/2 s. p. energy to be 2− 3 MeV above the g9/2

orbit. Consequently, the shell gaps ∆ = 3.5 and 3.1 (in MeV),

estimated from the experimental binding energies for Z = 31

and 32, are obtained.

Shell-model calculations have been performed with the code

MSHELL64 [41]. For the p f gd model space, however, the re-

sulting dimension with exact calculation is huge. Therefore, the

nucleon numbers n in the g9/2d5/2 (cited as gd hereafter) mod-

el space were restricted to n ≤ 4. The spurious center-of-mass

motion was not removed in the present calculation because the

effects would be negligible [6].
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Figure 1: Energy levels, B(E2) values, and spectroscopic quadrupole moments

Qs for 72Kr. The B(E2) and Qs values are indicated by the numbers, in units of

e2fm4 and efm2, respectively. The red and blue arrows indicate the B(E2)s that

connect the states with negative and positive Qs values, corresponding to prolate

and oblate bands, respectively. Experimental data (left graph) are compared

with the PMMU calculations with (mid graph) and without (right graph) the

tensor force.

The PMMU Hamiltonian [33] is written as

H = H0 +HP +HM +Hm, (1)

H0 = ∑
α

εac†
α cα ,

HP = − ∑
J=0,2

1

2
gJ ∑

Mκ

P
†
JM1κ PJM1κ

HM = −
1

2
χ2 ∑

M

: Q
†
2MQ2M : −

1

2
χ3 ∑

M

: O
†
3MO3M :

Hm = ∑
a≤b,T

Vm(ab,T ) ∑
JMK

A
†
JMT K(ab)AJMT K(ab).

It includes the J = 0, 2 terms in the pairing channel and

the quadrupole-quadrupole (QQ) and octupole-octupole (OO)

terms in the multipole channel. We adopt the monopole matrix

elements Vm(ab,T ) obtained by empirical fits to the monopole-

based universal force VMU [34], which contains the central force

of a Gaussian form and the π+ρ meson’s exchange tensor force

(denoted as VT hereafter). In this way, the shell evolution is di-

rectly affected by the monopole interaction originating from the

tensor force.

3. Results and discussion: Role of the tensor force

To understand the role of the tensor force, we have performed

two sets of calculations for 72Kr, with and without VT, while

all other calculation conditions remain the same. The level

schemes obtained (mid and right graphs) are compared with ex-

perimental data (left graph) in Fig. 1. This figure shows also

2



Table 1: B(E2) and Qs values for the positive-parity yrast states and some collective states of 72Kr. Experimental data are taken from Ref. [11, 29].

B(E2) [e2fm4] Qs [efm2]

Jπ
i → Jπ

f exp cal cal(w/o VT ) Jπ
i cal cal(w/o VT )

2+1 → 0+1 810(150) 29 398 2+1 -78.9 -5.64

4+1 → 2+1 2720(550) 2288 1 2+2 24.2 8.79

6+1 → 4+1 2540 1 4+1 -99.7 44.2

8+1 → 6+1 2090(780) 2658 2677 4+2 41.1 -100.1

2+2 → 0+1 310 17 6+1 -107.7 -108.1

2+1 → 0+2 1634 3 6+2 47.6 62.3

2+2 → 0+2 60 145 8+1 -113.3 -113.8

4+2 → 2+2 352 17

6+2 → 4+2 361 0

4+1 → 2+2 61 245

6+1 → 4+2 361 2561

6+2 → 4+1 0 290

the B(E2) values and spectroscopic quadrupole moments Qs.

In this mass region, the same effective charges as those used

in Refs. [33, 35, 38, 42] are taken as ep = 1.5e and en = 1.1e.

We note that these effective charges reproduce well the B(E2)
values over a wide range of the f pg-shell nuclei. It can be seen

from the mid graph (labeled as ‘cal’) that the PMMU calcu-

lation with VT obtains correctly a 0+ as the first excited state.

Furthermore, the other experimentally-known yrast states up to

spin I = 8 are reproduced reasonably well. The second excited

2+2 state, not identified experimentally, is predicted to lie just

above the 2+1 state. On top of the 2+2 state, the calculation pre-

dicts a 4+2 and a 6+2 state. The calculated Qs for these states are

listed in Fig. 1 with either a positive or a negative value, in-

dicating that they are, respectively, oblate or prolate deformed.

