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Abstract Organic shales generally have low permeability unless fractures are present. However, how
gas, oil, and water flows into these fractures remains enigmatic. The alignment of clay minerals and the
alignment of fractures and cracks are effective means to produce seismic anisotropy. Thus, the detection
and characterization of this anisotropy can be used to infer details about lithology, rock fabric, and fracture
and crack properties within the subsurface. We present a study characterizing anisotropy using S wave
splitting from microseismic sources in a highly anisotropic shale. We observe very strong anisotropy
(up to 30%) with predominantly VTI (vertical transverse isotropy) symmetry, but with evidence of an HTI
(horizontal transverse isotropy) overprint due to a NE striking vertical fracture set parallel to the maximum
horizontal compressive stress. We observe clear evidence of a shear wave triplication due to anisotropy,
which to our knowledge is one of only a very few observations of such triplications in field-scale data. We
use modal proportions of minerals derived from X-ray fluorescence data combined with realistic textures
to estimate the contribution of intrinsic anisotropy as well as possible contributions of horizontally aligned
cracks. We find that aligned clays can explain much of the observed anisotropy and that any cracks
contributing to the vertical transverse isotropy (VTI) must have a low ratio of normal to tangential
compliance (ZN∕ZT ), typical of isolated cracks with low hydraulic connectivity. Subhorizontal cracks have
also been observed in the reservoir, and we propose that their reactivation during hydraulic fracturing may
be an important mechanism to facilitate gas flow.

1. Introduction

Organic-rich shales represent a substantial energy resource; however, due to their fine grain size they typically
have low matrix permeabilities and are difficult to produce unless fractures are available to enhance gas flow.
Shales also often have strong seismic anisotropy, which can be caused by the preferred alignment of intrin-
sically anisotropic minerals such as clays (Kendall et al., 2007; Sayers, 2005; Vernik & Nur, 1992) and can also
be produced by the presence of aligned cracks or fractures (Crampin, 1984; Hudson, 1980). Thus, the study
of anisotropy may be used to infer the interplay between fabric and fractures in shale reservoirs. Here we
estimate anisotropy in a shale using S wave splitting (SWS) measurements from microseismic data acquired
during hydraulic fracture stimulation.

Anisotropy due to horizontally aligned sedimentary fabric will produce an anisotropic system with a vertical
axis of symmetry (vertical transverse isotropy, VTI). VTI anisotropy can be fully characterized using the vertical
and P and S velocities (VP0 and VS0) combined with the Thomsen (1986) parameters—𝜀, 𝛾 , and 𝛿. These can
be used to describe how the P wave velocity and the horizontally (SH) and vertically (SV) polarized S wave
velocities vary with inclination (Figure 1). The 𝜀 and 𝛾 parameters describe the fractional difference between
the horizontal and vertical velocities of the P and SH waves, respectively. In shales 𝜀 and 𝛾 both tend to be
positive (i.e., higher horizontal velocities than vertical) and correlate with each other (Horne, 2013; Pervukhina
& Rasolofosaon, 2017). The 𝛿 parameter is more difficult to describe because its effect depends on its value
compared to the 𝜀 parameter. A special case, referred to as elliptical anisotropy, occurs when 𝛿 equals 𝜀, so
named because it produces elliptical P wavefronts from a point source and spherical SV wavefronts (Figure 1a).
Note that the SH wavefront is elliptical for all VTI cases. In most shales, however, 𝛿 is less than 𝜀 (Horne, 2013).
This distorts the P and SV velocity surfaces at oblique angles, producing velocities that are slower and faster,
respectively, compared to the elliptical situation, which may result in the SV and SH wavefronts crossing each
other (Figure 1b). In extreme cases, when 𝜀 is high and 𝛿 is sufficiently low, the SV velocity surface will fold
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Figure 1. Group velocity surfaces for P, SH, and SV waves in a VTI anisotropic medium with (a) elliptical anisotropy
(VP0 = 3.235 km/s, VS0 = 1.77 km/s, 𝜀 = 𝛿 = 0.37, and 𝛾 = 0.36), (b) 𝛿 lowered to 0.15 such that the SV and SH wavefronts
cross, and (c) 𝛿 further lowered to −0.05 to introduce triplications in the SV wavefront.

into itself producing multivalued wavefronts known as triplications, or cusps (Dellinger, 1991; Thomsen &
Dellinger, 2003) (Figure 1c). Such triplications have been known about theoretically for some time; however,
they are relatively rarely observed in field-scale data.

