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The non-reducing disaccharide trehalose can serve as a protectant against a range of 

environmental stressors, such as heat, cold, or dehydration, in both prokaryotes and 

eukaryotes, with the exception of vertebrates. Here, we analyzed trehalose metabolism 

in the facultatively parasitic organism Acanthamoeba castellanii, known to respond to 

unfavorable external conditions by forming two resistant stages: a cyst, produced in the 

case of chronic stress, and a pseudocyst, formed in reaction to acute stress. The possible 

role of trehalose in the resistant stages was investigated using a combination of 

bioinformatic, molecular biological and biochemical approaches. Genes for enzymes 

from a widespread trehalose-6-synthase-trehalose-6-phosphate phosphatase (TPS-TPP) 

pathway and a prokaryotic trehalose synthase (TreS) pathway were identified. The 

expression patterns of the genes during encystation and pseudocyst formation were 

analyzed and correlated with the time course of cellular trehalose content determined 

mass spectrometrically. The data clearly demonstrate fundamental differences between 

encystation and pseudocyst formation at the level of cellular metabolism. 

 

Keywords: Trehalose; Acanthamoeba; cyst; pseudocyst; mass spectrometry; phylogeny. 

 

Introduction 

 

The genus Acanthamoeba (Amoebozoa) represents free-living amoebae found in disparate 

ecosystems all over the world. Acanthamoebae are considered the most widespread protists in 

nature. Moreover, under specific conditions, acanthamoebae are able to infect humans and 

cause rare but serious diseases, including so-called granulomatous amoebic encephalitis, a 
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uniformly fatal infection of the central nervous system of an immunocompromised individual, 

and amoebic keratitis, a vision-threatening infection of the eye (Cabral and Cabral 2003; 

Schuster and Visvesvara 2004). Thus, it is evident that during their lives, acanthamoebae face 

fundamentally different environmental stressors. The life cycle of Acanthamoeba consists of 

two mononuclear stages: an active amoeba (a trophozoite) and a dormant cyst. Acanthamoeba 

cysts are formed upon exposure of trophozoites to long-lasting unfavorable environmental 

conditions, such as drought or starvation (Neff et al. 1964). Cysts are also formed in brain or 

cornea tissues during chronic infection. According to in vitro experiments, encystation, i.e., 

transformation of a trophozoite into a cyst, takes 16-24 hours (Köhsler et al. 2008; Lloyd et al. 

2001). In the course of this process, the cell volume decreases, and a double-layered wall 

assembles on the cell surface. Cellulose is the main component of the inner cyst wall layer 

(known as the endocyst), whereas the outer layer (the exocyst) is mostly proteinaceous 

(Bowers and Korn 1969; Weisman 1976). As a cyst, Acanthamoeba cells can remain viable 

for years (Aksozek et al. 2002; Mazur et al. 1995). Recently, Kliescikova et al. (2011a) found 

that under acute stress (induced in vitro by exposure of cells to organic solvents), trophozoites 

rapidly differentiate into pseudocysts, another stage enabling acanthamoebae to survive life-

threatening conditions. Pseudocyst formation was also observed in acanthamoebae exposed to 

contact lens solutions containing propylene glycol (Kliescikova et al. 2011b) and in marine 

parasitic amoeba Neoparamoeba perurans when subjected to fresh water (Lima et al. 2017). 

In contrast to cysts, Acanthamoeba pseudocysts are formed within two hours, their surface is 

covered with a single-layered fibrillar mannose/glucose coat, the cyst-specific protein CSP21 

is not expressed, and their resistance to temperature, pH or desiccation is limited (Kliescikova 

et al. 2011a). Thus, Acanthamoeba can modify a cellular stress response according to external 

stimuli. A recent analysis of the genome of A. castellanii revealed many proteins that were 

putatively involved in the modulation of the cellular response to external cues. This analysis 
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included a large number of protein kinases of different kinase families (Clarke et al. 2013). 

However, other mechanisms involved in the defense of the internal environment of the 

Acanthamoeba cell during adaptation to stress remain poorly understood, and the available 

experimental data are limited to the characterization of ultrastructural changes, chemical 

composition of the envelope and resistance parameters of the resting stages (Bowers and Korn 

1969; Kliescikova et al. 2011a; Weisman 1976).  

