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The rescue of exhausted CD8+ cytolytic T-cells (CTLs) by anti-Programmed Cell Death-1 
(anti-PD-1) blockade has been found to require CD28 expression. At the same time, 
we have shown that the inactivation of the serine/threonine kinase glycogen synthase 
kinase (GSK)-3α/β with small-interfering RNAs (siRNAs) and small molecule inhibitors 
(SMIs) specifically down-regulates PD-1 expression for enhanced CD8+ CTL function 
and clearance of tumors and viral infections. Despite this, it has been unclear whether 
the GSK-3α/β pathway accounts for CD28 costimulation of CD8+ CTL function. In this 
article, we show that inactivation of GSK-3α/β through siRNA or by SMIs during priming 
can substitute CD28 co-stimulation in the potentiation of cytotoxic CD8+ CTL function 
against the EL-4 lymphoma cells expressing OVA peptide. The effect was seen using 
several structurally distinct GSK-3 SMIs and was accompanied by an increase in Lamp-1 
and GZMB expression. Conversely, CD28 crosslinking obviated the need for GSK-3α/β 
inhibition in its enhancement of CTL function. Our findings support a model where GSK-3 
is the central cosignal for CD28 priming of CD8+ CTLs in anti-PD-1 immunotherapy.
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inTrODUcTiOn

Naive T-cells are cells that have not encountered cognate antigen are essential for responses to 
novel pathogens. In this instance, activation requires a combination of stimulatory signals (1). The 
first signal is provided by the T-cell receptor (TCR) upon lymphocyte interaction with major his-
tocompatibility class (MHC) antigens on the antigen-presenting cells (APCs) within the immune 
synapse (2). The second signal for T-cell activation is provided by CD28 and other costimulatory 
coreceptors on T-cells (3–6). CD28 is a well-defined costimulatory molecule found on lymphocytes, 
which interacts with B7 (CD80 and CD86) proteins on the APC (7, 8). TCR signaling alone can 
result in the lymphocyte undergoing cell death, or becoming anergic and thus unable to respond 
to antigen (9). Simultaneous signaling through CD28 and the TCR gives rise to sustained activa-
tion characterized by interleukin (IL)-2 production and cell-cycle entry (8, 10–12). Anti-CD28 
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crosslinking using monoclonal antibodies (MAbs) that aug-
ment CD28 cosignaling, especially on CD4+ T-cells, leading to 
increased interleukin 2-receptor (IL-2R), CD69 expression and 
proliferation (13). Conversely, Fab fragments of antibodies in 
mice, inhibit T-cell responses and can induce long-term heart 
allograft survival (14), and ameliorate experimental autoim-
mune encephalomyelitis (15).

We and others have shown that CD28 can complement and 
amplify TCR signaling (8, 12, 16, 17). In addition, CD28 can 
generate signals independently of TCR engagement (6, 18–20). 
The Tyr-Met-Asn-Met (YMNM) motif in the cytoplasmic tail of 
CD28 binds the adaptor growth factor receptor-bound protein 
2 (GRB-2) (5, 11, 21–25) and the p85 regulatory subunit of 
phosphoinositide 3-kinase (PI-3K) resulting in the activation 
of AKT (21, 26, 27). This, in turn, leads to optimal IL-2-gene 
activation (11, 28), the expression of the anti-apoptotic protein 
BCL-XL, and the induction of an antigen response in  vivo 
(11, 24, 29, 30). In this context, CD28 is linked to the serine 
threonine kinase; glycogen synthase kinase-3 (GSK-3). GSK-3 
is constitutively active in T-cells, facilitating the exit of nuclear 
factor of activated T-cells (NFAT-c1) from the nucleus (31). 
CD28 signaling via PI-3K leads to the phosphorylation and 
inactivation of GSK-3, thus increasing IL-2 production and 
T-cell proliferation (32, 33).

