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Abstract Facial features are the basis for the emo-

tion recognition process and are widely used in affec-

tive computing systems. This emotional process is pro-

duced by a dynamic change in the physiological sig-

nals and the visual answers related to the facial ex-

pressions. An important factor in this process, relies

on the shape information of a facial expression, rep-

resented as dynamically changing facial landmarks. In

this paper we present a framework for dynamic facial

landmarking selection based on facial expression anal-

ysis using Gaussian Processes. We perform facial fea-

tures tracking, based on Active Appearance Models for

facial landmarking detection, and then use Gaussian

process ranking over the dynamic emotional sequences

with the aim to establish which landmarks are more

relevant for emotional multivariate time-series recogni-
tion. The experimental results show that Gaussian Pro-
cesses can effectively fit to an emotional time-series and
the ranking process with log-likelihoods finds the best

landmarks (mouth and eyebrows regions) that repre-

sent a given facial expression sequence. Finally, we use

the best ranked landmarks in emotion recognition tasks

obtaining accurate performances for acted and sponta-
neous scenarios of emotional datasets.

Keywords Facial landmark · Dynamic emotion ·
Statistical models · Gaussian Processes · Gaussian

Process Ranking

1 Introduction

Facial landmarking analysis plays an important role in

many applications derived from face processing opera-

tions, including emotion recognition, facial animation,

and biometric recognition [5]. Analyzing this informa-

tion is particularly useful in the emotion recognition

field, because from the landmarks analysis (eg. eye cor-

ners, eyebrows, mouth corner etc.), we can describe

a given facial expression. Since facial expressions are

characterized by changes of facial muscles, we need to

capture the dynamic changes on facial features. More-

over, these temporal facial changes are mainly repre-

sented by the facial shape information derived from the

facial landmarks [12].

Despite that facial feature detection methods to lo-

cate facial landmarks have been widely investigated in

the state of the art, the computer vision problem has

proven extremely challenging for emotion recognition

systems derived from facial landmarking analysis [31].

In order to define which facial features are more rele-

vant to recognize an emotion type, most of the works
for emotion recognition are based on Ekman’s study
[9]. This study, proposes a comprehensive and anatom-
ically based system called Facial Action Coding Sys-

tem (FACS), which is used to measure all visually dis-

cernible facial movements in terms of atomic facial ac-

tions called Action Units (AUs). As AUs are indepen-

dent of interpretation, they can be used for any high-
level decision-making process, including the recognition
of basic emotions according to Emotional FACS (EM-
FACS), the recognition of various affective states ac-

cording to the FACS Affect Interpretation Database

(FACSAID) [10], and the recognition of other complex

psychological states such as depression or pain [9].

Since AUs are suitable to use in studies on facial

behavior (as the thousands of anatomically possible fa-

cial expressions can be described as combinations of

27 basic AUs and a number of AU descriptors [11]),

it is not surprising that an increasing number of stud-

ies on human spontaneous facial behavior are based on
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automatic AU recognition [6, 32]. Furthermore, facial

landmarks are used to compute these AUs in order to

perform the facial expression analysis [7, 38]. The typ-

ical facial features used to perform the facial expres-

sion analysis are either morphological features such as

shapes of the facial regions (eyes, nose, facial contour,

mouth, etc.), and the location of facial salient points

(corner of the eyebrows, mouth, chin tip, etc.) [27].
However, these methods do not address which points
are most relevant in the analysis of a sequence of facial

expressions.

Pantic and Valstar have reported different studies

for facial action units recognition and their temporal

segments [34]. In all their studies only a specific set of

facial landmarks (corners of the eyebrows, eyes, mouth

and nose tip) are used to compute the action units [25].

Since facial expressions are different for every subject,
due to characteristic features of each person in the man-
ifestation of a particular emotion, it would be impor-
tant to propose a methodology to study a wide range

of facial points and their temporal dynamics, in order

to recognize a much larger range of expressions (apart

from the prototypic ones i.e spontaneous facial expres-

sions) [13]. Moreover, most of the works in the emotion
recognition field are based on using the entire facial
shape model (or use some salient points such as nose tip,

corners of eyes, mouth and eyebrows) [33]. Since spon-

taneous emotional behaviors vary depending from how

people perceive their environment [30], it is required to

analyze which specific facial landmarks brings more rel-

evant information in an emotional sequence. The main
research topic in this paper, is to model the temporal
activity of each facial landmark, and to rank those fa-

cial features that describe an emotional process [13].

Furthermore, it is worth mentioning that there is
a number of works in the state-of-the-art, in which

dynamic analysis is used for emotion recognition [41].
Here, most of these works used physiological signals
such as electroencephalogram, electromyogram, respira-

tion and heart rate in order to perform the recognition

[28, 24, 37]. However, works that uses facial expressions

features for dynamical analysis, are based only in com-

puting Action Units as features, but discards modeling
the temporal changes of the facial landmarks [28].