In many eukaryotes, stress resistance is accompanied by the synthesis of protective 

compounds to alleviate the effects of anhydrobiosis, freezing, and osmotic pressure on 

macromolecular assemblies such as membranes. This role is often played by carbohydrates, 

trehalose or the sugar alcohol mannitol, as described previously (Lourenço et al. 2016). In the 

genome of A. castellanii, genes coding for several enzymes of biosynthetic pathways for 

mannitol and trehalose have been reported, and protective roles for these compounds have 

been suggested (Anderson et al. 2005; Watkins and Gray 2008). However, despite previous 

identification of putative genes involved in the synthesis of mannitol, we recently found 

(Binova et al. 2012) that mannitol is not present in either stage of the Acanthamoeba life 

cycle. Therefore, we aimed to further investigate the presence and synthesis of trehalose 

during the formation of the stress-resistant stages of acanthamoebae. Moreover, a recent study 

by Clarke et al. (2013) of the genome of A. castellanii enabled our investigation of the 

molecular mechanisms of trehalose synthesis in detail. 

Trehalose is a non-reducing disaccharide formed from two glucose units linked 

together in an α, α -1, 1-glycosidic linkage, which makes it a very stable molecule. Trehalose 

occurs in a wide variety of organisms, including archaea, bacteria, protists, plants and 

arthropods (Elbein et al. 2003). There are at least five different pathways for its synthesis 

described in bacteria (Avonce et al. 2006, Paul et al. 2008). The most widely distributed and 

best-known pathway involves two catalytic steps. In the first step, trehalose-6-phosphate 
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synthase (TPS) transfers glucose from UDP-glucose to glucose-6-phosphate to form 

trehalose-6-phosphate. Subsequently, trehalose-6-phosphate is dephosphorylated via 

trehalose-6-phosphate phosphatase (TPP) to produce trehalose (Elbein et al. 2003; 

Iordachescu and Imai 2008). This is the only pathway that was also conclusively 

demonstrated in eukaryotes (Roth and Sussman 1966). Of the four remaining pathways, three 

are found in both bacteria and archaea (Avonce et al. 2006). The trehalose-synthase pathway, 

whereby trehalose is formed from maltose in a single transglycosylation reaction via trehalose 

synthase (TreS), is considered unique to bacteria (Avonce et al. 2006; Paul et al. 2008). 

In this study, we searched the Acanthamoeba genome for putative enzymes involved 

in trehalose synthesis pathways. The recovered sequences were analyzed and placed into the 

phylogenetic context. Using qPCR, we followed a time course of expression of mRNA for 

these proteins during encystation and pseudocyst formation and determined correlations 

between the mRNA expression patterns of the enzymes and concentrations of cellular 

carbohydrate pools. Based on the results, we propose the presence of two functional pathways 

of trehalose synthesis in Acanthamoeba. Moreover, our results clearly support the view that 

encystation and pseudocyst formation, the two stress responses of Acanthamoeba, represent 

fundamentally different processes. 

 

Results 

 

Phylogenetic Analyses 

As the first step, we searched the genome of A. castellanii for the presence of genes coding 

for enzymes known to participate in trehalose synthesis in other organisms (Avonce et al. 

2006). We identified four putative genes from two trehalose synthesis pathways, namely, a 

single gene for TreS and three variants of a fusion gene for the TPS-TPP fusion protein. No 
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single-domain TPS or TPP enzymes were found. Next, we analyzed the phylogenetic context 

of the genes. 

 

TreS in Acanthamoeba 

The presence of a gene for TreS in the genome of A. castellanii has already been suggested by 

Clarke et al. (2013). Our search supported this finding. The BLAST search based on the A. 

castellanii sequence also showed the presence of putative TreS sequences among other 

species of free-living Amoebozoa. TreS is a member of oligo-1, 6-glucosidase subfamily of 

the GH13 family of glycoside hydrolases (Kuriki and Imanaka 1999). To determine the 

identity of the putative amoebic TreS unambiguously, we assembled a dataset covering the 

whole range of diversity of the GH13 hydrolases and subjected it to a phylogenetic analysis. 

As shown (Fig. 1), the sequences retrieved from representatives of Amoebozoa clearly 

belonged to the TreS subfamily of GH13 hydrolases forming a monophyletic group. All 

methods of phylogeny reconstruction placed the Amoebozoa sequences in the basal position 

with respect to the bulk of prokaryotic proteins. Interestingly, all Amoebozoa TreS sequences 

lacked the C-terminal domain. This domain with a probable kinase activity is fused to TreS in 

many groups of bacteria, e.g., proteobacteria, cyanobacteria and chlorobi (Jarling et al. 2004). 