Another anisotropic parameter useful for analyzing the size of SV triplication is 𝜎, defined by Tsvankin and
Thomsen (1994) as

𝜎 = Γ2
0(𝜀 − 𝛿), (1)

where Γ0 is the vertical VP∕VS ratio. Thomsen and Dellinger (2003) showed that the condition for off-axis
triplication occurs when 𝜎 exceeds a critical value given by

𝜎crit =
2
3

(
1 + 𝛿 − 1

9Γ2
0

)
≡

18 + 18𝜀 − 2∕Γ2
0

27 + 18∕Γ2
0

. (2)

Indeed, the ratio 𝜎∕𝜎crit is found to be the dominant factor controlling the size of the triplications, even for
rocks with different values of 𝜀 and Γ0.

In addition to sedimentary fabric, aligned fractures or cracks can also contribute to the overall anisotropy of
a shale reservoir. Their effect will depend on some measure of the strength of the fracture set, usually quan-
tified with a fracture density term (𝜂), the ratio of normal to tangential compliance of the fracture (ZN∕ZT ),
and fracture orientation. For example, fracture sets are often steeply dipping or vertical which would produce
an anisotropic system with a horizontal symmetry axis (horizontal transverse isotropy, HTI) in the absence of
sedimentary fabric. In practice, however, there is usually some sedimentary fabric that the fractures are over-
printing producing an orthorhombic symmetry (Baird et al., 2013; Verdon et al., 2009) (i.e., three orthogonal
symmetry planes). Alternatively, horizontal fractures, microcracks, or compliant pores may be present that
would simply enhance the already existing VTI anisotropy (Allan et al., 2016; Sayers, 2005).

There are many techniques available to estimate anisotropy including the detection of nonhyperbolic move-
out velocities (e.g., van der Baan & Kendall, 2002; Tsvankin & Thomsen, 1994), or reflection amplitude variations
with azimuth and inclination (e.g., Hall & Kendall, 2003; Lynn & Thomsen, 1990). However, perhaps the simplest
indicator of anisotropy is S wave splitting. An S wave will split into two approximately orthogonally polarized
waves traveling at different speeds when it passes through an anisotropic medium. Anisotropy along the ray-
path can be characterized by measuring the polarization (𝜓 ) of the fast wave and the delay time (𝛿t) between
the wave arrivals (typically 𝛿t is normalized by path length to be expressed as a percentage S wave veloc-
ity difference, 𝛿VS). S wave splitting is particularly useful when applied to microseismic data recorded using
downhole arrays, as microseismic events typically produce strong S waves and both the source and receiver
are in the rock of interest (Baird et al., 2013; Verdon et al., 2009).
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Figure 2. (a) Map view and (b) cross-sectional view of microseismic event
locations. Well trajectories are shown as black lines and geophone arrays as
red triangles. Events are colored by time after the first event in the data set
and the size proportional to the inferred rupture area.

2. Microseismic Data Set

The microseismic data set we consider was acquired during hydraulic frac-
turing in the Horn River formation in northeastern British Columbia. This is
a quartz-rich gas-bearing shale, consisting of three members: the Muskwa,
Otter Park, and Evie formations. In the areas where the microseismic data
were obtained, gas is extracted from the formations along 10 horizontal
wells which were hydraulically stimulated using a “zipper-frac” technique,
where adjacent wells are fractured one after the other starting at the toes
of the wells and working toward the heels (Figure 2). Events were recorded
using 96 three-component geophones in three downhole arrays located
near the heels of the treatment wells, with instruments primarily located
within the Fort Simpson shales, a thick clay-rich organic-lean sequence
that overlies the Horn River formation.