Programmed cell death 1 (PD-1; PDCD1) is a member of the 
CD28 supergene family which negatively regulates T-cell func-
tion (3, 34, 35). PD-1 is expressed in response to T-cell activation 
and contributes to the exhaustion of CD8+ T-cells during chronic 
infection (36, 37). The coreceptor binds to ligands, programmed 
cell death ligand 1 and 2 (PD-L1/L2), on lymphoid and non-
lymphoid cells (38–40). Immune checkpoint blockade (ICB) 
with anti-PD-1 or anti-PD-L1 has also proven highly successful 
in the treatment of human cancers, alone or in combination with 
anti-CTLA-4 (41, 42). PD-1 expression on tumor-infiltrating 
CD8+ T-cells correlates with impaired effector cell function (3, 
43). We recently showed that GSK-3 is a central regulator of PD-1 
expression and that the inactivation of GSK-3 using small mol-
ecule inhibitors (SMIs) downregulates PD-1 expression resulting 
in enhanced clearance of viral infections and cancer (44, 45). 
Recently, it has also been shown that PD-1 check-point blockade 
requires CD28 expression (46–48).

Here, we show that inhibition of GSK-3α/β by either small-
interfering RNAs (siRNAs) or SMIs can substitute CD28 stimula-
tion in the potentiation of CD8+ cytolytic T-cell (CTL) function. 
We propose that GSK-3 is the key mediator that is responsible for 
CD28 priming of CD8+ CTLs in T-cell immunity and in response 
to anti-PD-1 ICB immunotherapy.

resUlTs

Recently, we reported that the inactivation of GSK-3α/β with 
siRNAs and drug inhibitors specifically downregulate PD-1 
expression for enhanced CD8+ CTL function and clearance of 
tumors and viral infections (44, 45). We also previously reported 
CD28 costimulation can induce the phosphorylation of GSK-3 
and hence its inactivation (33, 49). To assess CD8+ CTL func-
tion in response to antigen-presentation, we utilized MHC 

class I-restricted OVA specific-TCR transgenic (OT-1) mice 
with a TCR specific for the SIINFEKL peptide of OVAlbumin 
(OVA257–264) as presented by H-2kb. Control samples showed an 
increase in killing targets concurrent with an increase in effec-
tor/target (E/T) ratios. As previously shown (44), inhibition of 
GSK-3 with the SMI, SB415286, increased killing of EL4 target 
cells loaded with OVA peptide as measured at day 6 (Figure 1A). 
We next assessed the role of CD28 in this process. To this end, 
cultures were coincubated with soluble CTLA-4 IgG to block the 
interaction between CD28 and CD80/86 on presenting cells. EL4 
cells express CD80 (50) and were therefore used as target cells. 
CTLA-4-IgG effectively inhibited the level of CTL killing of target 
cells (left panels). Intriguingly, the addition of SMI SB415286 
completely restored normal levels of high CTL killing of targets at 
all E/T ratios (right panels). This ability of a GSK-3 SMI to bypass 
CD28 blockade by CTLA-4-IgG indicated that the inhibition of 
GSK-3 can substitute for the signal that is normally provided by 
anti-CD28. Further to this, as expected from our previous work, 
SB415286 suppressed the expression of PD-1 under all conditions 
(Figure 1B).

Anti-CD28 crosslinking has been found previously to aug-
ment CD28 signaling (13, 51). To assess this in the context 
of CD8+ CTLs, cultures were coincubated with anti-CD28 to 
crosslink the CD28 coreceptor for 7 days followed by an assess-
ment of CTL function. Under these conditions, anti-CD28 
greatly potentiated the killing potential of CTLs at all E/T 
ratios (left panel). Interesting, this level of enhanced killing was 
similar to that induced by GSK-3 SMI SB415286 (left panel). 
Further, the level of increased killing induced by anti-CD28 
could not be further enhanced by SB415286 and vice versa. In 
the same vein, anti-CD28 coculture reduced the expression 
of PD-1 on CD8+ T-cells, similar to that seen with SB415286 
(Figure  1B). Although it was originally assumed that CD28 
would provide costimulation needed for the expression of PD-1 
as in the case of CTLA-4 (52), we observed the opposite result. 
This was consistent with the generation of signals via GSK-3 
whose inhibition also suppressed PD-1 expression. Consistent 
with this, CTLA-4-IgG blockade of CD28 was seen to increase 
PD-1 expression (left panel). This suggested that the normal 
engagement of CD28 by CD80/86 might also act to suppress 
PD-1 expression. Flow cytometry showed that SB415286 down-
regulated PD-1 expression on OVA peptide activated cells was 
accompanied by increased expression of Lamp-1 and GZMB in 
T-cells (Figure 1C).

