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Abstract.
We present a class of Multicommodity Flow Problems with Commodity Compatibility
Relations (MCFP-CCR), in which compatibility relations among commodities used at
each node are required. This class of problems has application in the Train Unit Schedul-
ing Problem (TUSP) [1, 2], where train units of different traction types may not be cou-
pled with each other to serve the same train trip. Computational complexity issues are
discussed and solution methods are proposed. Computational experiments using the pro-
posed solution methods are reported.

1 Introduction

The Multicommodity Flow Problem [3] is characterized by a set of commodities k ∈ K, |K| > 1 to
be flowed through a network represented by a graph formed by a node set N and an arc set A as
G = (N, A). Each commodity k has a source sk and a sink tk. Different types of the problem may differ
in features such as minimum supply requirements and/or capacity bounds shared by all commodities
on arcs and/or nodes, and other side constraints.

The multicommodity flow problem can be traced back to Ford and Fulkerson [4]. Surveys on
multicommdity flow problems can be found in Hu [5], Kennington [6], Ahuja et al. [3]. In general,
the continuous Multicommodity Flow Problem is solvable by a polynomial LP solver [3] while its
integer version is NP-hard [7, 8].

In a standard multicommodity flow problem, if a nodes and/or an arc is allowed to be flowed
by different types of commodities, commodity flows can share the node and/or arc as long as all
constraints are satisfied. In this paper, compatibility relations are imposed on commodities used at
nodes and/or arcs where only certain subsets of them can coexist. For instance, when five commodities
k1, k2, k3, k4, k5 are allowed at node j ∈ N, commodities used at j should be either from k1 and k2 or
from k3, k4 and k5, but not otherwise. We refer to this problem as the Multicommodiy Flow Problem
with Commodity Compatibility Relations (MCFP-CCR). If the flows are required to be integers, then
the corresponding problem is called Integer MCFP-CCR, or IMCFP-CCR. Families of commodities
are established, where commodities are compatible within the same family. Moreover, families will
partition commodities, i.e. no commodity can be compatible with other commodities from two or
more families, and a commodity can only belong to one family. Therefore, at most one family of
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commodities can be used at a node/arc. In this paper, we focus on the case that the compatibility
relations are imposed on nodes on a directed acyclic graph (DAG) as exhibited in the Train Unit
Scheduling Problem (TUSP) [1, 2]. Some conclusions are applicable to a general directed graph by
analogy.

Given a train operator’s timetable and a fleet of train units, the TUSP aims to cover each timetabled
train service by a train unit or units. The Train Unit Assignment Problem (TUAP) [9] is also relevant.
In [9] and [2], integer multicommodity flow models are used where nodes represent trips to be covered
by train units as commodities of different types. A notable feature of the TUSP is that more than one
train unit can be coupled to serve the same trip, which gives the requirement on unit type compatibility
relations, as often in practice, not any arbitrary train unit types can be coupled.

In [1, 2], in forming feasible train unit schedules, the above unit type compatibility requirement is
satisfied by either creating additional variables or by customized branching. We generalize this class
of problems as (I)MCFP-CCR. We give complexity analysis and propose recently developed solution
methods. Computational experiments will be reported. Conclusion and future research are discussed
finally.

2 (I)MCFP-CCR Models

Let G = (N, A) be a DAG with commodities k ∈ K, |K| > 1 partitioned by families f ∈ F and
commodity-graphs Gk = (Nk, Ak) as sub-graphs of G. Let Pk (Pk

j) be the set of commodity k paths
(passing through node j). The path formulation of (I)MCFP-CCR with path variables xp can be
“formulated” by the following “(I)LP”:

(PF) min
∑
k∈K

∑
p∈Pk

cpxp (1)

∑
p∈Pk

xp = bk, ∀k ∈ K (2)

∑
k∈K j

∑

p∈Pk
j

qk xp ≥ r j, ∀ j ∈ N (3)

∑
k∈K j

∑

p∈Pk
j

vk xp ≤ u j, ∀ j ∈ N (4)

used commodities at j are compatible, ∀ j ∈ N (5)

xp ∈ R+(Z+), ∀p ∈ Pk,∀k ∈ K (6)

In (1), cp is the cost for path p in Pk. (2) sets the total demand for each commodity. (3) gives the
minimum supply requirement r j ≥ 0 where Kj is the set of allowed commodities at j and qk is the
“task contribution” by a unit flow of k. (4) gives the capacity upper bound u j ≥ 0, where vk is the
“capacity consumption” by a unit flow of k. “Constraints” (5) are only descriptive. They require used
commodities at each node to be compatible. Finally (6) gives the variable domains for the continuous
and integer variants respectively.