Over 92,000 events were recorded during 119 individual fracture stages
carried out over a 17 day period. The events were detected and located
by the contractor, ESG solutions, using a 1-D anisotropic velocity model
(Figure S1 in the supporting information). This model was derived initially
using sonic logs and calibrated using perforation shots with known time
and position under the assumption of elliptical anisotropy (i.e., 𝜀 = 𝛿). It is
notable that while many of the target reservoir layers are anisotropic, the
strongest anisotropy is observed in the overlying Fort Simpson formation,
which dominates the raypaths between the sources and the receivers.

3. Shear Wave Splitting

The data were analyzed using an automated splitting approach which
allows for the easy processing of large data sets (Wuestefeld et al., 2010).
For each source-receiver pair with an S pick, the seismogram is first rotated
into the ray frame, to maximize the S energy on the transverse compo-
nents. The two splitting parameters, 𝛿t and 𝜓 , are then estimated using
two different approaches: the cross-correlation technique and the eigen-
value method. The difference in the estimated parameters provided by
these two methods is then used to produce an objective quality control in
the form of a quality index which varies from −1.0 for null measurements
to 0.0 for poor and +1.0 for good measurements. The ideal “good” mea-

surement are characterized by identical splitting parameters from each method. Figure 3 shows a diagnostic
plot from an example splitting measurements; note that the best splitting parameters are those that best
linearize particle motion once a correction is made.

Splitting analyses were applied to all source-receiver pairs with an S pick resulting in ∼1.6 million measure-
ments, of which ∼27,000 were considered high quality. We define a high-quality measurement as having a
quality index greater than 0.85, an error in 𝛿t less than 5 ms, an error in 𝜓 less than 10∘ and a signal-to-noise
ratio greater than 6. Following estimation of the splitting parameters, 𝛿t is normalized by path length to
express anisotropy as a percentage difference between the fast and slow S velocities, 𝛿VS. The average uncer-
tainty in event locations is estimated by the contractor to be around ±15 m. With most source-receiver path
lengths exceeding 300 m this translates to an expected relative error in 𝛿VS of around 5% due to event
location uncertainty.

Figure 4a shows all the high-quality measurements plotted on an upper hemisphere projection. It is clear
that the anisotropy is very strong, with 𝛿VS exceeding 30% in some instances. The anisotropy is dominantly
VTI since most fast directions are either SH (circumferential tick marks) or SV (radial tick marks) and the data
are nearly symmetrical about the vertical axis. There also appears to be a transition from SH fast for horizon-
tally propagating waves to SV fast for steeply propagating waves, indicating that the anisotropy cannot be
elliptical. Although VTI dominates there is evidence of an overprinting HTI component, which is more clearly
seen when the data are smoothed (Figure 4b). Notably, there is an azimuthal variation in the inclination of
the SV-SH crossover (i.e., the line of zero S wave splitting, where the two S velocity surfaces cross) with long
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Figure 3. Diagnostic plot for an example splitting measurement. (a) The SH, SV , and P components of the seismogram
and the time windows for splitting analysis. (b) S waveforms (top) and particle motions in the SH-SV plane (bottom)
before and after the splitting correction is applied.

axis oriented NE-SW. Additionally, the magnitude of the background VTI anisotropy for near horizontal rays is
reduced in this direction. These are both characteristic features of a vertical aligned fracture set embedded in
a strongly anisotropic VTI background rock, suggesting a NE striking dominant vertical fracture set, roughly
parallel to the regional horizontal compressive stress direction (Bell, 2015).

Since VTI dominates the anisotropy, we can visualize the S wave splitting as a function of inclination. Figure 5a
shows how the magnitude of splitting varies with inclination for a subset of the measurements, chosen to
minimize scatter due to azimuthal variations and lateral heterogeneity, with a color representing the polar-
ization of the fast wave in the ray frame (blue for SV ; red for SH). We can compare this to the predicted S wave
splitting for anisotropic models defined by Thomsen parameters. The 1-D anisotropic velocity model used to
locate the events provided estimates of 𝜀 and 𝛾 for each of the layers, but not for 𝛿. For this analysis we will
focus on the Fort Simpson shale, which is the thickest and most strongly anisotropic layer of the model, and,
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Figure 4. (a) Upper hemisphere plot showing all S wave splitting
measurements. Tick mark location indicates ray azimuth and inclination, tick
orientations indicate fast polarization direction, and tick length and color
indicate the magnitude of the anisotropy. (b) Same as in Figure 4a but with
measurements averaged within 5∘ × 5∘ bins.