The red and blue arrows for two different rotational bands show

the B(E2) transitions, with the numerical value labeled on the

arrows.

By comparing the calculations with and without the tensor

force in Fig. 1 and Table 1, we see that the Qs values for the

2+1 and 4+1 states and the B(E2;4+1 → 2+1 ) value are largely

enhanced when the tensor force is switched on. Those states

having large negative Qs are connected by large B(E2) values,

corresponding to strong prolate-deformation. The calculation

including the tensor force (see Fig. 1) suggests that the pro-

late states become yrast starting from I = 2. The calculated

B(E2;4+1 → 2+1 ) = 2288 e2fm4 is found to be in good agree-

ment with the experimentally-determined value of 2720(550)

e2fm4 [29] for this transition. As can be seen from ‘cal’ in Fig.

1, the calculated B(E2;2+1 → 0+2 ) is more than five times larg-

er than B(E2;2+2 → 0+1 ). Furthermore, the ground 0+1 state is

calculated to have positive Qs value and the band built on it is

connected by weaker B(E2)’s, which means oblate deforma-

tion. These results indicate that the ground 0+1 state does not

belong to the same shape as the 2+1 state. The larger exper-

imental value B(E2;2+ → 0+1 ) = 810(150)e2fm4 [29] may be

understood by a mixture of oblate and prolate configurations re-

sulting from enhanced excitations from the p f to the gd shells,

which is supported by the conclusion in another recent study

[10]. The limitation of our model space could be reason for

the smaller theoretical B(E2;2+1 → 0+1 ) than the experimental

one, while the B(E2;4+1 → 2+1 ) value is correctly reproduced.

Thus, the present calculation for the oblate bandhead should be

viewed as being qualitative rather than quantitative. All these

experimental and theoretical results suggest that 72Kr is a nu-

cleus with oblate and prolate shapes coexisting at low excitation

energy, which are mixed near the ground state.

When the tensor force is switched off in the calculation, (see

in the right graph of Fig. 1 labeled as ‘cal(w/o VT)’, a quali-

tatively different picture is obtained. Comparing the mid and

right graphs in this figure, we see two major differences. First,

without VT, the calculated Qs for the two 2+ states have very

small absolute values, corresponding to a near-spherical shape.

There are no significant B(E2) values for gamma decays com-

ing from states up to the 4+ level, suggesting that collective

states characterized with certain shapes are not formed in the

low spin region. This means that without the tensor force, the

previously-discussed competing picture (up to 4+) by the two

shapes disappears. Furthermore, although the prolate band can

still be formed, it appears at a much higher excitation region,

inconsistent with the experimental data. Thus the calculation

without the tensor part in the monopole-based universal force

VMU in (1) cannot describe the data.

We may understand the apparent differences between the

‘cal’ and ‘cal(w/o VT)’ results as follows. Since the monopole

matrix element Vm( f5/2, f5/2,T = 0) derived from the tensor

force, which gives rise to the isoscalar neutron-proton pair cor-

relation, is large and repulsive, the f5/2 orbit is pushed up by

this monopole term (as schematically shown in the insert to Fig.

2), which in turn reduces the f5/2-p1/2 energy gap when nucle-

ons occupy the f5/2 orbit. Thus, due to the tensor force, nucle-

ons can be more easily excited from the f5/2 orbit to the p1/2

orbit. Figure 2 shows occupation numbers for the oblate (blue)

and prolate (red) bands, with (solid) and without (dashed) VT in

the calculation, with calculated numbers listed in Table 2. For

each case, the occupations are very similar for different spin s-

tates with I = 0−6 and hence several lines in Fig. 2 appear to

bundle together. Proton and neutron occupation numbers in re-

spective orbits are equal to each other for an N = Z nucleus due

3



Table 2: Occupation numbers for 72Kr, same for protons and neutrons, are displayed for the lowest four spins with I = 0−6. For each spin, the lowest two states

are given, and their shapes (oblate or prolate) are determined based on the calculated sign of Qs. For each orbit, the first (second) number corresponds to the result

with (without) the tensor force.