3 Computational Complexity

Proposition 1. The IMCFP-CCR is strongly NP-hard.
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Proof. Any TUAP [9] instance is a special case of IMCFP-CCR with only one family of commodities.
TUAP is strongly NP-hard [9]. Therefore, IMCFP-CCR is strongly NP-hard. �

Next, it is shown that the decision problem of the MCFP-CCR, denoted as MCFP-CCR(D), is
a reduction from an NP-complete problem 3SAT [10]. Suppose there are n boolean variables X =
{x1, . . . , xn} and m clauses C1, . . . ,Cm, 3SAT asks whether there exists an assignment to X such that
C1 ∧ · · · ∧ Cm = T, where each clause C j is a conjunction of three logic variables such that each is
either a variable in X or the negation of a variable in X. For example, C1 = x1 ∨ x2 ∨¬x3 is a possible
clause.

Proposition 2. The MCFP-CCR is NP-hard.
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Figure 1: An illustration of an MCFP-CCR(D) instance in the proof, and highlights on dummy
sources/sinks wrt node h1T

1 and clause C1 = x1 ∨ x2 ∨ ¬x3.

Proof. (Sketch) We show that any 3SAT problem can be polynomially reduced to a special MCFP-
CCR(D) where each family has only one commodity, as illustrated in Fig. 1. For every boolean
variable xi ∈ X, we create a family source si and a family sink ti, as well as a “true” path and a “false”
path each containing m nodes, linked with si and ti. For each of the 2m nodes, we add a dummy
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family source/sink pair and arcs as shown in Fig. 1. For very clause C j, j = 1, . . . ,m, we create a
family source sn+ j and a family sink tn+ j. Three arcs are created from sn+ j and three arcs are linked
to tn+ j in the following way. If xi is in C j as itself, we add an arc from sn+ j to a node in the “false”
path between si and ti and another arc from this node to tn+ j; if xi is in C j as its negation, we add an
arc from sn+ j to a node in the “true” path between si and ti and another arc from this node to tn+ j. If
more than one clauses use the same variable, their arcs should be connected to distinct nodes in the
relevant paths. All family sources/sinks have a demand of 1, and for each internal node its r and u
values are also set as 1. It can be verified that any 3SAT problem can be polynomially transformed to
an MCFP-CCR(D) as described above. �

4 Solution Approaches: Node-family Branching
In [2] a method is proposed for the TUSP by adding extra binary variables associated for train-family
associations. One disadvantage of the above node-family variables is the difficulty in incorporating
them into a local convex hull scheme [11]. To resolve this, in [1, 11], an alternative way for ensuring
family compatibility by branching is used. We generalize this idea as node-family branching and
present ongoing research. It is suitable for both IMCFP-CCR and MCFP-CCR.

Let N′ be the set of nodes that can be potentially covered by multiple families and let F j be the set
of families allowed at j. Denote the formulation by removing (5) from (PF) as (PF0). Node-family
branching removes incompatible commodities at nodes by branch-and-bound (BB). Suppose linear
programming (LP) relaxation is used for getting lower bounds. The solution of the LP relaxation of
(PF0) at the current BB tree node will be checked and either (i) a network node covered by more than
one family is identified or (ii) no such a network node can be found and node-family branching is
stopped. Suppose a “multi-family” network node j∗ ∈ N′ is detected with families f1, . . . , fr covering
it, and a family f ∗ ∈ { f1, . . . , fr} is selected. Then two branches will be formed in the following way:
(assuming the left has a higher priority)

• Left branch: only f ∗ is allowed to cover j∗.

• Right branch: f ∗ is forbidden to cover j∗.

The following discusses two technical issues regarding node-family branching. The first is on
branching variable selection, that is, which ( j∗, f ∗) pair will be selected. The second is only relevant to
the IMCFP-CCR, which investigates how to integrate node-family branching with integer branching.

4.1 Variable selection on ( j∗, f ∗)

Branch on the Most/Least Diverse Node.

This corresponds to branching on the “most/least fractional” (decimal part closest/farthest to 0.5)
schemes used in fractional-to-integer branching. Given an LP relaxation of the tree node nBB to be
branched, we define the flow proportion of family f over a network node j as

Rf , j :=

∑
k∈ f
∑

p∈Pk
j
xp∑

k∈K j

∑
p∈Pk

j
xp
. (7)

Then the family diversity of node j can be defined following Shannon’s diversity index [12] that is
commonly used as a quantitative measure in reflecting how many and how diverse of different types
in a set of collection of them. The family diversity over node j is defined as

Hj = −
∑
f∈F j

R f , j ln Rf , j. (8)
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When all used families have the same proportion 1
|F j | , the family diversity takes its maximum value

Hmax
j = ln |F j|. The more “unequal” the abundances of families, the smaller the value of Hj. When

there is only one family, Hj takes its minimum value Hmin
j = 0. Then j∗ can be selected either by

j∗ = arg maxHj>0(Hj), or its opposite j∗ = arg minHj>0(Hj). In either case, when j∗ is chosen, we
choose f ∗ by f ∗ = arg max(Rf , j∗ ).

Branching on Fixed Order.