due to the array geometry, dominates the splitting along most ray paths.
Figure 5b shows the predicted S-wave splitting from the Fort Simpson
shale, using the assumption of elliptical anisotropy (i.e., 𝜀 = 𝛿). This model
does a reasonable job matching the splitting at high inclinations, how-
ever, a consequence of the assumption of elliptical anisotropy is that the
predicted SH velocity is greater than or equal to the SV velocity for all
inclinations, meaning that it fails to produce SV-SH crossover observed in
the data.

If we assume 𝜀 and 𝛾 are reasonably well constrained in the velocity model
we can attempt to get a better fit the observations simply by modifying the
𝛿 parameter. If 𝛿 is decreased from 0.36 to 0.15 (Figure 5c), we see a SV-SH
crossover inclination that is reasonably close to observations (although
with lower magnitudes at steep inclinations than observed), while main-
taining the high-magnitude splitting for the near horizontal rays. Lowering
𝛿 further down to 0.0 better matches the magnitudes (Figure 5d) and pro-
duces an interesting feature where the SV wavefront folds over itself in the
vicinity of 40∘ inclinations, resulting in traveltime triplications. Thus, obser-
vations of triplications in the waveforms can provide additional constraints
on the relative magnitudes of 𝛿 and 𝜀.

4. Observations of Shear Wave Triplications
and Revision of Velocity Model

Shear wave triplications cannot be detected from SWS measurements
alone. Instead, a manual inspection of the waveforms is required to con-
firm the effect, ideally over an array of geophones spanning the range
of inclinations of the expected triplication, which is generally centered
around 45∘. Figure 6a shows an example of waveforms which appear to
exhibit triplication in the SV phase between inclinations of around 35 and
55∘. To confirm this is truly a triplication and to improve the anisotropic
velocity model, we compare the waveforms to synthetic seismograms cre-
ated using Maslov asymptotic theory (Guest & Kendall, 1993; Kendall &
Thomson, 1993). Maslov asymptotic theory is an extension to ray theory,
which, in addition to Fermat or geometric rays connecting the source and
receiver, also considers neighboring non-Fermat rays. A result of this is
that it provides valid waveforms in some regions where classical ray the-
ory breaks down, such as in the vicinity of caustics where rays focus and
waveforms fold back on themselves.

The model for the synthetics is composed of three layers above the source: the upper portion of the Otter
Park formation, the Muskwa formation, and the Fort Simpson shales. Although the upper 13 receivers are
located in layers above Fort Simpson, these layers are neglected from the synthetic model as the triplication
is observed primarily on the lower 23 receivers. For the initial model we assumed that the vertical P and S
velocities and Thomsen’s 𝜀 and 𝛾 from the velocity model were correct (Figure S1) and simply reduced 𝛿 to 0.1
for the Muskwa and Otter Park layers following estimates of Sayers et al. (2015), and 0.0 for the Fort Simpson
shale. We found that the model provided a reasonably good match for SV , reproducing a triplication similar
to that observed; however, the traveltimes for P and SH did not match. In particular, the P to S separation time
in the synthetics was smaller than observations for low (steep) inclinations suggesting further refinement of
the velocity model was necessary.