In a related approach, anti-CD28 or CTLA-4 IgG was added to 
cells expressing siRNA for GSK-3α/β (Figure 2). In the scrambled 
control, anti-CD28 acted to increase the level of response. In 
addition, the knock-down of GSK-3α/β with siRNA increased 
the level of response to that of anti-CD28 such that the addition 
of anti-CD28 has no further effect. While CTLA-4-IgG mark-
edly reduced the response of OT-1 T-cells expressing scrambled 
siRNA, it had no effect on cells expressing GSK-3α/β siRNA. 
Using a different approach, these data confirmed that GSK-3 
inhibition could substitute for the signal provided by anti-CD28. 
In turn, the increased killing was reflected by a decrease in PD-1 
expression (Figure 2B) and an increase in GZMB and Lamp-1 
expression (Figure 2C).
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FigUre 1 | T-cell activation with anti-CD28 enhances cytolytic T-cell (CTL) killing of antigen specific target cells through glycogen synthase kinase 3 (GSK-3).  
(a) OT-1 CD8+ CTLs were activated with OVA peptide incubated in the presence (right panel) or absence (left panel) of SB415286 with or without anti-CD28 or 
blocking CD28 (CTLA-4 IgG fusion protein). After 5 days, CTLs were washed and counted before incubation with target (OVA-EL4) cells at the ratios shown for 4 h. 
Lactate dehydrogenase release was measured as an indication of target cell killing. Histogram depicts measurements normalized for background non-specific killing. 
OVA alone: light gray bars; anti-CD28: light blue bars; CTLA-4 IgG: dark blue bars (error bars based on triplicate values in individual experiments, data shown 
representative of four independent experiments). (B) Histogram showing MFI values of programmed cell death 1 (PD-1) expression as measured by flow cytometry. 
(c) Flow cytometry profiles of GZMB and Lamp-1 in the presence and absence of SB415286 alone, combined with anti-CD28 or CTLA-4 IgG. Error bars based on 
triplicate values in individual experiments; data shown representative of three independent experiments.
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Importantly, the ability of GSK-3 inhibition to substitute for 
anti-CD28 in increasing CD8+ CTL function was seen with the use 
of different GSK-3 inhibitors; SB216763, CHIR99021, and L803-
mts (Figure 3). Each have distinct structures but share a common 
target (53, 54). In each case, CD28 blockade by CTLA-4-IgG was 
reversed by the addition of any one of the four inhibitors used. 
Together, these data also support a key role for GSK-3 inhibition 
as a mediator of CD28 regulation of CD8+ T-cell killing.

To assess the in vivo effect of CTL priming, OVA peptide in 
the presence or absence of SB415286 was injected intravenously 
into OT-1 transgenic mice followed by the harvest of spleens 
at day 7 (Figure  4). T-cells from extracted spleens were then 
subjected to further ex vivo stimulation for another 7 days in 
the presence or absence of SMI SB415286, anti-CD28, or CTLA-
4-IgG followed by assessment of ex vivo killing of EL4-OVA 
targets. From this, it was observed that the in vivo administra-
tion of SMI enhanced cytolytic responses compared to OVA 
peptide alone (Figures 4A,B, left panel). This increase was also 

