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Abstract  

 

Red blood cell transfusions remain one of the cornerstones in supportive care of lower-risk 

patients with myelodysplastic syndromes. We hypothesized that patients develop oxidant 

mediated tissue injury through the formation of toxic iron species, caused either by red 

blood cell transfusions or by ineffective erythropoiesis. We analyzed serum samples from 

100 lower-risk patients with myelodysplastic syndromes at six-month intervals for transferrin 

saturation, hepcidin-25, growth differentiation factor 15, soluble transferrin receptor, non-

transferrin bound iron and labile plasma iron in order to evaluate temporal changes in iron 

metabolism and presence of potentially toxic iron species and their impact on  survival. 

Hepcidin levels were low in 34 patients with ringed sideroblasts compared to 66 patients 

without. Increases of hepcidin and non-transferrin bound iron levels were visible early in 

follow-up of all transfusion dependent patient groups. Hepcidin levels significantly 

decreased over time in transfusion independent patients with ringed sideroblasts. 

Increased soluble transferrin receptor levels in transfusion-independent patients with ringed 

sideroblasts confirmed the presence of ineffective erythropoiesis and suppression of 

hepcidin production in these patients. Detectable labile plasma iron levels in combination 

with high transferrin saturation levels occurred almost exclusively in patients with ringed 

sideroblasts and all transfusion dependent patient groups. Detectable labile plasma iron 

levels in transfusion dependent patients without ringed sideroblasts were associated with 

decreased survival. In conclusion: toxic iron species occurred in all transfusion dependent 

patients and in transfusion independent patients with ringed sideroblasts. Labile plasma iron 

appeared to be a clinically relevant measure for potential iron toxicity and a prognostic 

factor for survival in transfusion dependent patients. This trial was registered 

at www.clinicaltrials.gov as #NCT00600860. 
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Introduction  

Myelodysplastic syndromes (MDS) are a heterogeneous group of acquired clonal 

hematopoietic stem cell disorders that are characterized by abnormal differentiation and 

maturation of hematopoietic cells, bone marrow failure and genetic instability with an 

enhanced risk of progression to acute myeloid leukemia.1 The EUMDS registry is a 

prospective, observational registry established in 2007 to collect data on low and 

intermediate-1 risk MDS patients, which represents the lower-risk MDS population 

comprising approximately seventy percent of the overall MDS population.2,3 The majority of 

lower-risk MDS patients (51% in the EUMDS Registry)3 become transfusion dependent, 

usually early after diagnosis. With an expected median survival of 2.4 to 11.8 years, these 

patients are prone to long-term accumulation of iron due to red blood cell (RBC) 

transfusions.4-8 Iron overload may also occur in MDS patients who do not receive RBC 

transfusions, due to the stimulation of intestinal iron absorption, mediated through 

suppression of hepcidin production in patients with ineffective erythropoiesis9. Patients with 

ringed sideroblasts (MDS-RS) are of special interest in this context, considering their 

pronounced ineffective erythropoiesis.6,7,10,11 

The toxic effects of iron overload in other iron loading diseases, such as hereditary 

hemochromatosis11 and the thalassemia syndromes12, are well known, but the 

consequences in MDS remain to be elucidated. MDS patients are generally older than 

patients with other iron loading disorders13. Their exposure may not be long enough to 

develop classical tissue damage due to iron overload, but they may suffer from oxidative 

stress caused by toxic iron molecules. Moreover, iron toxicity might be restricted to specific 

subgroups of MDS patients: patients receiving RBC transfusions and a subgroup of patients 

with MDS-RS and increased ineffective erythropoiesis.5,13 

A greater insight into the pathophysiology of iron metabolism in MDS, might be obtained 

through an optimized diagnostic work-up and monitoring by specific iron metabolism 

markers, including hepcidin, growth differentiation factor 15 (GDF15), soluble transferrin 

receptor (sTfR),  and the recently introduced serum toxic iron species, namely  non-

transferrin bound iron (NTBI) and labile plasma iron (LPI).14-18 The most important regulator 

of systemic iron metabolism is hepcidin, a 25-aminoacid peptide hormone, produced 

predominantly by the hepatocytes. Hepcidin triggers internalization and lysosomal 

degradation of ferroportin, a membrane bound cellular iron exporter present on 

macrophages and the basolateral site of enterocytes that releases iron into the 

circulation.19,20 Hepcidin is suppressed in hypoxia and with increased erythropoietic iron 

demand and is upregulated in case of inflammation and increased circulating iron levels and 

elevated body iron stores.5,20,21 

GDF15 is a protein produced by erythroid precursors and has been reported to be involved 

in the communication between bone marrow and liver in case of an increased erythroid 

demand, functioning as a suppressor of hepcidin synthesis, as shown for  β-thalassemia.5,9,22 
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However, its role in MDS is still a matter of debate because of conflicting results.5,11,22-25 