Due to the need of modeling the dynamics of fa-

cial features in an emotional sequence, we use super-
vised learning for regression tasks. Commonly paramet-
ric models have been used for this purpose. These have

a potential advantage of ease of interpretability, but

for complex data sets, simple parametric models may

lack generalized performance. Gaussian processes (GP)

[29, 21], offer a robust way to implement approaches

to quantify the dynamic facial features embedded in a

facial expression time-series, and thus allow us to rank

the set of facial features that best depicts a dynamical
facial expression.

In a dynamic facial expression framework, a Gaus-

sian process coupled with the squared-exponential co-

variance function or radial basis function used in regres-

sion tasks, can efficiently perform dynamic facial fea-

ture selection in emotional time-series [30]. This prop-

erty outfit the GP with a wide degree of flexibility in

capturing the dynamic landmark variations of facial

features. Moreover, this property makes the GP an at-

tractive novel tool for affective computing applications

[16].

In this work, we develop a novel technique for fa-

cial landmarking selection by analyzing the dynami-

cal visual answers of the facial expressions (specially

those in regions of FACS [26]) using Gaussian processes.

Those features are detected by using statistical models

as Active Appearance Models (AAM) proposed in [22],

which from the prior object knowledge (face to be ana-

lyzed), allow us to estimate the object shape with high

accuracy. From the facial features detected, it is pos-

sible to estimate which landmarks are more relevant

in a specific dynamic facial expression. The proposed

method employs a Gaussian process for regression over

the dynamical facial features with the aim to identify

which landmarks are more relevant in the dynamical

emotional process. Facial features are ranked according

to the signal to noise ratio (SNR), which is captured

by fitting a Gaussian process. In addition, a statistical

analysis on multiple datasets is performed to verify the

generalizability of the proposed method. Finally, we use

the best ranked facial landmarks for every emotional-
time series, and then perform a dynamic classification
task based Hidden Markov Models (HMM) for valida-
tion purposes. The main contribution of this work is the

development of a methodology that is able to rank the

facial landmarks that are more relevant in a dynamic

emotion sequence when it comes to emotion recogni-

tion.

The paper includes the following sections. Section
2.2 presents the facial feature extraction model used in

this work. Section 2.2 presents our facial landmarking

selection method. Sections 2.4 and 3 discuss the exper-

imental setup and results respectively. The paper con-

cludes in Section 4, with a summary and discussion for

future research.
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Table 1 Facial expression databases used in this work.

Name No. of Expression/ Color/ Resolution Number of Year
sequences Pose changes/ Gray subjects

illumination

Cohn-Kanade 327 7, No, No Gray 640x490 123 2003
database [19]
FEED database [35] 399 7, No, Yes Color 320x240 18 2006
Oulu-CASIA database [39] 480 6, No, Yes Color 320x240 80 2011
RML emotion database 200 6, Yes, Yes Color 640x480 7 2008
database [36]

2 Materials and Methods

2.1 Database

In this work four databases were used (See Table. 1 for
a description). The first database is the Cohn-Kanade

AU-Coded Facial Expression Database. It was devel-

oped for research in automatic facial image analysis

and synthesis for perceptual studies [19]. It includes

both posed and non-posed (spontaneous) expressions

and additional types of meta-data (files with images, fa-

cial landmarks, action units and emotional labels). The

target expression for each sequence is fully FACS coded.

In addition, validated emotion labels have been added

to the meta-data. Thus, sequences may be analyzed for

both action units and prototypic emotions [9] (See Fig.

1). The second database is the FEED Database with

Facial Expressions and Emotions from the Technical

University of Munich containing face images showing

a number of subjects performing the six different basic

emotions defined by Eckman & Friesen [35] (See Fig. 2).

The database has been generated as part of the Euro-

pean Union project FG-NET (Face and Gesture Recog-

nition Research Network). The database contains ma-

terial gathered from 18 different individuals and each

individual performed all six desired actions three times.

Additionally three sequences with no expressions at all

are recorded. Altogether, this gives an amount of 399

sequences. The third database is the Oulu-CASIA facial

expression database [39]. This database was developed

by the Machine Vision Group of the University of Oulu,

which consists of six typical expressions (surprise, hap-

piness, sadness, anger, fear and disgust) from 80 people

between 23 to 58 years old. Subjects were asked to make

a facial expression according to an expression example

shown in a given sequence (acted facial expression) (See

Fig. 3).

Finally, the fourth database, is the RML emotion

database, for which we used 60 (ten for each emotion)

spontaneous audiovisual emotional expression samples

that were collected at Ryerson Multimedia Lab at the

Ryerson University (See Fig. 4 ). Six basic human emo-

tions are expressed: Anger, Disgust, Fear, Happiness,

Sadness, Surprise. The RML emotion database is suit-

able for audio-based, static image-based, and video-

based 2D and 3D dynamic analysis and recognition [36].

Fig. 1 Description of an emotional expression for the Cohn
Kanade database in which it can be seen the emotional pro-
cess (acted) starting from neutral to peak expression (lower
right).

Fig. 2 Description of an emotional sequence for the FEED
database in which it can be seen the emotional process start-
ing from neutral to peak expression.