The velocity model used for event location was calibrated under the assumption of elliptical anisotropy;
however, the presence of triplications in the data indicates that the true anisotropy is highly anelliptical. Due
to this inappropriate assumption, it is likely that the vertical velocities, and possibly the values of 𝜀 and 𝛾 ,
would need to deviate from their true values during the calibration in order to minimize traveltime misfits.
To test this, we compared the vertical P and S velocities of the Fort Simpson shale from the velocity model
to velocities measured from sonic logs in a near-vertical well (Figure S2a). We found that in order to better
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Figure 5. (a) S wave splitting for a subset of the data set versus raypath inclination. Predicted S wave splitting in the Fort
Simpson shale assuming (b) elliptical anisotropy (𝛿 = 𝜀 = 0.37, 𝜎∕𝜎crit = 0), (c) 𝛿 lowered to 0.15 producing a SV-SH
crossover (𝜎∕𝜎crit = 0.99), and (d) 𝛿 lowered to 0.0 producing a triplication of SV (𝜎∕𝜎crit = 1.66). Color represents the
polarization of the fast wave in the ray frame (SV blue; SH red).

match the sonic logs, we needed to revise the velocity model by increasing VP0 and decreasing VS0. To update
the associated Thomsen parameters, we compared the group velocities predicted with the original elliptical
model to that of our revised anelliptical model (Figure S2) and adjusted the 𝜀 and 𝛿 parameters to minimize
the difference in VP between the models over the full range of inclinations while maintaining a triplication in
SV of the appropriate size. The 𝛾 parameter was increased such that the horizontal SH velocity was similar to
that in the elliptical model. Note that the first S arrival for each model matches reasonably well over all incli-
nations albeit with the revised model flipping between SH and SV . Details of the anisotropic parameters of
both the initial and revised models are given in Table 1.

Figure 6 shows the observed SV waveforms along the corresponding synthetic waveforms and raypaths. The
raypaths clearly show the ray focusing effect of the SV triplications, although it is notable the effect of tripli-
cations extend beyond the three receivers suggested by the raypaths, due to diffractions extending from the
cusps of the triplication. We note that in addition to reproducing the triplications, the traveltimes of the P and
SH phases also show good agreement with observations over the full range of inclinations (Figure S3).

5. Causes of VTI Anisotropy

To this point we have focused on estimating the magnitude of the VTI anisotropy of the overburden, without
consideration of its causes. The primary factors that can contribute to seismic anisotropy in sedimentary rock

Figure 6. An example of SV waveforms exhibiting triplication from a microseismic event showing (a) raw waveforms,
(b) synthetic waveforms, and (c) modeled raypaths. Traces are sorted by geometric inclination assuming a straight line
path from source to receiver. Arrows indicate the cusps of the triplications.
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Table 1
Estimated Velocity and Anisotropy Parameters of the Fort Simpson Shale From the Initial
Elliptical Anisotropy Velocity Model and the Revised Anelliptical Model

Model VP0 (km/s) VS0 (km/s) 𝜀 𝛾 𝛿 𝜎∕𝜎crit

Initial 3.235 1.770 0.37 0.36 0.37 0.00

Revised 3.380 1.650 0.33 0.46 0.01 1.79

are the intrinsic anisotropy due to lattice-preferred orientation (LPO) of anisotropic minerals (e.g., Valcke et al.,
2006; Vernik & Liu, 1997) and extrinsic anisotropy due to aligned fractures, cracks, pores, and grain boundary
contacts, along with their infilling material (e.g., Allan et al., 2016; Kendall et al., 2007; Sayers, 2005).

5.1. Effect of Mineral Alignment
Figure 7 shows estimates of the modal fraction of minerals along one of the boreholes derived from X-ray
fluorescence data as it passes from the Fort Simpson into the Muskwa formation, a contact which is marked
by a sharp decrease in anisotropy parameters (both 𝜀 and 𝛾 , Figure S1b). The dominant mineral constituents
are quartz and clays (illite, chlorite, and kaolinite) with some carbonates also present in the Muskwa. A notable
observation is that the strongly anisotropic Fort Simpson Shale has a much larger proportion of clays than
the more quartz-rich Muskwa (∼ 60% versus ∼ 20–40%). This is consistent with observations that anisotropy
of shales is often correlated with the amount of clay (e.g., Sone & Zoback, 2013). This is because clays and
other phyllosilicate minerals have significant intrinsic anisotropy and often have strong LPO due to their platy
nature (Sayers, 2005; Vernik & Liu, 1997), whereas quartz rarely has sufficient LPO to make a significant impact
on aggregate anisotropy (Valcke et al., 2006).