The topology of the tree (Fig. 1) suggests that the C-terminal domain represents a later 

addition to the TreS enzymes and that the acquisition of the TreS gene by an ancestor of the 

extant amoebae preceded the C-terminal fusion. The absence of the C-terminal domain is an 

aspect shared by the Amoebozoa and actinobacteria, of which the high-resolution structure of 

TreS is available (Mycobacterium avium and M. smegmatis) (Caner et al. 2013, Roy et al. 

2013). Comparative analysis of the Amoebozoa TreS with the mycobacterial enzymes 

revealed the conservation of the catalytic residues and the domain organization of the enzyme 
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(Fig. 2). This finding indicates that the TreS sequence recovered from the Acanthamoeba 

genome represents an active enzyme. 

 

TPS-TPP in Acanthamoeba 

Because we identified only fusion genes for TPS-TPP (see above), both domains were 

analyzed together in the phylogenetic analysis as in Yu et al. (2010). The phylogenetic 

position of the TPS-TPP proteins from A. castellanii is shown in Figure 3. The sequence, 

hereafter denoted TPS-TPP 1, is placed at the base of all eukaryotic enzymes. The other two, 

denoted TPS-TPP 2A and 2B, are positioned at the base of the group of fungal enzymes. The 

tree was rooted using the prokaryotic protein sequences. In both cases, the sequences retrieved 

from A. castellanii were grouped with the TPS-TPP enzymes from other Amoebozoa species. 

The genomes of many organisms contain multiple copies of the enzymes of the TPS-

TPP pathway, with many of these copies likely coding for enzymatically inactive proteins 

serving regulatory or structural functions (Avonce 2006). Thus, the sequences of the TPS-TPP 

from A. castellanii were analyzed in more detail to assess their functionality. Sequences from 

Saccharomyces cerevisiae were chosen because this model organism contains a set of TPS-

TPP pathway enzymes, including both active and inactive forms, and the course of its TPS-

TPP pathway is well understood (Gancedo and Flores 2004). Furthermore, sequences of 

single-domain TPS and TPP proteins of which high-resolution structures are known were 

included in the comparison (OtsA from Escherichia coli, PDB: 1GZ5 for TPS and TPP from 

Thermoplasma acidophilum, PDB: 1U02). These analyses indicate complete conservation of 

the catalytic residues of the TPS domain of the primitive TPS-TPP 1 protein sequence but not 

in TPS-TPP 2A and 2B of the ‘fungal’ clade (Fig. 4). In contrast, in the TPP domain, TPS-

TPP1 lacked several conserved catalytic residues that were present in TPS-TPP 2A and 2B 

(Fig. 5). Assuming that the absence of several of the conserved catalytic residues implies the 
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absence of the catalytic function, TPS-TPP 1 is deficient in TPP activity, whereas TPS-TPP 

2A and 2B lack TPS activity. Thus, the two phylogenetically distinct types of TPS-TPP 

appear to be able to complement each other in providing the complete pathway of trehalose 

synthesis in Acanthamoeba.   

The bioinformatic analyses suggests that A. castellanii possesses a functional 

enzymatic apparatus of two pathways for the synthesis of trehalose. To test whether these 

pathways actively participate in the stress defense response, we analyzed the expression 

patterns of the enzymes and monitored the cellular carbohydrate levels during encystation and 

pseudocyst formation. 

 

Gene Expression of Enzymes for Trehalose Synthesis During Acanthamoeba 

Differentiation 

To explore the expression patterns of genes for trehalose synthesis during encystation and 

pseudocyst formation, we performed a qRT-PCR analysis of all four trehalose synthesis genes 

found in the Acanthamoeba genome, namely, TPS-TPP 1, TPS-TPP 2A, TPS-TPP 2B and 

TreS.  

 In Acanthamoeba cells undergoing differentiation into pseudocysts (Fig. 6A), all these 

enzymes were upregulated within a maximum of 30 minutes after initiation/induction of the 

process and gradually decreased thereafter until the last time interval monitored in our 

experiments (72 hours). Nevertheless, the mRNA levels for all studied genes always exceeded 

the levels in the trophozoites.  

In encysting cells (Fig. 6B), genes of only two of the enzymes, namely TPS-TPP 2B 

and TreS, showed higher expression than in the trophozoites. Maximum expression was 

observed 2 hours post-induction. During the next 12 to 24 hours, gene expression of both 

enzymes declined substantially. Within the next 48 hours, the levels of mRNAs of both 
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enzymes dropped below the levels determined in the trophozoites (representing the level at 

time zero) (Fig. 6B, time intervals from 48 to 72 hours). The expression of two other genes, 

namely TPS-TPP 1 and TPS-TPP 2A, was repressed during the whole process of encystation. 