Fig. 3 Description of an emotional sequence for the Oulu-
CASIA facial expression database, in which the emotional
process (acted) was recorded in a weak illumination scenario.
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Fig. 4 Sample images of RML emotion database showing an
spontaneous emotional sequence.

2.2 Active Appearance Models for facial feature

extraction

An Active Appearance Model (AAM) is built through

a process of learning marked features for a class of ob-

jects. An AAM allows us to find the parameters of such

a model which generates a synthetic image as close as
possible to a particular target image, assuming a rea-
sonable starting approximation [22].

2.2.1 Landmarking The Training Set

In order to build our facial feature extraction method

(AAM), we select the facial images to incorporate into

the training set. Here, an important task is to decide

which facial images will be included in the training
set. To this end, the desired variations of facial expres-
sions must be considered (i.e. prototypic facial expres-

sions and those that include particular facial gestures).

Therefore, we labeled the facial expressions defined by

Ekman’s study in which the basic emotions are covered

(i.n. happiness, anger, fear, disgust, sadness, contempt

and surprise) [9]. However, due to the need of modeling
spontaneous emotional behaviors, we landmark those
facial expressions related to the RML database. Here,

ten subjects were labeled in order to add these sponta-

neous facial expressions in the recognition process. To

build the AAM model, we used 50 emotional sequences

from the CK database, 50 sequences from the FEED-

TUM and 50 sequences from the RML database. From

these sequences, we model all those shape variations

related with the prototypical emotions and the sponta-

neous ones (i.e. a given facial expression).

We use the parametrized face model used for the CK
database [19]. Here, a set of 68 landmarks were labeled

for each image in the dataset, in order to describe the fa-

cial shape (landmarks for describing eyes, nose, mouth

and eyebrows regions). Figure 5, shows an example of

the shape model used to depict a facial expression.

2.2.2 Facial landmark detection

An AAM contains a statistical model of the shape and

grey-level appearance of the object of interest which

Fig. 5 Facial description for CK database using a set of 68
landmarks to describe the shape model.

can generalize to almost any valid example (labeled fa-

cial expression). Matching to an image involves finding

model parameters (shape and appearance descriptors)

which minimize the difference between the image and a

synthesized model example, projected into the image.

The potentially large number of parameters makes this

a difficult problem. We use the proposed facial land-
marks detection method proposed by Edwards et. al.

in [22]. An AAM algorithm is applied for building the
shape and appearance models. Then, facial landmark-

ing detection is performed by fitting the built model to

a facial sequence. We use the Active Appearance Model

Face Tracker library using OPENCV in C++, to per-

form the facial tracking. 1 Figure 6 shows an example
about how landmarks are located in the shape model

for every emotion prototype.

To perform an error analysis over the landmark de-
tection process, we compute the average error of the

distance between the manually labeled points pi and

points estimated by the model p̂i for all training and

test images. Also, to perform a quantitative analysis of

the accuracy in adjusting of the AAM, we calculate the

relative error between the manually labeled facial land-

marks, and the points estimated by the AAM model for
the eyelids and mouth regions.

2.3 Gaussian Processes

A Gaussian Process (GP) is an infinite collection of

scalar random variables indexed by an input space such

that for any finite set of inputs X = {x1,x2, . . . ,xn},

1 Active Appearance Model Face Tracker library is avail-
able in https://code.google.com/p/aam-opencv/.
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(a) Happiness (b) Disgust (c) Fear

(d) Sadness

(e) Anger (f) Contempt (g) Surprise

Fig. 6 Facial expression samples for each emotion.

the random variables f , [f (x1) , f (x2) , · · · , f (xn)]

are distributed according to a multivariate Gaussian

distribution f(X) ∼ GP(m(x), k(x,x′)) [23]. A GP is

completely specified by a mean functionm (x) = E [f (X)]

(usually defined as the zero function) and a covariance

function given by

k (x,x′) = E

[

(f (x)−m (x)) (f (x′)−m (x′))
⊤
]

.

We use a squared exponential kernel (Radial Basis

Function (RBF) kernel) given by

k (x,x′) = σ2

fexp

(

−
1

2l2
(x− x′)

2

)

, (1)

where σ2

f controls the variance of the functions and

l2 controls the lengthscale which specifies the distance
beyond which any two inputs (xi,xj) becomes uncorre-

lated. Besides, if there are n inputs, we can write equa-
tion (1) in a matrix form, where K (X,X) denotes the

n× n matrix of the covariance evaluated at all pairs of

inputs.

Moreover, by making predictions using noisy obser-

vations2, given by y = f(x) + ǫ, the prior on the noisy
observations becomes

cov (y) = K (X,X) + σn
2I, (2)

where K (X,X) denotes the covariance matrix.

By using the multivariate Gaussian properties, it is

possible to obtain a predictive distribution f∗ for new

2 We assume additive independent identically distributed
Gaussian noise ǫ with variance σ2

n
, given by ǫ ∼ N (0, σ2

n
)

inputs x∗ [4]. The Gaussian process regression is given
by

f∗|X,y,X∗ ∼ N (f̄∗, cov(f∗)), (3)

where

f̄∗ , E[f∗|X,y,X∗]

= K(X∗,X)[K(X,X) + σn
2I]−1y,

and

cov (f∗) = K (X∗,X∗)

−K (X∗,X)
[

K (X,X) + σn
2I
]

K (X,X∗) .