Twisted gastrulation factor 1 (TWSG1) and Erythroferrone (ERFE) are also reported to have a 

suppressive function in hepatic hepcidin production, but validated human assays are not 

available.9 Of additional interest in iron homeostasis is sTfR. The serum concentration of sTfR 

is proportional to the quantity of the Transferrin Receptors 1 (TfR1) on cellular membranes, 

especially on erythroid precursors, and is a valuable parameter of erythroid mass and iron 

supplies.26,27 Among others, sTfR levels are elevated in case of high erythroid proliferation 

rates especially in combination with adequate iron supply,27 as in diseases characterized by 

ineffective erythropoiesis such as β-thalassemia syndromes, and suppressed in case of 

decreased erythropoietic activity as in anemia of chronic disease, and diseases with 

erythroid hypoplasia.20,25,28  Earlier studies showed that sTfR levels are increased in MDS-RS5, 

including SF3B1-positive MDS, patients.11  

NTBI concentrations are only sporadically present with transferrin saturations (TSAT) <70% 

and increase sharply when saturation of transferrin with iron exceeds 70%.29 Chemically, 

NTBI consists of iron that is rather loosely bound to albumin or low molecular weight metal 

complexing groups.30,31 The NTBI complexes may be taken up by specific NTBI transporters in 

liver, pancreas, and heart and contribute to oxidant-mediated cellular injury in these 

tissues.17,32 LPI is thought to be the NTBI fraction that is mostly responsible for tissue injury, 

since it is readily available to participate in redox cycling causing oxidative damage to cellular 

membranes, proteins and DNA.15,33 It has been proposed that plasma NTBI is an important 

early indicator of extra-hepatic iron toxicity in β-thalassemia major.34,35 

Improved insights in levels and roles of key players of iron metabolism during treatment with 

transfusions in the various MDS subtypes may provide leads for novel diagnostic and iron 

reducing treatment strategies. The prospective study of the EUMDS registry has been 

initiated to provide a better understanding of the pathophysiology and prognostic value of 

iron overload and iron mediated oxidative stress as well as possibly important markers in 

iron homeostasis over time in MDS. To this end, we evaluated serum ferritin, iron, 

transferrin saturation, hepcidin-25, GDF15, sTfR, NTBI and LPI levels over time in lower-risk 

MDS patients and their relation with WHO 2001 subtype and transfusion history. We 

identified detectable LPI levels as a new important prognostic factor for survival in patients 

with MDS-RS or lower-risk MDS patients treated with regular RBC transfusions. 
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Methods  

Study design and participants  

Patients were eligible to be included in the EUMDS registry if they were newly diagnosed 

with MDS according to the WHO 2001 classification and a low or intermediate-1 score 

according to the IPSS prognostic system.2 Patients with IPSS intermediate-2 or high risk, 

patients with secondary or therapy-related MDS were excluded from this registry. The ethics 

committees of all participating countries and centers have approved the protocol 

(ClinicalTrials.gov Identifier: NCT00600860). Patients were required to provide written 

informed consent.  

Serum samples were collected prospectively, at registration and at 6-month intervals, from 

109 patients included in six countries participating in this study from April 2008 to 

December 2010, but samples from nine patients had to be excluded due to technical 

reasons, see online supplemental information for details. The total number of analyzed 

serum samples was 454. 

Biochemical assays 

The iron parameters in this sub study were analyzed centrally at the department of 

Laboratory Medicine of the Radboudumc, Nijmegen, Netherlands. Detailed information 

these iron parameters is described in the online supplemental information. 