observed with OVA peptide alone primed cells when incubated 
with the GSK-3 SMI in vitro (Figure 4A, left panel). This find-
ing showed that the cells were effectively primed in vivo with 
the SMI. In the case of cells primed with OVA peptide alone, 
the addition of anti-CD28 in  vitro enhanced killing, whereas 
no additional effect was seen on cells primed with both OVA 
peptide and SMI. The addition of CTLA-4-IgG in  vitro dem-
onstrated the effects of priming with OVA peptide alone to be 
overcome by CD28 blockade. However, this was overcome by 
additional SMI in vitro (Figure 4B, left panel). Flow cytometry 
showed that priming with SMI, in addition to OVA peptide, 
slightly increased Lamp-1 and GZMB expression compared to 
OVA peptide alone. Further, anti-CD28 increased the numbers 
of CTLs expressing GZMB and Lamp-1, and this effect was 
reversed by CTLA-4-IgG (right panels). SMI had no further 
effect on anti-CD28-treated cells, but did overcome the CD28 
blockade. Under both priming conditions, PD-1 expression was 
reduced in the presence of anti-CD28 to the same level as that 
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FigUre 2 | CD28 activation is comparable to glycogen synthase kinase 3 (GSK-3) inactivation enhancing cytolytic function. (a) OT-1 CD8+ cytolytic T-cells (CTLs) 
were transfected with scrambled (left panel) or GSK-3 (right panel) small-interfering RNA (siRNA) prior to activation with OVA peptide and incubated with or without 
anti-CD28 or blocking CD28 (CTLA-4 IgG fusion protein). After 5 days CTLs were washed and counted before incubation with target (OVA-EL4) cells at the ratios 
shown for 4 h. Lactate dehydrogenase release was measured as an indication of target cell killing. Histogram depicts measurements normalized for background 
non-specific killing. OVA alone: light gray bars; anti-CD28: light blue bars; CTLA-4 IgG: dark blue bars (error bars based on triplicate values in individual experiments, 
data shown representative of four independent experiments). (B) Histogram showing MFI values of programmed cell death 1 (PD-1) expression as measured by flow 
cytometry. (c) Flow cytometry profiles of GZMB and Lamp-1 in either scrambled or GSK-3 siRNA transfected cells stimulated with Ova alone, or combined with 
anti-CD28 or CTLA-4 IgG. Error bars based on triplicate values in individual experiments; data shown representative of three independent experiments.
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seen with SMI. These data showed that GSK-3 inhibition in vivo 
augmented CTL function to a similar level as achieved in vitro 
with anti-CD28.

DiscUssiOn

Both CD28 and the serine/threonine kinase GSK-3α/β have 
been found to play important roles in the activation of T-cells 
(4, 5, 44). The PI-3K/3-phosphoinositide-dependent protein 
kinase 1 (PDK1)/AKT signaling axis is central to cellular 
homeostasis, cell growth and proliferation (55, 56). We previ-
ously showed that GSK-3α/β inactivation with siRNAs and 
SMIs specifically downregulates PD-1 expression which leads 
to enhanced CD8+ CTL function and clearance of viral infec-
tions and cancer (44, 45). Despite this, it has been unclear how 
the GSK-3 pathway is linked to CD28 costimulation in the 
generation of CD8+ CTL function. We previously showed that 
CD28 has a cytoplasmic YMNM motif for binding to PI-3K, 
and that the pathway promotes the phosphorylation and 

inactivation of GSK-3 (21, 27, 33). The binding motif for PI-3K 
is phosphorylated by the src kinases, p56lck and p59fyn (22). 
Here, we show that GSK-3 inactivation substitutes for CD28 
in the priming of cytotoxic CD8+ T-cells, while the enhanced 
cytotoxic function induced by anti-CD28 Mab crosslinking 
obviates the effects of GSK-3 SMIs.