To estimate the kernel parameters, we maximize the
marginal likelihood which is faster than using exhaus-

tive search over a discrete grid of values, with validation

loss as an objective [23], [2]. Here, the marginal likeli-

hood refers to marginalize the function values f [4].
Due to the fact that the prior for a Gaussian process

is Gaussian, f |X ∼ N (0,K), and the likelihood is a

factorized Gaussian y|f ∼ N
(

f , σn
2I
)

the log marginal

likelihood is given by

logp (y|X,θ) = −
1

2
y⊤

(

K+ σn
2I
)−1

y

−
1

2
log

∣

∣K+ σn
2I
∣

∣−
n

2
log2π. (4)

From the equation (4), we can learn the hyperpa-

rameters, θ, from the data by optimizing the log-marginal
likelihood function of the GP [4].

2.3.1 Ranking with likelihood-ratios

In this paper, we used the approach presented in [14],

to estimate continuous trajectories of gene expression

time-series through Gaussian process (GP) regression.

Here, the differential expression of each profile were

ranked via a log-ratio of marginal likelihoods. This ap-

proach was also used by [1], for selecting meaningful

outputs from a motion capture dataset. To this end, we

compute the Bayes factor with a log-ratio of marginal

likelihoods (LML)3, this factor is given by

ln

(

p(y|x, θ2)

p(y|x, θ1)

)

, (5)

with each LML being a function of different instan-

tiations of θ.

In order to rank with likelihood-ratios, we first set

two different hypotheses4 [14]. First,H1, represents how

3 We use this Bayes factor instead of integrating out the
hyperparameters θ (compute a posterior over hyperparame-
ters). See equation (4).
4 H1 and H2 represent two different configuration of the

hyperparameters θ
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the facial expression time-series (for each landmark) has

a significant underlying signal (i.e. facial landmark that

shows relevant changes in an emotional sequence). Sec-

ond, H2 represents the fact that there is no underlying

signal in the facial expression, and the observed facial

sequence for a given emotion is just the effect of random

noise.

From these hypotheses, we relate H2 with the hy-
perparameter θ1 = (∞, 0; var(y))⊤ to model a function

constant in time (l2 → ∞), with no underlying sig-

nal (σ2

f = 0). This process generates a facial landmark

time-series, with a variance that can be solely explained

by noise (σ2

n = var(y) white kernel in the GP). Finally
on H1, the hyperparameters θ2 are set to model a facial

landmark sequence that fits an emotional process. Here,

we use a distinct signal variance that solely explain the

observed facial sequence variance (σ2

f = var(y)) and

with no noise (σ2

n = 0).

2.4 Procedure

After estimating facial landmarks belonging to an emo-

tional sequence5, we proceed to train Gaussian pro-

cesses to measure dynamically which of these landmarks
are more relevant in a given emotional sequence. We

use the GPmat toolbox for Gaussian Process Rank-
ing developed in [14]. 6 The following steps depicts the

proposed method for facial landmarking selection using

Gaussian processes.

1. For every landmark in an emotional sequence.

(a) Train a GP following the two hypothesis de-
picted in section 2.3.1

(b) Compute the log-ratio of marginal likelihood (see
equation (5)). Here, The facial landmark rank-

ing is based on how likely H1 in comparison to

H2, given a facial expression sequence from the

signal-to-noise ratio SNR = σ2

f/σ
2

n.

2. Rank the log-like ratios for every landmark in all

dynamical emotional expressions.

Figure 7 shows the scheme of the facial landmarking

selection process. Moreover, Figure 8 shows the labels
related with every landmark of the shape model. The

figure depicts the labels that represents all landmarks

of the shape model. Labels 1− 17 correspond to the fa-

cial contour; labels 18− 27 correspond to the eyebrows

region; labels 28− 36 correspond to the nose region; la-

bels 37− 48 correspond to the eyes, and labels 49− 68

5 we align all emotional time-series using Procrustes anal-
ysis.
6 GPmat is a Matlab implementation of Gaussian pro-

cesses and other machine learning tools available on http://

staffwww.dcs.shef.ac.uk/people/N.Lawrence/software.html.

correspond to the mouth region
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Fig. 7 Dynamic facial landmarking selection process.

 

 

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

192021
22

232425
26

27

28

29

30

31

32
333435

36

37

3839

40
41 42

43

4445

46
47 48

49

50

51
52

53

54

55

56

57
58

59

60

61

6263
64

65

66 67
68

Face contour
Landmarks [1−17]

Eyebrows
Landmarks [18−27]

Nose
Landmarks [28−36]

Eyes
Landmarks [37−48]

Mouth
Landmarks [49−68]
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shows the set of landmarks related with each face region.

3 Results

3.1 Appearance model estimation error

Table 2, shows the facial landmark detection accuracy.