The contribution of anisotropy due to LPO can be estimated by averaging single-crystal elastic constants
based on their modal fraction and their crystal Orientation Distribution Functions (ODFs) (e.g., Kendall et al.,
2007; Valcke et al., 2006). To do this, we first consider a small domain of shale within which all the clay platelets
are aligned, and the remaining minerals (primarily quartz) are randomly oriented. Using the relative propor-
tions of minerals, we can calculate the effective anisotropic elastic tensor of the domain by combining the
single-crystal elastic constants of illite, chlorite, and kaolinite from Katahara (1996) with an isotropic quartz
background using Voigt-Reuss-Hill averaging. For the Fort Simpson shale based on Figure 7, we consider a
rock aggregate composed of 40% quartz, 36% illite, 16% kaolinite, and 8% chlorite. We can then introduce
disorder in the alignment of these domains by averaging over an appropriate ODF.

Although we do not have petrofabric data to estimate the ODF of the clays directly, we can model the effect
of clay alignment over a range of plausible textures using the theory of Sayers (1994, 2005), and the simpli-
fied matrix equations of Johansen et al. (2004). The theory assumes that both the local shale domains and the
resulting ODF are transversely isotropic, which allows the ODF to be characterized with two expansion coeffi-
cients of generalized Legendre functions: W200 and W400. The ODF or texture of the clay platelets are defined

Figure 7. Variation in mineralogy, as inferred from X-ray florescence data,
along a borehole as it crosses from the (left) Fort Simpson shale to the
(right) Muskwa formation.

by their location within the (W200,W400) plane. The case of W200 = W400 = 0
corresponds to randomly oriented clay platelets producing an isotropic
shale. At the other extreme when the clays are perfectly aligned, W200

and W400 take their maximum values (Wmax
200 =

√
10∕8𝜋2 and Wmax

400 =
3
√

2∕8𝜋2) resulting in very strong anisotropy. The effective anisotropic
stiffness tensor is calculated using the Voigt approximation, from which
the resulting Thomsen parameters can be determined.

Although all combinations of W200 and W400 up to their maximum values
are theoretically possible, in practice, disorder in clay platelet orientation
tends to reduce W400 faster than W200 since W400 is a higher-order moment
of the ODF (Sayers, 2005). Therefore, we would expect that the texture of
natural shales would fall within the region of the (W200,W400) plane defined
by W400∕W200 ≤ Wmax

400 ∕Wmax
200 .

In Figure 8a we follow the approach of Pervukhina and Rasolofosaon (2015,
2017) and plot the range of possible anisotropies (𝜀 and 𝛾) for all possi-
ble values of W200 and W400. The green line corresponds to textures for
which W400∕W200 = Wmax

400 ∕Wmax
200 , meaning we would expect natural shale
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Figure 8. (a) Cross plot of Thomsen’s 𝜀 versus 𝛾 for varying coefficients W400 (color) and W200 (thin isolines) of the ODF of
clay platelets for a model composed of 60% clays (36% illite, 8% chlorite, and 16% kaolinite), and 40% quartz. Yellow star
indicates the anisotropy of the Fort Simpson shale, and thick black line is isoline of incipient triplication (𝜎∕𝜎crit = 1.0);
textures above this line will produce triplications and those below it will not. The dashed line indicates a triplication
approximately of the size observed (𝜎∕𝜎crit = 1.79). Green line indicates textures where W400∕W200 = Wmax

400 ∕Wmax
200 ;

natural textures should plot below this line. (b) Same as in Figure 8a but for a model with additional cracks with crack
density, 𝜂 = 0.1 and ZN∕ZT = 0.0, aligned with the same ODF as the clay platelets. (c) Same as Figure 8b but with ZN∕ZT
= 1.0; note that the resulting texture now plots above the green line. (d) Contour plot of W400∕W200 of the resulting
textures for a range of crack parameters; solid line corresponds to W400∕W200 = Wmax

400 ∕Wmax
200 .

textures to fall below the line. In addition, we also plot isolines of 𝜎∕𝜎crit values of 1 (solid line), corresponding
to the line of incipient triplication separating triplicating textures above the line from nontriplicating textures
below it, and 1.79 (dashed line) corresponding to the value for the best fitting model (Table 1).