Our first observation was that GSK-3 inactivation, using 
either siRNAs or SMIs, could substitute for CD28 in provid-
ing cosignals for enhanced cytotoxicity. GSK-3 inactivation 
reversed the effects of CD28 blockade with CTLA-4-IgG in the 
cytotoxic response OT-1 CTLs against EL4 cells expressing the 
OVA peptide. This was seen at all effector to target ratios stud-
ied. In each case this enhanced function was accompanied by an 
increase in Lamp-1 and GZMB expression. The efficacy of SMIs 
indicated that the inhibition of the catalytic activity of GSK-3, 
and not its potential role as a molecular scaffold for the binding 
of other proteins, was primarily responsible for increased func-
tion. Further, the effects were seen with four different SMIs with 
distinct structures whose shared property is the inhibition of 
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FigUre 3 | Anti-CD28 enhances cytolytic T-cell (CTL) killing of antigen-specific target cells to similar extent as glycogen synthase kinase 3 (GSK-3) inhibitors. OT-1 
CD8+ CTLs were activated with OVA peptide incubated in the presence or absence of one of four small molecule inhibitors (from top to bottom; SB415286, 
CHIR99021, L803mts, SB216763) with or without anti-CD28 or blocking CD28 (CTLA-4 IgG fusion protein). After 5 days, CTLs were washed and counted before 
incubation with target (OVA-EL4) cells at the ratios shown for 4 h. Lactate dehydrogenase release was measured as an indication of target cell killing. Dark blue bars 
on left panel depicts background non-specific killing (non-pulsed target cell death). Error bars based on triplicate values in individual experiments; data shown 
representative of three independent experiments.
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GSK-3. These included ATP-competitive inhibitors SB216763, 
CHIR99021, and L803-mts, where SB216763 has a greater pref-
erence of inhibition for the GSK-3α isoform, while CHIR99021 
and L803-mts preferentially inhibits GSK-3β (54, 57). Our 
previous work assessed longevity of the effectiveness of the SMIs 
by monitoring PD-1 expression in mice coinjected with EL4 
tumors and a single injection of SMI. These data indicate that 
the effects of SB415286 were sustained for over 7–10 days (44).

The close relationship between CD28 and GSK-3 was also 
observed by the ability of anti-CD28 MAb crosslinking to over-
ride or substitute for GSK-3 SMI inhibition in the potentiation of 
CTL function. While anti-CD28 blocks the interaction between 
CD28 and CD80/86, it also crosslinks the coreceptor in the 
generation of cosignals. CD28 crosslinking by CD80/86 is gener-
ally thought to be suboptimal, while the higher concentration of 

anti-CD28 can be more effective in occupying and crosslinking 
the coreceptor. Consistent with this, anti-CD28 MAb PVI greatly 
enhanced the killing function of OT-1 CTLs against OVA-EL4 
targets. The level of increased killing was identical to the level 
observed with the addition of GSK-3 SMIs. The addition of 
GSK-3 SMI SB415286 to cultures that had been incubated with 
anti-CD28 provided no further potentiation of the CTL response 
and vice versa. This was confirmed in both in vitro and in vivo 
assays. This is reminiscent of the similarity in the effects of GSK-3 
SMIs and anti-PD-1 blockade (44). Whether a similar relation-
ship between GSK-3 and CD28 exists in CD4+ T-cells and oper-
ates in response to activating CD28 superagonists (58) remains 
to be studied.

Overall, we propose a model where GSK-3 is the center of 
effects mediated via CD28 (Figure 5). Recently, it was reported 
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FigUre 4 | Cytolytic potential of cytolytic T-cells (CTLs) primed in vivo can be enhanced in vitro with anti-CD28 antibody. OT-1 mice were injected intravenously with 
ova peptide alone (a) or in combination with SB415286 (B). Spleens were extracted on day 7. Ex vivo purified T-cells were then subjected to further stimulation with 
OVA peptide in the presence (right panel) or absence (left panel) of SB415286 with or without anti-CD28 or blocking CD28 (CTLA-4 IgG fusion protein). After 5 days, 
CTLs were washed and counted before incubation with target (OVA-EL4) cells at the ratios shown for 4 h. Lactate dehydrogenase release was measured as an 
indication of target cell killing. Histogram depicts measurements normalized for background non-specific killing. (Right panels) Flow cytometry profiles of GZMB, 
Lamp-1, and PD-1 in the presence and absence of SB415286, combined with anti-CD28 or CTLA-4 IgG (mean and SD of six mice per group). Error bars based on 
triplicate values in individual experiments; data shown representative of two independent experiments.
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that the rescue of exhausted CD8+ T-cells by anti-PD-1 blockade 
requires CD28 expression (46, 47). One proposed mechanism 
was the de-phosphorylation of CD28 by PD-1-associated Src 
homology region 2 domain-containing phosphatase (SHP)-2 
(48). By connecting these observations to our findings, we pro-
pose a new model for the mechanism by which anti-PD-1 ICB 
operates in immunotherapy (see Figure  5). In the absence of 
anti-PD-1 ICB, PD-1-associated phosphatases SHP-1 and SHP-2 
would dephosphorylate the CD28 YMNM motif for the activa-
tion of PI-3K. In the presence of anti-PD-1 ICB, the activation 
of SHP-1/2 is blocked, allowing for the phosphorylation of the 
CD28 YMNM motif and the recruitment of PI-3K (4, 5). PI-3K 
produces phosphatidylinositol (3,4,5) trisphosphates (PIP3) 