During the first two hours, the amount of the mRNA for these enzymes was slightly lower 

compared to the amount at time zero (the trophozoite stage), and it continued to decrease until 

the end of the monitoring period (72 hours). 

Regarding changes in mRNA expression of the trehalose synthesis genes, there were 

considerable differences between pseudocyst formation and encystation: up to 50-fold 

enhancement during the former compared to a maximum increase of two-fold during the latter 

(Fig. 6A, B). 

 

Quantitative Changes in Carbohydrate Levels in Differentiating Acanthamoebae  

Mass spectrometric quantification was used to determine the amounts of trehalose as well as 

those of glucose and maltose that may serve as substrates for trehalose synthesis in 

Acanthamoeba cells undergoing encystation or pseudocyst formation. The analysis first 

revealed that trehalose is present in all Acanthamoeba stages, trophozoites, mature 

pseudocysts and mature cysts (Fig. 7). While in the mature pseudocyst (Fig. 7A: time interval, 

2 hours), the amount of trehalose was approximately 50% less than in the trophozoite. In the 

mature cyst (Fig. 7B: time interval, 24 hours), the level of this carbohydrate was 

approximately 30% higher than that in the trophozoite. During differentiation of the 

trophozoites to the pseudocysts, the level of trehalose showed two peaks, at 0.5 and 24 hours 

post-induction (Fig. 7A), that were separated by a transient decrease at approximately 2 hours 

(a pseudocyst maturation). During encystation, a marked increase in the trehalose levels 

occurred at 12 hours, and they remained elevated for up to 48 hours, followed by a decrease at 

72 hours (Fig. 7B). The glucose level detected in the trophozoites (Fig. 7 A, B; time interval, 
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0.1 hours) markedly dropped at the beginning of both processes (Fig. 7A, B; time interval, 0.5 

hours). A subsequent decrease was observed at 2 and 12 hours for pseudocyst formation and 

encystation, respectively. The amounts of maltose decreased 30 minutes after the induction of 

pseudocyst formation (Fig. 7A) and 12 hours after the induction of encystation (Fig. 7B). The 

levels of maltose and glucose were approximately zero in the mature pseudocysts (time 

intervals from 2 to 72 hours) and very low in the mature cysts (time intervals from 24 to 72 

hours).       

 

Discussion 

 

Phylogenetic Analysis 

In this paper, we present evidence that the genome of A. castellanii contains genes for 

enzymes from two different pathways for trehalose synthesis, the prokaryotic TreS and the 

widespread TPS-TPP-based pathways, and that according to the bioinformatics data, these 

pathways are functional.  

The phylogenetic analysis, which determined Acanthamoeba TreS to be a member of 

the TreS subfamily that forms a monophyletic group together with other Amoebozoa on the 

basis of the TreS part of the tree, suggests a single gene transfer event preceding the 

diversification of the extant Amoebozoa members. Moreover, all methods of phylogenetic 

reconstruction placed Amoebozoa TreS sequences in the basal position with respect to the 

bulk of prokaryotic proteins. Such placement of the eukaryotic TreS might be a result of faster 

molecular evolution of bacteria than eukaryotes, leading to faster divergence of the bacterial 

sequences. This possibility implies that the eukaryotic TreS sequence might in fact represent a 

more primitive form of the protein.  
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 Comparison of the A. castellanii TreS sequence to the bacterial enzyme showed a 

complete conservation of the catalytic residues. Of the conserved regions, one of particular 

interest is the FLRNHDELTLEMVT motif in the extended active loop of domain A (blue in 

Fig. 2). Among the GH13 hydrolases studied, we found this motif to be unique to TreS, thus 

offering the possibility of rapid identification of TreS in other organisms of interest. We have 

applied this to another important representative of facultative pathogenic amoebozoa, 

Balamuthia madrillaris. Blast search (tblastn using A. castellanii TreS sequence) of the two 

available assemblies of B. madrillaris genomes (strain CDC-V039, accession LFUI01000000 

and strain 2046, LEOU01000000) revealed candidates for TreS enzyme in this species as well 

(LFUI01000178 and LEOU01000424, respectively). 