Oblate Prolate

Orbits I = 0 I = 2 I = 4 I = 6 I = 0 I = 2 I = 4 I = 6

p3/2 3.503 3.445 3.462 3.418 2.354 2.377 2.340 2.335

3.374 3.247 3.315 3.209 2.196 3.335 2.192 2.186

f5/2 2.707 2.712 2.728 2.789 3.187 3.170 3.176 3.178

3.393 3.359 3.496 3.390 3.396 3.369 3.380 3.380

p1/2 1.218 1.207 1.192 1.123 0.485 0.508 0.494 0.496

0.734 0.827 0.648 0.800 0.427 0.770 0.440 0.442

g9/2 0.314 0.339 0.322 0.334 1.176 1.156 1.185 1.215

0.255 0.280 0.272 0.291 1.085 0.262 1.094 1.131

d5/2 0.259 0.297 0.296 0.337 0.799 0.790 0.804 0.777

0.243 0.287 0.268 0.309 0.896 0.263 0.894 0.861
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Figure 2: (Color online) Occupation numbers for 72Kr, same for protons and

neutrons. The solid (dashed) lines indicate occupation numbers calculated with

(without) the tensor force. Red and blue lines are used to distinguish occupation

numbers for the prolate and oblate bands shown in Fig. 1.

to conserved isospin. We first compare the occupation number-

s for oblate and prolate bands with the tensor force. As seen

from the solid blue curve in Fig. 2, nucleons in the oblate band

largely involve p f shell configurations with negligible occupa-

tions in the gd shell. On the other hand, in the prolate band,

the gd occupation is quite large and approximately two protons

and two neutrons jump into the gd shell. Thus, it is considered

that the large collectivity in the prolate band originates from the

simultaneous excitations of two protons and two neutrons from

the p f to gd shell. These quartet excitations will be discussed

further in Section 4.. Such excitations have also been suggested

for the interpretation of deformed bands in several N = Z nuclei

[45, 46, 47, 48].

When the tensor force is switched off, we find significant d-

ifferences in occupation for the oblate band. As seen in Fig.

2, without VT, the occupation number of the f5/2 (p1/2) orbits

increases (decreases) in the oblate band. Thus, due to the ten-

sor force, the oblate band rises in energy because protons and

neutrons in the f5/2 orbit jump up to the p1/2 orbit. The prolate

band stays almost at the same energy because, as one sees from

Fig. 2, the tensor force does not influence the occupations in the

prolate band very much. In other words, relative to the oblate

band, the prolate band is pushed down considerably due to the

tensor force effect. For the two 2+ states calculated without the

tensor force, however, the occupation numbers (see Table 2) are

small for the gd shell. This means that the protons and neutrons

do not jump up from the p f to gd shell when the tensor force

is switched off. As discussed above, the 2+ states do not have

large Qs, and are not connected by strong B(E2) values. When

the tensor force is switched on, the quartet excitations from the

p f to gd shell are clearly enhanced, which increases drastically

the collectivity of the prolate states built on the first excited 0+

state (see Fig. 1). We thus conclude that the apparent shape

changes discussed in Fig. 1 can be explained by the enhanced

excitation from the f5/2 to the p1/2 in the oblate configurations

and that this is a direct consequence of the tensor force.

4. Further discussion: Excitation of nucleon quartets

The presence of shape phase transitions [49] is well known

in nuclei in the high-spin region where spin-alignment occurs

[50]. As already suggested in Ref. [37] and experimentally sup-

ported in Ref. [44], abrupt changes in structure happen when

the proton and neutron numbers are near 35. In the present

work, we further demonstrate that 72Kr represents a unique ex-

ample whereby the shape transition occurs within one nucleus

due to excitation of nucleon quartets at very low spins. Figure

3 shows experimental data plotted in the form of spin I versus

rotational frequency h̄ω = [E(I)−E(I −2)]/2 for several self-

conjugate even-even nuclei from N = Z = 32 to 42. Note that

for any given spin, ω is inversely proportional to moment of

inertia defined as J = (I − 1/2)/h̄ω . One sees a clear sepa-

ration of two groups of data denoted by A (N = Z > 36) and

B (N = Z < 36), indicating rather distinct shapes. The exist-

ing data for 72Kr suggest that this N = Z = 36 nucleus lies at

a very special position. It is seen that the data point for I = 2

of 72Kr neither belongs to group A nor to group B, while those

for I = 4−8 fall into group A. This is consistent with the shape

mixing picture of the oblate and prolate configurations near the
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ground state. Our shell-model calculation for 72Kr finds that the

two I = 2 states fall in to the group A and B, respectively. Qual-

itatively, this indicates that there may be insufficient mixing in

our calculations to replicate the properties of the yrast 2+ state,

as already discussed earlier. However, a larger J in the group

A for the prolate band signifies a larger collectivity, which is

consistent with the B(E2) and Qs results discussed in Fig. 1.