which serve as plasma membrane docking sites for proteins with 
pleckstrin-homology (PH) domains. CD28 induced PI-3K would 
promote PDK1 to the membrane where it would activate serine/
threonine kinase AKT (also known as protein kinase B or PKB). 
AKT would in turn inhibit GSK-3 by phosphorylation of sites of 
human GSK-3α (Ser21) and GSK-3β (Ser9). As we have shown 
(44, 45), GSK-3 inhibition up-regulates the transcription of the 
transcription factor Tbx21 (Tbet) that inhibits PD-1 expression. 
We propose that CD28 regulation of GSK-3 accounts for the 
requirement for CD28 in the rescue of the response of CD8+ 
T-cells to anti-PD-1 blockade (46, 47). Further studies are needed 
to assess the full range of targets of the CD28-GSK-3-Tbet-PD-1 
axis in T-cell biology.
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FigUre 5 | Model of CD28 mediated upregulation of CD8+ cytolytic T-cell 
(CTL) function via glycogen synthase kinase 3 (GSK-3) in the context of 
antiprogrammed cell death 1 (anti-PD-1) immune checkpoint blockade (ICB). 
In the absence of anti-PD-1 ICB, PD-1-associated phosphatases Src 
homology region 2 domain-containing phosphatase (SHP)-1 and SHP-2 
dephosphorylate the CD28 phosphoinositide 3-kinase (PI-3K)-binding site 
Tyr-Met-Asn-Met (YMNM), thereby preventing the binding and engagement of 
PI-3K by CD28. In the presence of anti-PD-1, the activation of SHP-1/2 is 
blocked, allowing for the phosphorylation of the YMNM motif and the 
recruitment of PI-3K. PI-3K produces phosphatidylinositol (3,4,5) 
trisphosphates (PIP3) which serve as plasma membrane docking sites for 
proteins with pleckstrin-homology (PH) domains, including of the serine/
threonine kinase AKT (also known as protein kinase B or PKB) and its 
upstream activator of the 3-phosphoinositide-dependent protein kinase 1 
(PDK1). In our model, in T-cells, CD28 ligation by CD80/86 allows for the 
activation of PI-3K leading to the activation of PDK1 and the phosphorylation 
and activation of AKT. Phosphorylation of AKT at Ser473 by mTORC2 can 
also stimulate its full enzymatic activity. AKT in turn inhibits GSK-3 by 
phosphorylation [GSK-3α (Ser21) or GSK-3β (Ser9)]. We have shown that 
GSK-3 inhibition in turn upregulates the transcription of the transcription 
factor Tbx21 (Tbet) which in turn binds and inhibits transcription of PD-1. 
This pathway could downregulate PD-1 leading to more effective anti-PD-1 
immunotherapy.
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MaTerials anD MeThODs

Mice
C57BL/6–OT-1Tg and wt mice were used throughout the 
majority of the study. The research on mice was regulated under 
the Animals (Scientific Procedures) Act 1986 Amendment 
Regulations 2012 following ethical review by the University of 
Cambridge Animal Welfare and Ethical Review Body Home 
Office UK PPL No. 70/7544.