  While the presence of the prokaryotic TreS pathway of trehalose synthesis in 

Amoebozoa is somewhat surprising (Avonce et al. 2006; Paul et al. 2008), the presence of the 

TPS-TPP enzymes could be expected, as they were found in a wide range of organisms from 

archaea to higher plants, the latter possessing multiple copies of the TPS-TPP proteins. 

Avonce et al. (2010) divided the TPS-TPP protein sequences of the amoebozoan slime mold 

Dictyostelium discoideum into two separate groups of enzymes, one associated closely with 

prokaryotic fused (TPS-TPP) enzymes and the other on the basis of the fungal sequences. Our 

results based on the phylogenetic analysis of the three A. castellanii fused TPS-TPP 

sequences (Fig. 3), are clearly consistent with the findings of Avonce et al. (2010), and show 

very similar topology. 

 

Gene Expression of Enzymes for Trehalose Synthesis in Acanthamoeba Stress Responses 

We further show that genes for all four trehalose biosynthetic enzymes found in the 

Acanthamoeba genome are expressed during both types of stress reactions. Because the 

bioinformatics data indicate catalytic activity for each of the encoded enzymes, their 
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expression suggests that trehalose and/or its precursors are important components of stress 

reactions. However, we can only speculate about the functions of the enzymes and roles of the 

carbohydrate during a response by this protist to environmental stress. It must be kept in mind 

that the observed amounts of mRNAs are not necessarily an unambiguous indicator of protein 

levels or activity of the respective enzymes. Hence the following section aims to integrate the 

discussion of changes in gene expression of enzymes of trehalose synthesis and observed 

kinetics of carbohydrate levels. 

 

Gene Expression of Enzymes for Trehalose Synthesis During Pseudocyst Formation 

During formation of the pseudocysts, we observed the most pronounced increase in mRNA 

expression for all four genes within the first 30 minutes. A rapid shock reaction by 

Acanthamoeba cells has been described at this time point: the cells become rounded, detach 

themselves from the substrate and start to synthesize and export material for a fibrillar coat on 

the cell surface (Kliescikova et al. 2011a). It seems likely that in these early/immature 

pseudocysts, TreS predominates in the synthesis of trehalose since the increase in the amount 

of trehalose apparently correlates with a decrease in maltose, a substrate for trehalose 

synthesis in the TreS pathway (Nishimoto et al. 1995). The function of trehalose in this phase 

of Acanthamoeba differentiation is unknown. In general, trehalose may serve as an energy 

and carbon source, a signaling or regulation molecule, a cell wall component, or a membrane 

and protein protectant (Elbein et al. 2003). A significant decrease in trehalose in the maturing 

pseudocysts indicates the former possibilities. At the same time, a role for the enzymes of the 

TPS-TPP pathway remains completely unclear. Provided that all the trehalose detected at the 

30-minute time point was formed by converting maltose via TreS, the TPS-TPP pathways 

could not be involved in trehalose synthesis; the increase in trehalose levels correspond to the 

decrease in maltose over the first 30 mins (Fig. 7A), consistent with the 1:1 conversion 
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catalyzed by TreS. On the other hand, the activities of these enzymes may yield other 

important molecules, such as those in plants, where trehalose-6-phosphate (T6P), the 

metabolic precursor of trehalose in the TPS-TPP biosynthetic pathway, is an important 

signaling metabolite (O´Hara et al. 2013).  

 Interestingly, we observed another increase in the trehalose level in the mature 

pseudocysts (between 2 and 24 hours). Because the concentration of maltose was 

approximately zero after 30 minutes of differentiation, it seems that in the mature 

pseudocysts, trehalose is formed particularly via the TPS-TPP pathways. Moreover, in 

contrast to the immature pseudocysts, the mature forms that possess a fine fibrillar coat 

covering the entire cell surface are, to a certain extent, resistant to heat and desiccation 

(Kliescikova et al. 2011a), suggesting a need for compounds that protect the inner 

environment of the mature pseudocyst from the deleterious effect of thermal and drought 

stress. However, further experiments are needed to determine whether trehalose is the 

protective compound. 