The yellow star in Figure 8a indicates the anisotropy of the Fort Simpson shale (𝜀 and 𝛾) as inferred by the
revised velocity model. We see that the corresponding clay platelet texture falls well within the triplicating
field and predicts a triplication close to the size of that observed in the data, while satisfying the condition
W400∕W200 ≤ Wmax

400 ∕Wmax
200 indicating it is a plausible texture. This suggests that the bulk of the anisotropy can

be explained by the LPO of intrinsically anisotropic clay minerals; however, a more detailed analysis of the LPO
would be required to test this.

5.2. Effect of Aligned Cracks or Grain Boundary Contacts
Although including the effect of aligned horizontal cracks are not strictly necessary to explain the observed
anisotropy, it is expected that the compliance of contact regions between parallel aligned clay crystals should
have some effect on the overall anisotropy (Sayers, 2005). Additionally, there is potentially also an effect of
horizontal microcracks due to the thermal maturation of kerogen in laminated shale (Carcione & Avseth, 2015;
Ougier-Simonin et al., 2016). To simulate this effect, we modified our rock physics model using the additional
compliance approach of Schoenberg and Sayers (1995) to incorporate cracks defined by a crack density term
(𝜂, equivalent to the normalized crack density of Hall et al., 2008) and ratio of normal to tangential compliance
(ZN∕ZT ), which we assume are oriented along the same ODF as the clay platelets (i.e., the orientation of the
cracks is controlled by the texture of the clay minerals).
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Figures 8b and 8c show examples of the predicted anisotropy for models incorporating cracks with a crack
density of 0.1 and a ZN∕ZT of 0.0 and 1.0, respectively. We see that for a low ZN∕ZT the primary effect of increas-
ing 𝜂 for a fixed texture (i.e., a fixed point on the (W200, W400) plane) is to subtly increase 𝛾 but not 𝜀, resulting in
a relatively small change in anisotropy. In contrast, for the high ZN∕ZT case adding cracks will increase both 𝛾

and, to a larger extent, 𝜀. This makes sense intuitively because P wave velocities (and thus 𝜀) are more sensitive
to normal compliance (ZN) than tangential compliance (ZT ).

A consequence of the enhanced anisotropy from the cracks is that different crack properties would require
different textures to explain the observed values of 𝛾 and 𝜀 in the Fort Simpson shale (yellow stars in
Figures 8a–8c). Interestingly, we find that the texture resulting from all crack-enhanced models produces a
similar sized triplication (i.e., all models plot close to the dashed line corresponding to 𝜎∕𝜎crit = 1.79); however,
models with high values of ZN∕ZT tend to require an increase in W400∕W200, migrating to a texture outside the
range that are likely to occur naturally (i.e., above the green line). This can be seen in Figure 8d which plots
the values of W400∕W200 of the textures required for a range of crack parameters, with the black contour cor-
responding to Wmax

400 ∕Wmax
200 . We can clearly see from this that if cracks do contribute to the anisotropy, they

must either have a low crack density or a low ZN∕ZT in order to maintain a plausible texture.

6. Discussion and Conclusions

The results clearly demonstrate how the analysis of S wave splitting from microseismic sources combined with
observations of triplications can help to improve anisotropic models. In particular, it provides constraints on
the 𝛿 parameter, which is often difficult to measure accurately using core measurements (Dellinger & Vernik,
1994) but is one of the more important parameters for surface seismic exploration, as it controls the near-offset
P wave anisotropy (Thomsen, 1986). Although, theoretically, the existence of shear wave triplications has been
known for some time, we know of only a few examples of inferred or observed triplications in field data (Hake
et al., 1998; Jolly, 1956; Slater et al., 1993). This is despite a recent statistical analysis of published anisotropy
parameters which suggests that over 25% of shales should be expected to produce triplications (Horne, 2013).
This may in part be due to the fact that the reflection angles of converted waves in typical surface seismic
reflection experiments rarely extend to the inclinations where triplications would be expected. However, with
the recent increase in downhole microseismic monitoring of hydraulic fracture stimulations, it is likely such
triplications are recorded in many data sets but may be ignored due to lack of awareness. To our knowledge
this is the first published example of a clear triplication due to anisotropy observed in microseismic data.