We compute the average of the mean square error be-

tween manual landmarks of both databases (CK and

FEEDTUM) and the facial landmarks estimated by the

AAM model. Also, the standard deviation was com-
puted, as well as the time average of the facial land-
marking detection process.

In Table 2, it can be seen that although the accuracy

in the facial landmarks detection is greater for images of
the training set in CK database, the average error is also
small for the test images. This is due to a rigorous pro-

cedure in the training of the AAM model, in which we
considered facial expressions (emotional process start-
ing from neutral expression to apex7) for all prototyp-

ical emotions. Moreover, it is noted that although the

7 Apex is the period during which the emotional expression
is maintained at maximal strength.
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average error for images with FEED database is a bit

higher than in the case of CK database, the accuracy

of the estimated model is still higher and fulfills the fa-

cial landmark detection task. Also, it is noted that the

average time of estimation model (T [ms]) is relatively

small which would help in on-line applications.

Table 2 Facial features average estimation error. The table
shows the robust fit of the facial features, and proves to be
applicable in on-line applications.

Database

Set Cohn Kanade FEEDTUM
Error [pix] T [ms] Error [pix] T [ms]

Training 2.0455± 0.35 19.1 2.3412± 0.41 18.8
Test 2.8577± 0.57 19.1 3.1343± 0.51 20.3

3.2 Distribution on the relative error

In order to measure the level of matching of the facial

landmark to a given expression, we compute the rela-

tive error between the manually labeled landmarks and

the landmarks points estimated by the AAM model,

for eyes and mouth regions respectively. To this end,

we compute the euclidean distance for the set of land-

marks for each region (distance between manually land-

marks and estimated landmarks). Then, we rank all of

these distances for all images in the dataset. We fol-

low the criterion of successful detection rate, in which

a given estimated contour, corresponds to a plausible

region (mouth and eyes respectively) [20]. This crite-

ria establishes that if the relative error, Rerr = 0.25,

(when the successful detection rate for the euclidean
distances reaches 100%), the match of the AAM model

to the face is considered to be successful.
Figure 9, shows the distribution function of the rel-

ative error against successful detection rate, on which

it is observed that for a relative error of 0.1 in the case

of the matching of the right eye, 0.098 for the left eye

and 0.12 for the mouth region in CK db images, the
detection rate is 100%, indicating that the accuracy in

the matching process of the AAM model is high. The
relative error shows the accuracy in which the facial fea-
tures are estimated in the facial image. Furthermore, it
can be seen that the shape model is fitted robustly due

to low values of relative errors (less than 0.12), that

ensures the correct location of the facial landmarks.
Besides, in Figure 9, it can be seen that relative er-

rors for FEEDTUM db, reaches 100% of the detection
rate, for relative errors such as 0.118 and 0.119 for the

eyes and 0.12 for the mouth region respectively; being

these errors much more lower than the established cri-

terion of 0.25.

In order to test our trained model in more complex

scenarios, we used the Oulu-CASIA dataset to mod-

eling the facial expression in a given facial image. In

addition, Figure 9 shows that when the illumination of

the scenario is weak (Oulu-CASIA db) the appearance

model reaches the 100% of the detection rate, for rel-

ative errors between 0.165 − 0.18 for eyes and mouth
regions; which gives us an acceptable error (weak il-

lumination) in comparison with the criterion of 0.25.
Moreover, the results show that the trained model can

fit accurately a given facial expression even when the

illumination scenario is weak.

Furthermore, some other works considered that the

criterion of Rerr < 0.25 is not suitable for facial fea-

tures detection in images with lower resolution. Here,
relative errors of Rerr < 0.15 are considered in order

to perform a successful detection [20]. Based on this as-
sumption, we show that the AAM model used in this

work is efficient and fulfills this requirement.
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Fig. 9 Relative error vs. successful detection rate for CK,
FEEDTUM and Oulu-CASIA databases.

3.3 Facial landmarking selection

In this section, we present the experimental results us-

ing the proposed facial landmarking selection method
described above (see section 2.4). Figure 10 shows the
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signal noise ratio (SNR) results for both databases, and

shows which facial landmarks are more relevant in an

emotional sequence. The results show the existence of

landmarks that present a high SNR, and can be more

relevant in an emotional recognition task. For a quan-

titative measure of the discriminative landmarks, we

perform the GP regression using the best landmarks

that represent an emotional sequence. Figure 12 shows
the regression process that fits each emotion sequence.
This process leads to the best landmarks that represent

all emotions. Also, Figure 12 shows these landmarks lo-

cated in the shape model. The Figure shows the GP re-

gression over an emotional time-series sample in which

it can be seen that GPs fits robustly those landmarks

that are more relevant in an emotional sequence.

In order to perform a quantitative analysis in the
regression process, we compute the effect of the length

scale parameter l2 over the GP. Figure 11 shows that

a small length scale means that f varies rapidly along

time, and a large length scale, means that f behaves

almost as a constant function. Moreover, by using the

RBF kernel, we can show that the regression process
becomes very powerful when combined with hyperpa-
rameter adaptation (see section 2.3).