 

Gene Expression of Enzymes for Trehalose Synthesis During Encystation 

Unlike with pseudocyst formation, we detected upregulation of only two of the four genes of 

trehalose synthetic enzymes, TreS and TPS-TPP 2B, during Acanthamoeba encystation. As 

with the immature pseudocysts, the TreS pathway seemed to play a major role in trehalose 

synthesis in the encysting acanthamoebae since TreS was found to have the highest 

expression level of mRNA and since an increase in trehalose was mirrored by a decrease in 

maltose. However, a comparison of the levels of the two disaccharides clearly shows that 

maltose could not be the only substrate for trehalose synthesis. Involvement of the TPS-TPP 

pathway was indicated by upregulation of TPS-TPP 2B gene with a very similar trend to 

TreS, i.e., a gradual increase during the first two hours of encystation, followed by a sharp 
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decrease. This observation suggests that either TPS-TPP 2B represents a fully active enzyme 

capable of catalyzing both steps of the trehalose synthesis, despite the amino acid 

substitutions, or that TPS-TPP 2B acts as a part of a multi-component complex, either by 

providing the TPP activity or playing a regulatory role, similar to Tsl1 and Tps3 in 

Saccharomyces (Gancedo and Flores 2004). This finding implies that other components of a 

putative complex, e.g., TPS-TPP 1, which contains an active TPS domain, are already present 

in the cell prior to the onset of encystation.   

Surprisingly, after 24 hours of encystation, the amount of trehalose gradually 

decreased, indicating a partial breakdown of the disaccharide within the mature cysts. The 

final trehalose level observed was even less than that in the trophozoites or pseudocysts but 

likely persisted thereafter as a store. Using 13C NMR spectroscopy, Deslauriers et al. (1980) 

detected stable levels of trehalose in 16- and 77-day-old cysts of A. castellanii. However, 

nothing is known about why and how the level of trehalose synthesized during the process of 

encystation is later (after 12 hours) reduced within the cysts. Mature Acanthamoeba cysts are 

represented by highly resistant non-motile cells (thanks to a fully developed double-layered 

cyst wall) with a reduced total volume, dense cytoplasm due to dehydration by water 

expulsion, fewer organelles in comparison with trophozoites and minimal metabolic activity 

(Bowers and Korn 1969). The cysts are very limited in energy resources; they cannot use 

exogenous nutrients, and endogenous energy supplies, especially glycogen, are mostly 

depleted for cyst-wall synthesis or are excreted into the outer space of the encysting cell 

during autophagy (Khan 2009). Thus, one possibility is that trehalose hydrolysis could 

provide an energy or carbon source in the mature cysts. Trehalose degradation may also be 

necessary to stabilize the internal osmolarity of long-living Acanthamoeba cysts. In the 

Acanthamoeba genome, there are four enzymes (NCBI accession numbers XP_004344107.1, 

XP_004340178.1, XP_004335070.1, and XP_004335069.1) possessing the glycosyl 
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hydrolase family 65 catalytic domain (Bínová, unpublished) that can hydrolyze trehalose. 

This enzyme family contains the vacuolar acid trehalase (Davies and Henrisat 1995), with a 

widespread occurrence in fungi (Thevelein 1984). On the other hand, similarly to in the 

mushroom Agaricus bisporus (Wannet et al. 1998), trehalose may also be degraded by the 

phosphorylase activity of TPS-TPP 2B provided that the Acanthamoeba enzyme catalyzes the 

phosphorolysis of trehalose.  

To summarize, we have detected the presence of the prokaryotic TreS pathway in a 

eukaryotic free-living amoeba, A. castellanii. Although in some bacteria TreS functions bi-

directionally, from maltose to trehalose and vice versa with a preference for the catabolic, not 

anabolic, direction (Miah et al. 2010), our results support the traditional view of 

Acanthamoeba TreS as the enzyme producing trehalose at the expense of maltose, during both 

encystation and pseudocyst formation. The active apparatus for trehalose synthesis and the 

presence of a large amount of trehalose during encystation and pseudocyst formation point to 

an important role for trehalose in Acanthamoeba stress responses, but the exact functions of 

this disaccharide remain to be elucidated. We have shown that trehalose is present in all 

known forms of Acanthamoeba, i.e., the vegetative trophozoites and two stress-induced 

stages, pseudocysts and cysts. We have also shown quantitative changes in the amount of 

trehalose during encystation and pseudocyst formation. Finally, our results clearly show that 

encystation and pseudocyst formation represent two fundamentally different responses of 

acanthamoebae to stress.  

 

Methods 

 

Cell culture and culture conditions: Clinical isolate V1 of Acanthamoeba spp., T4 genotype 

(Kliescikova et al. 2011a, b) was grown axenically in 25, 75 or 175 cm2 culture flasks 
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(Corning, USA) in PYG medium supplemented with 500 IU/mL penicillin at 37°C (Bínová et 

al. 2012).  