Shape coexistence in nuclei had its historical examples [1] in

the neighborhood of the N = Z isotopes 16O, 40Ca, and 56Ni,

which are all α-particle multiplets. The high binding-energy of

the α-particle could make it energetically favorable for nucle-

on quartets [51] (comprising two protons and two neutrons) to

form within the nucleus. Projected Shell Model [52] calcula-

tions for the N = Z nuclei 48Cr [45] and 36Ar [46] showed that

along the yrast band, the excitation of nucleon quartets is the

most favorable mode when these nuclei rotate [48]. Indepen-

dently, Xu et al. [53] have recently found that such a quartet-

ting wave function is dominant for the α-cluster preformation

in dynamic processes of radioactive α-decay. Remarkably, the

states belonging to the group A in Fig. 3 clearly differ to those

in B by excitations of nucleon quartets from the p f shell to the

g9/2-d5/2 orbits. In the transitional nucleus 72Kr, the states with

nucleon-quartet excitation compete with those having only p f

orbital occupation. The phenomenon of shape-coexistence may

occur if the two types of states reside at similar energies at a

given spin. Our calculations suggest that here the tensor force

plays a role in setting up a shape co-existence environment near

the ground state, without which the two types of states would

have a greater separation energy (see Fig. 1). The tensor ef-

fect changes dynamically with spin and orbital occupation. In
72Kr, the consequence of the competition shows up as a dramat-

ic shape transition at I = 2 on the yrast line.

5. Summary

To summarize, the phenomenon of oblate-prolate shape-

coexistence in 72Kr is well known, but a deeper understanding

for this problem at the interaction level has been missing. In

order to learn about the physical origin, we have reinvestigat-

ed this problem by performing large-scale shell-model calcu-

lations using the PMMU interaction in the p f gd model space.

The monopole interactions derived from the monopole-based

universal force that contains the tensor force are explicitly in-

cluded in the Hamiltonian, and the role in the shape evolution

in self-conjugate nuclei can thus be discussed. By comparing

the calculations with and without the tensor force, we found key

differences between the two calculations in terms of the parti-

cle occupations in particular orbits. We thus conclude that shell

evolution can occur within the same nucleus through the com-

bined effects of participating orbits and the tensor force act-

ing on them. Shapes can coexist if two kinds of states, one

with large prolate deformation and the other with weak oblate

deformation, are found to be near the ground state. In 72Kr,

the structure difference between the two kinds of states is a

nucleon-quartet excitation from the p f shell to the g9/2-d5/2

orbits. Moreover, it is the tensor force that creates a dynam-

ical competition environment, in which a shape transition can

happen at very low spins. However, as our employed d5/2 s. p.

energy (1.55 MeV above the g9/2 orbit) is low compared to the

value used in Ref. [40], further investigation to determine the

d5/2 s. p. energy in this region is desired.

A remaining question is how to understand the fact that var-

ious beyond-mean-field calculations are able to describe, to a

reasonable extent, the oblate-prolate shape coexistence phe-

nomena in this mass region without explicit inclusion of the

tensor force. We believe that this question is more fundamental,

and a definite answer lies beyond the scope of the present pa-

per. It is well-known that the tensor force is a key ingredient in

the nucleon-nucleon bare interaction, and is explicitly included

in the shell-model interaction for the Hamiltonian constructed

from first principles. It has been long realized that in this mass

region, the mean-field single-particle energies are very differ-

ent from the data, and thus from the shell-model single-particle

energies if those are taken directly from the data [54]. We thus

speculate that the tensor effect must be hidden in the mean-field

approaches, even though the term does not explicitly appear,

so that their success in dealing with shape changes and shape

coexistence can be explained. However, a derivation from the

first principle is still lacking. On the other hand, the effect of

the tensor field in the mean-field approaches on the deformation

[21] and on Gamow-Teller transitions [55, 56] has been inves-

tigated, providing examples of explicitly including this force in

mean-field models to describe some particular quantities.
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