Figure 13, shows the best SNR landmarks located

in the shape model for each emotion in all databases.
We select the best landmarks as those of who shown
higher SNR values in comparison with the average of

the SNR value for each emotion. These results show

that the facial landmarks more discriminant in emo-

tional sequences are located in mouth, eye and eyebrow

facial regions.

To summarize the results derived in the facial land-

marking discrimination process, Tables 3 and 4 show
the best SNR values for each emotion in the databases

used. In both tables it can be seen that the best SNR
values correspond to the eyes, eyebrows, and mouth re-
gions (see Figure 8 to find the labels reported in the

tables). The results also show that landmarks that ex-

hibit high SNR ratios, can model accurately an emo-

tional process, and would help in affect recognition ap-

plications.

3.3.1 Spontaneous Emotions

After studying the emotional sequences on databases
in which the emotional process was acted, the RML
emotion database was used in order to perform the dy-

namic facial landmarking selection with likelihood ra-

tios. Here, spontaneous emotional sequences were used

to model the facial landmark dynamics. Results are

shown in Figure 14. The results show that even for

spontaneous emotional sequences, the GP model fits

every sequence with high SNR values. Besides, the land-

marks ranked in this process correspond with the more
relevant landmarks found in the landmark selection pro-
cess for the other databases (which means that sponta-

neous emotional process has similar facial expressions

with prototypical emotions). Figure 15 shows the best

SNR landmark rate for all subjects in the database. The

histograms were computed from SNR values from all

subjects (analyzing both x-axis and y-axis of the land-

marks). We set a threshold by computing the mean of

the SNR for all landmarks. Moreover, from this thresh-

old we can establish the SNR level at which a given

landmark may be considered relevant in an emotional

process.

The main reason for this experiment was to quantify

which SNR values (for each landmark), were similar for

all subjects in a spontaneous emotional process. The

results show that landmarks located in eyebrows, nose-

tip and mouth area, are more relevant in a spontaneous
emotional sequence.
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Fig. 14 Best landmarks for the spontaneous database. The
dynamic facial analysis for the spontaneous emotional se-
quences proves that an spontaneous emotional behavior
shows facial parameters closely related to those facial areas
that are more sensitive in the elicitation of the prototypical
emotions. Also, Figure 14 shows that landmarks that present
more relevance in a spontaneous emotional sequence, corre-
spond to the same landmarks ranked for an emotional acted
data-sets (landmarks with high SNR values).

3.4 Emotion recognition using facial landmarks

In order to test our facial landmarking selection method,

we evaluate the selected landmarks for each emotional

time-series by performing an emotion recognition task

for the selected features. To this end, we use Hidden

Markov Models (HMM) to perform the emotion recog-

nition. The observations are the time-series for all se-

lected landmarks computed in the ranking process. Ta-

bles 5 and 6 show the emotion recognition accuracy for

the four databases used in this work (CK, FEEDTUM,

Oulu-CASIA and RML). The results show that by us-

ing those landmarks selected in the ranking process, the
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(c) Fear
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(d) Sadness
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(e) Anger
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(f) Contempt
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Fig. 10 The mean SNR was obtained from every landmark in all emotional sequences (a SNR landmark value for each
emotion). Here we compare the white GP variance respect to the RBF variance (radial basis function), to asses the variability
of each landmark in an emotional time-series for both x-axis and y-axis respectively. Segments separated by dashed blue lines,
represents the set of landmarks for each of the face regions (Face contour, eyebrows, nose, eyes and mouth).

recognition accuracy increases (94.53% for the proposed

method with CK database and 93.60 for the FEED-

TUM database). Another important result is that the

recognition accuracy increases, even when the sponta-

neous database is used (91.39% for the proposed method

with RML database). In addition, the results also show

that the recognition rate is accurate even when the illu-

mination scenario is weak (91.75% of accuracy for the

Oulu-CASIA database). However, when the model per-

forms the recognition using the entire set of facial fea-

tures, the recognition rate decreases substantially (see

Table 6). The main reason is that when the AAMmodel

fits the facial shape in those scenarios with low illumi-

nation, landmarks located in facial contour (i.e. chin

landmarks) causes inaccurate recognitions. Besides, the

results obtained in this work show that our approach

fulfills the results in the state-of-art in emotion recog-

nition tasks in which a given method for facial feature
selection is used (see [40], [41], and [33]).

Finally, table 7 shows an experimental comparison

between common emotion recognition approaches in
the state-of-art. The table shows, that most of the works

analyze only 6 prototypical emotions, since contempt

emotion has a similar expression that disgust and anger
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(b) Emotional expression estimation
width l = 8.9443
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Fig. 11 Gaussian process regression on an emotional expression in the CK database. The Figure shows, a GP fitted on the
emotional expression sample with different settings of the lengthscale hyperparameter l2 (for a landmark related to a eyebrows
region). The blue crosses represent zero-mean facial expression sequence (for a sample landmark) in time (log2 ratios between
facial shape variation) and the shaded area indicates the point-wise mean plus/minus two times the standard deviation (95%
confidence region). Figures (a), (b), (c) shows different settings of l2, l = 31.6228, l = 8.9443 and l = 5.4772 respectively.