 Induction of encystment and pseudocyst formation: To induce encystation, 

Acanthamoeba trophozoites in the exponential phase of growth were overlaid with Neff 

encystation medium (NEM) (Neff et al. 1964), composed of 100 mM KCl, 8 mM MgSO4 • 7 

H2O, 4 mM CaCl2 • 2 H2O, 1 mM NaHCO3, and 20 mM ammediol (2-amino-2-methyl-1,3-

propanediol; Sigma, USA), pH 8.8, at 37 °C. For pseudocyst induction, a protocol by 

Kliescikova et al. (2011a, b) was followed. Briefly, trophozoites in the exponential phase of 

growth were overlaid with NEM containing 1% (v/v) methanol and incubated at 37 °C. The 

course of encystation and pseudocyst formation was observed and evaluated by light 

microscopy.  

 RNA extraction and qRT-PCR: Total RNA was extracted at 0, 0.5, 2, 12, 24, 48, 

and 72 hours during encystation and pseudocyst formation using a High Pure RNA Isolation 

Kit (Roche) according to the manufacturer’s instructions. The forming cysts (starting at 12 

hours) and pseudocysts (starting at 2 hours) were homogenized using MagNA Lyser (Roche) 

prior to RNA extraction. Samples were subsequently treated using a TURBO DNA-freeTM Kit 

(Ambion) to remove contaminating genomic DNA. The quality and concentration of the 

isolated RNA was measured using a NanoDrop spectrophotometer. cDNA synthesis was 

performed using a Revert AidTM First Strand cDNA Synthesis Kit (Fermentas, EU) according 

to the manufacturer’s instructions. One microgram of RNA was used for each reaction. For 

quantitative real-time PCR (qRT-PCR), 1 µL of a 10-fold dilution of cDNA solution was used 

in the 5-µL reaction including 2.5 µL of SYBR Green Master mix (Roche), 0.5 µL gene-

specific forward and reverse primer solution (Tab. 1) designed by the Primer Quest program 

(http://eu.idtdna.com/Scitools/Applications/Primerquest/) and 0.5 µL pure water. qRT-PCR 

amplification was performed on a Light Cycler LC480 (Roche) with the following cycling 

http://eu.idtdna.com/Scitools/Applications/Primerquest/
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conditions: pre-denaturation (1 cycle) - 10 minutes at 95 °C; amplification (50 cycles) - 10 

seconds at 95 °C, 15 seconds at 60 °C, and 15 seconds at 72 °C; melting curve (1 cycle) - 5 

seconds at 95 °C and 1 minute at 65 °C; and cooling to 37 °C. As a reference gene, the gene 

for Acanthamoeba 18S rDNA was used. The experiments were done in triplicate. 

 Mass spectrometry: Carbohydrates were isolated from 1×107 cells at 0, 0.5, 2, 12, 24, 

48, and 72 hours during Acanthamoeba encystation and pseudocyst formation (forming cysts, 

starting at 12 hours, and pseudocysts, starting at 2 hours, were homogenized using a bead 

beater prior to extraction) using the method described by Antonio et al. (2007). Carbohydrates 

were then quantified using external calibration HILIC ESI-qTOF-MS, based on the method 

described by Antonio et al. (2008). The binary LC gradient consisted of 0.1% formic acid 

with 5 mM ammonium acetate (solvent A) and acetonitrile containing 0.1% formic acid 

(solvent B) at a flow rate of 0.2 mL min-1. The gradient used was as follows: hold at 90% B 

for 5 minutes, a linear gradient to 40% B over 24 minutes, stepping to 20% B and holding for 

2 minutes, stepping to 90% B, and equilibration for 14 minutes. The data were acquired on a 

QSTAR pulsar I mass spectrometer in the negative ion mode, using the TurboIonSpray source 

(capillary voltage -3500 V, nebulizer gas setting 70, TurboIon gas setting 20, source 

temperature 200 °C, curtain gas setting 30, declustering potential (DP) -10, DP2 -10, FP -50, 

CAD setting 3), with acquisition over the m/z range 138-1000 with a 1-s acquisition time. Glc 

showed the weakest mass spectrometric response, with 50 pmol showing a signal:noise ratio 

of approximately 6:1. The mass-spectrometry analysis were done in duplicate as two separate 

experiments performed about six months apart. In the experiments, the differences between 

concentrations for respective time points were within the range of 350pmol, typically less 

than 15%, thus trends in the sugar concentrations were stable in two considerably different 

populations without necessity to perform more measurements. 
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 Phylogenetic analyses: Multiple sequence alignment was performed with MAFFT 

using the E-INS-i approach with default settings (Katoh et al. 2005, 2011). Maximum 

likelihood analysis was performed with TreeFinder (ver. 2011, Jobb et al. 2004, Jobb 2011). 