An ordered list of all nodes in N′ is set before the BB process as: L(N′) : 〈 j1, j2, . . . , j|N′ |〉. The
selection can be simply accomplished by finding the first multi-family covered node in the list. It
avoids looping over the entire N′ at the price of poor flexibility. This naive strategy can be especially
useful for DAG, provided the list is constructed according to the “topological sorting” [3] of the nodes.
The “single-direction” nature of a DAG suggests that a branching decision made on a node will often
have significant impact on its successors.

Branching on Pseudocosts.

Pseudocost branching [13–16] tries to estimate the objective changes caused by branching on poten-
tial candidates and chooses the one yielding a largest change, based on empirical evidence that the
pseudocost of each variable is relatively “constant”. Although without explicit variables, the idea can
be applied to node-family branching. Suppose at tree node n, the actual down and up pseudocosts due
to branching on ( j, f ) can be calculated by

ψn−
j, f =

zn−
j, f − zn

Rn
j, f
, ψn+

j, f =
zn+

j, f − zn

1 − Rn
j, f
, (9)

where Rn
j, f is the flow proportion at n as defined in (7), zn is the objective value of n, and zn−

j, f and zn+
j, f

are the objective values of the right and left branches if ( j, f ) is chosen. By collecting sufficient infor-
mation of ( j, f ) over tree nodes n1, ..., nM , the “artificial” pseudocosts of ( j, f ), denoted by Ψ−j, f , Ψ

+
j, f ,

can be estimated from ψn1−
j, f , ..., ψ

nM−
j, f and ψn1+

j, f , ..., ψ
nM+

j, f respectively. Then the objective change at a
subsequent tree node n can be estimated by

∆n−
j, f = Ψ

−
j, f R

n
j, f , ∆

n+
j, f = Ψ

+
j, f (1 − Rn

j, f ). (10)

Finally, j∗, f ∗ can be determined at n by some rules. For example, applying the rules in [15], we have
( j∗, f ∗) = arg max{α1 min(∆n−

j, f ,∆
n+
j, f ) + α2 max(∆n−

j, f ,∆
n+
j, f )}, α1 + α2 = 1, 0 < α1, α2 < 1, with α1, α2 set

from experiences.

4.2 IMCFP-CCR: Integration with Integer Branching

One way to solve the IMCFP-CCR is to integrate node-family branching with integer branching on
the same BB tree. Since there are two branching systems, a priority arrangement has to be set if both
of them can be used. We use “nf�int” to denote the case when node-family branching (nf) has priority
over integer branching (int). This priority can be updated either in a static or dynamic way. In either
case, an initial priority is set. For the static strategy, the priority remains the same throughout the
BB process. For the dynamic strategy, the priority is updated such that if no branching candidate can
be found according to the current branching system, the secondary system will take over from the
current.
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5 Computational Experiments

Real-world datasets based on a UK rail network were used. Two coupling incompatible train unit
types, c360 and c321, differing in seat capacities and coupling upper bounds, were allowed to serve
all trips. The objective is to minimize the number of used units. Constraints (3) and (4) were replaced
by train convex hull constraints [1, 11]. A customized branch-and-price solver was used based the
simplex solver of Xpress-MP 7.7. The maximum number of BB tree nodes was set to 5000 and the
maximum time was set to 24 hours.

Table 1. Experiments on MCFP-CCR

instance ( j∗, f ∗) opt feas unit # feas sol BB# time solution
selection obj val (360/321) # (second) quality
“one-family” 23 8/15 – – 2 optimal

small network fixed: toplg-sort 23 8/15 3 448 126 optimal
(137 nodes, fixed: random fail – 0 5000 6637 –
2690 arcs) most diverse 23 8/15 2 101 24 optimal

least diverse 24 13/11 2 5000 11426 sub-opt
“one-family” 133 33/100 – – 79 optimal

large network fixed: toplg-sort 134 34/100 5 445 86400 sub-opt
(512 nodes, fixed: random fail – 0 1012 86400 –
23015 arcs) most diverse 137 37/100 2 910 86400 sub-opt

least diverse 133 33/100 2 181 592 optimal

Table 1 gives the results for MCFP-CCR on a small and a large network respectively. Four train-
family selection strategies and an instance where the two families were set to be compatible (“one-
family”) were compared. There is evidence that topological sorting based on trains’ departure times is
advantageous compared with branching on a random order of the trains. Most/least diverse branching
outperformed the rest. Table 2 gives the results on experiments for IMCFP-CCR on the small network.
Different branching strategies were compared. The initial priority setting can be crucial as all the runs
with “int�tf” except one failed. The differences between static and dynamic strategies were not very
significant. The “most diverse” train-family selection strategy outperformed the rest. Experiments
regarding large scaled network IMCFP-CCR and the selection strategy based on pseudocosts will be
conducted in the future.

Acknowledgments. This research is supported by an EPSRC project EP/M007243/1. We would like
to also thank FirstGroup for their collaboration.
Data Statement FirstGroup has provided relevant data for the research, part of which is com-
mercially sensitive. Where possible, the data that can be made publicly available is deposited in
http://archive.researchdata.leeds.ac.uk/.
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