We have shown that by combining estimates of the modal proportions of minerals and their single-crystal
intrinsic anisotropies, we can infer details of the texture of clay minerals in shale and estimate their likely
contribution to the overall anisotropy. However, one of the limitations of our method is that we assume that
all the clay minerals aligned to the same degree. In reality this is likely not the case. For example, Valcke et al.
(2006) used X-ray Texture Goniometry to measure the LPO of phyllosilicates in a suite of sedimentary rocks
from the North Sea. They found that detrital mica typically showed strong alignment, whereas authigenic
clays such as chlorite and kaolinite were often fine grained and had a more diffuse ODF. Samples of the Fort
Simpson shale were not available to directly determine the ODF of its mineral constituents. Such analysis
would provide greater constraints on the texture of the various constituent minerals and further insight into
the relative contribution of microcracks to the anisotropy.

Although at this stage we cannot conclusively say that horizontal microcracks are providing a significant con-
tribution to the VTI anisotropy, we can say that if they do contribute then the cracks would need to have a
relatively low ZN∕ZT . A low ZN∕ZT is typical of fluid-filled cracks with low hydraulic connectivity (e.g., Chapman,
2003; Hudson et al., 1996; Pointer et al., 2000), which would be expected for a low-permeability shale. Recent
investigations into temporal changes in anisotropy during hydraulic stimulation have suggested that the
ZN∕ZT of fractures can increase as a result of reactivation leading to increased fracture connectivity (Baird et
al., 2013; Verdon & Wüstefeld, 2013). We do not see clear temporal variations in the Fort Simpson shale, how-
ever, as it is organically very lean and is not being actively stimulated but simply overlies the target units of
the Horn River formation. Recent rock physics modeling and laboratory investigations suggests that bedding
aligned cracks may have a stronger effect on the VTI anisotropy of thermally mature organic-rich shales (Allan
et al., 2016; Carcione & Avseth, 2015). This is because the conversion of load-bearing kerogen in laminated
shales to oil and gas effectively results in an increase in horizontally aligned pores. Indeed, we were provided
with some rock samples from the Horn River Formation and SEM analysis revealed that horizontal microfrac-
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tures are present (Figure S4). These fractures appear to have formed as a result of organic matter maturation
and filled with bitumen, which itself thermally matured and exsolved gas resulting in the formation of organic
matter porosity. Identification of such fractures not only provide weaknesses that could be reactivated during
hydraulic fracturing to provide conduits for gas flow but they also provide some evidence that horizontal frac-
tures could exist in the overburden. Although hydraulic stimulations are often thought to be dominated by
the creation and reactivation of steeply dipping fractures, experimental studies have shown that deformation
on these macrofractures can induce microfractures to develop which tend to localize along grain boundaries
or regions of contrasting mechanical properties controlled by the fabric, sometimes connecting previously
isolated pores of organic material (e.g., Daigle et al., 2017). Additionally, recent investigations into the moment
tensors of microseismic events during stimulation have highlighted the importance of bedding parallel slip
(Rutledge et al., 2015; Urbancic et al., 2016). This suggests that horizontal microcracks, which may contribute
to the VTI anisotropy of the rock, could interact with induced hydraulic fractures as a mechanism to facili-
tate gas flow. The methodology described here provides a means of monitoring the evolution of horizontal
fractures during stimulation using microseismic sources. The requires surveys with sufficient ray coverage to
characterize the two shear waves that propagate in an anisotropic medium, including any shear wave triplica-
tions. In field settings, this is only really feasible with downhole seismic monitoring arrays, but we note that it
could be also applied to vertical-seismic-profiling (VSP) or cross-borehole surveys with active S wave sources.
Furthermore, our approach is equally applicable in laboratory rock testing using ultrasonic S wave sources or
acoustic emissions experiments.
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