Table 3 Best mean SNR for each emotion for CK database. The table shows a more descriptive analysis of those landmarks
that proved to be more relevant in all emotional sequences of the CK database.

Emotion
Anger Contempt Disgust Fear Happiness Sadness Surprise

11.212(57) 6.711(18) 11.540(50) 13.946(22) 15.218(55) 10.568(23) 24.559(67)
10.545(20) 6.612(1) 10.920(23) 13.295(19) 13.704(64) 9.980(55) 22.739(59)
10.340(21) 6.461(56) 10.528(22) 12.549(25) 12.987(62) 9.439(58) 22.504(68)
9.527(60) 6.404(49) 10.207(43) 12.442(26) 12.552(65) 9.059(32) 19.009(59)
9.195(65) 6.362(68) 9.668(62) 12.355(20) 11.915(68) 8.898(55) 18.178(60)
8.837(57) 6.271(39) 9.597(49) 12.253(21) 11.778(65) 8.742(66) 17.822(51)
8.663(21) 6.202(54) 9.515(61) 11.747(64) 11.293(53) 8.480(65) 16.448(10)
8.629(22) 6.154(60) 9.371(48) 11.274(68) 10.934(55) 8.455(25) 16.119(61)
8.518(23) 6.076(36) 9.220(36) 11.063(54) 10.791(49) 8.095(53) 15.818(13)
8.436(19) 6.049(59) 8.909(67) 10.615(58) 10.129(60) 8.024(38) 15.642(65)

Table 4 Best mean SNR for each emotion for FEED database. The table shows the same extended analysis of the SNR
landmarks for each emotion in FEEDTUM database. The results show that the SNR values with this dataset are closely
related to the SNR values obtained with the CK database.

Emotion
Anger Contempt Disgust Fear Happiness Sadness Surprise

11.534(58) 6.790(50) 12.254(25) 14.231(28) 15.415(49) 11.362(22) 24.570(58)
10.548(22) 6.658(7) 11.151(44) 13.535(23) 13.872(54) 10.301(64) 22.967(57)
10.533(59) 6.591(26) 10.896(54) 12.625(61) 13.472(50) 9.501(15) 22.626(66)
10.117(55) 6.454(51) 10.234(51) 12.458(18) 12.634(61) 9.277(24) 19.939(60)
9.231(38) 6.377(4) 10.015(51) 12.423(24) 11.922(61) 8.976(45) 18.709(52)
8.910(56) 6.315(62) 9.638(53) 12.277(29) 11.879(63) 8.825(57) 17.972(56)
8.819(19) 6.233(55) 9.540(52) 11.883(27) 11.314(52) 8.610(21) 16.500(36)
8.645(24) 6.154(52) 9.378(24) 11.302(67) 10.945(67) 8.464(16) 16.433(9)
8.519(56) 6.131(7) 9.240(68) 11.151(62) 10.820(56) 8.162(54) 15.957(12)
8.487(39) 6.053(25) 8.988(64) 11.013(66) 10.705(51) 8.041(56) 15.783(8)

emotions, which makes the recognition method less ac-

curate. Furthermore, the experimental results show that

by modeling the temporal behavior of the facial expres-

sions the dynamic features becomes more representative

that the static ones (i.e. appearance and geometric fea-

tures used in works such as [17, 18, 15, 8]).

4 Conclusions and Future Works

In this paper, we have proposed a method for dynamic

facial landmarking selection for emotion recognition by

using Gaussian Processes and ranking with log-likelihood

ratios. We have shown that the proposed method brings

to the state-of-the art, a novel way to analyze which



Dynamic Facial Landmarking Selection for Emotion Recognition using Gaussian Processes 11

5 10 15 20 25 30
283

284

285

286

287

288

289

290

Frame

 X
 a

x
is

(a) Landmark 19, SNR = 30.2049
(Anger)

5 10 15 20 25 30
336

336.5

337

337.5

338

338.5

339

Frame
 X

 a
x
is

(b) Landmark 61, SNR = 12.9775 (Con-
tempt)

5 10 15 20 25 30
299.5

300

300.5

301

301.5

302

302.5

303

303.5

Frame

 X
 a

x
is

(c) Landmark 42, SNR = 13.0877 (Dis-
gust)

5 10 15 20 25 30
404

405

406

407

408

409

410

411

412

413

Frame

 Y
 a

x
is

(d) Landmark 24, SNR = 27.0208 (Fear)

5 10 15 20 25 30
419

419.5

420

420.5

421

421.5

Frame

 Y
 a

x
is

(e) Landmark 55, SNR = 16.6506 (Hap-
piness)

5 10 15 20 25 30
351.8

352

352.2

352.4

352.6

352.8

353

353.2

353.4

353.6

353.8

Frame

 X
 a

x
is

(f) Landmark 51, SNR = 17.5877 (Sad-
ness)
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Fig. 12 GP regression for all emotions. The results show the more relevant landmarks for each emotion (SNR included).