cells and cultures
OVA specific CD8+ cytolytic T-cells were generated by incubating 
isolated splenocytes from OT-1 mice with SIINFEKL peptide of 
OVA (OVA257–264) at 10 ng/mL for 5–7 days. In certain cases, naive 
OT-1 T-cells were isolated from spleens using T-cell enrichment 

columns (R&D) and subjected to nuclear transfection (see method 
below). In the case of purified naive T-cells, the thymoma EL4 cell 
line was used to present OVA257–264 to primary T-cells. EL4 cells 
were incubated with 10 nM OVA257–264 peptide (Bachem) for 1 h 
at 37°C and treated with mitomycin C (Sigma-Aldrich, St. Louis, 
MO, USA) (final concentration of 10 µg/mL) prior to mixing with 
primary T-cells by coculturing at a ratio of 1:5 of EL4 and T-cells 
to generate cytotoxic T-cells. In either case, CTLs were generated 
in the presence or absence of SMI and/or anti-CD28 or CTLA-
4-Ig (inhibitors/Abs added simultaneously with OVA-stimulation 
for 5–7  days) prior to washing and analysis by FACs, PCR, or 
cytotoxicity assays. Cells were cultured in RPMI 1640 medium 
supplemented with 10% FCS, 50  mM beta-mercaptoethanol, 
sodium pyruvate, 2 mM l-glutamine, 100 U/ml penicillin, and 
streptomycin (GIBCO).

antibodies/reagents
Stimulations were performed using 10  nM OVA257–264 peptide 
(Bachem), anti-CD28 (clone PV1, bioXpress), and CTLA-4 IgG 
Fusion Protein (BD Pharmingen) where stated. SMI (GSK-3 
inhibitor) was obtained from Abcam plc. and suspended in DMSO 
to give a stock solution of 25 mM and diluted to a concentration 
of 10 μM in vitro. Fluorescently labeled Abs to GZMB, PD-1, and 
Lamp-1 (CD107a) were obtained from Biolegend.

cytotoxicity assays
Cytotoxicity was assayed using a Cytotox 96 nonradioactive kit 
(Promega) following the instructions provided. In brief, puri-
fied T-cells were plated in 96-well plates at the effector/target 
ratios shown using 104 EL4 (ova peptide-pulsed) target cells 
per well in a final volume of 200 µl per well using RPMI lacking 
phenol red. Lactate dehydrogenase release was assayed after 4 h 
incubation at 37°C by removal of 50 µl supernatant from each 
well and incubation with substrate provided for 30 min and the 
absorbance read at 490 nm using the Thermomax plate reader 
(Molecular Devices). Percentage cytotoxicity  =  [(experimental 
effectorspontaneous  −  target spontaneous)/(targetmaximum  −  target 
spontaneous)] × 100. All cytotoxicity assays were reproducible in 
at least three independent assays (59).

nuclear Transfection
The 3.0  μg GSK-3α/β siRNA was added to 1  ×  106 PBMC 
that had been washed in PBS and resuspended in 100  µl of 
Nucleofector™ solution for T-cells (Amaxa Biosystems, 
Cologne, Germany). Cells were transferred into a cuvette and 
electroporated using program X-01 of the Nucleofector™ 
(Amaxa Biosystems), and then immediately transferred into 
prewarmed cRPMI medium supplemented as recommended. 
GSK-3α/β specific and control siRNA were synthesized by 
Cell Signaling Technology. Control cells were transfected with 
3.0 μg siRNA using the same protocol. Transfected cells were 
rested 24 h, before assays commenced.

Priming OT-1Tg cells In Vivo
Ova peptide (1  µg) was injected intravenously into OT-1Tg 
mice with and without SB415286 (100  µg) in 100  µl of PBS. 
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Spleens were harvested after 7 days and T-cells purified before 
further stimulation in  vitro for 5  days with the indicated 
antibodies.

statistical analysis
The mean and SE of each treatment group were calculated for all 
experiments. The number of samples is indicated in the figure leg-
ends. Unpaired Student’s t-tests or ANOVA tests were performed 
using the InStat 3.0 software (GraphPad).*P < 0.05, **P < 0.01, 
and ***P < 0.001.
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