Bayesian analyses were performed with MrBayes v. 3.2.2 under the WAG substitution model 

with a proportion of invariant sites and 4-rate gamma distribution (WAG+I+4). Neighbor 

joining was performed in MEGA 6 (Tamura et al. 2013) with the JTT substitution model. 
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Figure Legends 

 

Figure 1. Phylogenetic position of the putative trehalose synthase (TreS) from Acanthamoeba 

castellanii within glycoside hydrolases. Consensus tree based on Bayesian, ML and NJ 

analyses. The label Cterm TreS denotes the group of bacterial enzymes where the TreS 

domain is fused to a putative kinase C-terminal domain (lacking in amoebae). 

Figure 2. Sequence alignment between TreS of Acanthamoeba castellanii (TreS_Aca), 

Mycobacterium smegmatis (TreS_sme, GenBank accession ID: YP_006571064) and M. 

tuberculosis (TreS_tuber, GenBank accession ID: EFI32604). Colored boxes highlight the 

domain organization: domain A (green), domain B (yellow), and domain C (red). Catalytic 

residues are shown within red boxes.  

Figure 3. Phylogenetic position of the TPS-TPP fusion enzymes from Acanthamoeba 

castellanii. A maximum likelihood tree. Three enzymes of this family are present in A. 

castellanii, falling into 2 types: i) primitive proteins placed at the base of all eukaryotic 

sequences (TPS-TPP 1) and ii) group located at the base of the fungal enzymes (TPS_TPP 

2A, B).  

Figure 4. Multiple sequence alignment of the TPS domains of the TPS-TPP enzymes (tps-

tpp_2a, 2b, tps_tpp_1) from A. castellanii and S. cerevisiae and the OtsA from E. coli (1GZ5). 

Catalytic residues, based on the analysis of the OtsA structure (Gibson et al. 2002), are 

highlighted by red boxes. Note that the proteins Tsl1 and Tps3 of S. cerevisiae are not 

enzymatically active. 

Figure 5. Multiple sequence alignment of the TPP domains of the TPS-TPP enzymes (tps-

tpp_2a, 2b, tps_tpp_1_Aca) from A. castellanii and S. cerevisiae and the TPP from T. 

acidophilum (1U02). Catalytic residues, based on the analysis of the 1U02 structure (Rao et 
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al. 2006), are highlighted by red boxes. Note that the proteins Tsl1 and Tps3 of S. cerevisiae 

are not enzymatically active. 

Figure 6. Changes in the amounts of mRNA for the trehalose synthetic pathway genes during 

Acanthamoeba pseudocyst formation (A) and encystation (B). The changes in the amounts of 

the mRNA transcripts of the four genes of the trehalose synthetic pathways found in the 

Acanthamoeba genome at several time points during encystation and pseudocyst formation 

compared to the situation at the trophozoite stage (time zero) were measured by qRT-PCR. 

The gene for Acanthamoeba 18S rDNA was used as a reference. 

Figure 7. Carbohydrate levels during Acanthamoeba pseudocyst formation (A) and 

encystation (B). The carbohydrates were isolated from 1×107 Acanthamoeba cells and 

quantified using external calibration HILIC ESI-qTOF-MS. The carbohydrate levels at time 

point 0.1 hour are the initial amount present in the trophozoite stage before differentiation 

initiation. The left Y-axis corresponds to trehalose and maltose, right Y-axis is for glucose, 

axes apply to both panels. 
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Table 1. Gene-specific forward and reverse primers used for qRT-PCR amplification  

gene Forward primer sequence (5´ - 3´) Reverse primer sequence (5´ - 3´) 

TPS-TPP 1 TCA AGA CCC TCC CTG AAA ACG GGC AGA ATA CGA TAG A 

TPS-TPP 2A TCA AGA CCC TCC CTG AAA ACG GGC AGA ATA CGA TAG A 

TPS-TPP 2B CCC GAT TTC GAC TTC ATC TT ATC ATC TTG TCC TCG TCC T 

TreS GGC CCG CAT CAT CTT TAT C CCT TGG GAT TCT CGA AGT TAA G 

18S rDNA TGC ATG GCC GTT CTT AGT TGG AGC GCG GCA TAT TTA GCA GGT 

 

 