Table 5 Emotion recognition accuracy for the CK, FEEDTUM, Oulu-CASIA and RML databases using the selected landmarks
for each emotion. The results show that when the selected facial landmarks are used, the recognition performance increases.

Database
Emotion RML FEEDTUM Oulu-CASIA CK
Anger 90.34± 4.56 94.78± 2.35 92.68± 4.98 95.45± 1.29

Contempt N/A 91.08± 3.35 N/A 93.04± 3.21
Disgust 89.59± 5.64 91.43± 3.75 88.73± 4.69 92.94± 2.77
Fear 91.49± 3.87 93.07± 2.89 90.46± 4.01 94.63± 3.02

Happiness 93.48± 3.61 96.47± 3.22 94.21± 3.57 96.73± 3.42
Sadness 90.77± 4.16 92.95± 2.96 91.03± 3.78 92.88± 2.14
Surprise 92.67± 4.03 95.44± 1.35 93.42± 4.43 96.03± 1.46
Average 91.39± 4.31 93.60± 2.84 91.75± 4.24 94.53± 2.47

landmarks are more relevant in an emotional sequence.

The results show that the facial landmarking detection

method is exact and complies with the requests for this

type of systems. Through quantitative analysis, the ro-
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(a) Happiness (b) Disgust (c) Fear (d) Sadness

(e) Anger (f) Contempt (g) Surprise

Fig. 13 Discriminative landmarks for each emotion (yellow points depict the best ranked landmarks). The results shows
that landmarks located in those facial regions that are particular for every emotion (i.e. rise corner of the lips in happiness
expression), proves to be more relevant in an emotional sequence.

Table 6 Emotion recognition accuracy for the CK, FEEDTUM, Oulu-CASIA and RML databases using the entire set of facial
landmarks. The results show that the entire set of facial landmarks is less representative for emotion recognition processes
(low recognition rates).

Database
Emotion RML FEEDTUM Oulu-CASIA CK
Anger 85.46± 4.13 91.83± 3.89 83.72± 4.31 93.01± 2.45

Contempt N/A 87.48± 3.64 N/A 91.35± 3.41
Disgust 83.72± 4.61 89.68± 3.92 82.33± 3.87 90.87± 2.43
Fear 88.52± 4.03 90.43± 3.45 87.45± 4.26 91.79± 3.36

Happiness 90.45± 3.37 93.21± 3.06 91.45± 3.86 93.88± 4.17
Sadness 87.03± 3.32 89.95± 3.85 85.46± 4.41 90.72± 3.06
Surprise 89.06± 3.74 90.44± 2.35 88.38± 3.76 93.42± 2.59
Average 89.04± 3.87 90.43± 3.45 86.46± 4.07 92.15± 3.07

Table 7 Experimental comparison of the proposed method
with common state-of-the-art approaches in emotion recogni-
tion using CK database.

Approach Classes Accuracy (mean± std)
Kotsia et.al.[17] 6 92.47± 4.56
Liu et.al. [18] 6 92.33± 3.17
Khan et.al.[15] 6 78.5± 3.05

Chiranjeevi et.al. [8] 6 87.67± 2.08
Ours 7 94.53± 2.47

bustness of the AAM model in facial feature detection

is evaluated. The results shows that the errors of the

AAM model in the matching process remain in nomi-

nal values of RMSE (satisfy the criterion of the relative

error).

The results shown in the dynamic facial landmark-

ing selection process, prove that supervised learning for

regression tasks, offers a robust way to quantify the dy-

namical facial changes in an emotional sequence. Be-

sides, using GPs to model facial expression time-series,

allow us to rank the best SNR landmarks embedded in

emotional sequence. Our approach, proves that works
developed in the affective computing field, can be im-
proved, since most of these works only use some facial

features that belongs to the shape model (i.e. corners

of eyes, eyebrows and mouth respectively).

Furthermore, the results show that any emotional

sequence exhibits a sets of landmarks that can vary

in an given emotional process. Moreover, the proposed

method supports works like [30] in which the emotional

characterization includes only a few landmarks related

to the shape model that are included in the emotion

recognition process [30, 3]. In addition, due to high

accuracy in the dynamic facial landmarking selection

process, the proposed method shows accurate perfor-

mances for emotion recognition tasks.
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Fig. 15 Histograms for best SNR values. In order to perform
a quantitative evaluation of the best ranked landmarks, we
compute histograms of all SNR values derived from the re-
gression process and so prove that in all emotional sequences
some of the facial landmarks bring an important information
to the dynamical emotional analysis. Horizontal dashed red
line represent the threshold at which a given landmark is con-
sidered as relevant. Segments separated by dashed green lines,
represent the set of landmarks for each of the face regions.

For future works, we plan to analyze the dynamic

changes related to 4D Facial expressions datasets in

order to extend our framework for 3D Facial shapes.
Moreover, we plan to study, if the facial appearance
descriptors (facial landmarks and texture information)

present relevant information in an emotional time-series.

Finally, we plan to build an emotional ranking pro-

cess based on multi-output Gaussian process regression

framework.
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