Measurement of serum NTBI consisted of the chelation-ultrafiltration-detection approach 

based on the prior mobilization of serum NTBI by weak iron-mobilizing chelators such as 

nitrilotriacetate (NTA) at 80 mM. The chelated NTBI is separated from transferrin-bound iron 

by ultrafiltration and detected by colorimetry.36 The lower limit of detection (LLOD) of the 

NTBI assay is 0.47 μmol/L. The LPI measurement was based on the measurement of the 

redox-active and readily chelatable fraction of NTBI. This assay measures iron-catalyzed 

radical generation in the presence of a low ascorbate concentration. Radical generation was 

measured with the fluorogenic redox sensitive probe dihydrorhodamine (DHR) 123, and 

iron-catalyzed radical generation was calculated by subtracting the radical generation in the 

presence of 50 μmol/L of the bidendate iron chelator deferiprone (DFO, the LPI DHR 

oxidation that is NOT iron dependent).37 The LLOD of the LPI assay is 0.24 μmol/L. 

Statistical analysis 

Standard descriptive techniques were used to assess the association between the iron 

parameters including Spearman's rank correlation coefficients. Where NTBI or LPI was below 

LLOD, values were randomly drawn from a univariate distribution in the range from zero to 

the LLOD. Overall survival (OS) was defined as the time from date of diagnosis to death or for 

subjects still alive censored at the date of the last visit a sample was available. Cox 

proportional hazards regression models and Kaplan–Meier survival curves with time-

dependent covariates38 were used in time-to-event analyses to assess the impact of LPI 

level, NTBI and TSAT by transfusion status on survival. All variables were treated as time-
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varying covariates in the model by assessing the levels of the parameters (LPI, NTBI: <LLOD 

vs elevated, TSAT <80% vs ≥80%) and transfusion status (transfused vs. not transfused) at 

each visit. LPI and NTBI levels >LLOD were considered abnormal. Once a subject had received 

a transfusion, they were classified as transfused for the remaining time. Hazard ratios (HR) 

and 95% confidence intervals (95% CI) are reported for both univariate and multivariate 

models. In the case of the multivariate analyses, the additional covariates included were age 

at diagnosis, IPPS-R category and usage of Erythroid Stimulating Agents (ESA).  All analyses 

were undertaken in Stata 14 (StataCorp, College Station, TX).  
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Results 

Patient Characteristics  

The median age of all patients at registration was 73 years (range 43-95 years). The majority 

of the patients were male: 64% (n=64). The IPSS risk groups of the 100 patients in the study 

were low 47%, intermediate-1 41% and unknown 12% and the IPSS-R risk groups were very 

low 32%, low 41%, intermediate 8%, high 3% and unknown 16%. WHO2001 MDS-subtypes 

were RCMD (37%), RARS (30%), RA (18%), RAEB (7%), 5q-syndrome (4%) and RCMD-RS (4%).  

Fourteen percent of the patients were transfusion dependent (defined as any time after 

starting transfusions) at registration (n=14). No patients received iron chelation therapy at 

time of registration. Six patients received iron chelation therapy during this observation 

period (Table S1). The median number of samples available per patient is five samples (range 

1-7), and median follow-up was 5.8 years. Overall survival and progression free survival in 

our study population were 4.8 and 4.6 years, respectively. Nineteen patients have died, 

including 5 patients after progression and 9 patients from causes possibly related to MDS 

(hemorrhage 2, infection 5, and cardiovascular 2 patients) (table S4). 

   

Iron parameters  

Median ferritin levels were elevated (>250 µg/l) at registration in all patient groups, but the 

highest median levels were observed in the transfusion dependent (TD) groups (Table 1). 

Median serum iron levels were within reference range (12-30 µmol/L) in all patient groups at 

registration. Overall, median TSAT was within reference range (<45%) at registration with 

the exception of TD MDS-RS patients (Table 2). Median hepcidin levels were within 

reference range in all patient groups at registration, but TD patients had significantly higher 

hepcidin levels compared to transfusion independent (TI) patients (p<0.001). Ferritin levels 

correlated significantly with hepcidin levels (r=0.55, p<0.001). The median GDF15 levels were 

elevated in the RS subgroup only. NTBI levels above LLOD (>0.47 µmol/L) occurred in all 

patient groups at registration with highest levels in MDS-RS patients. STfR levels were within 

reference range (0.8-1.8 mg/L) at registration, and the highest levels were observed in TI 

MDS-RS patients (Table 2). The median LPI levels were below LLOD in all patient groups at 

registration (<0.24 mol/L), except in TD MDS-RS patients. Median CRP levels were below the 

upper limit of the reference range (<10 mg/L) in all groups at all time-points (Table 1) and 

the majority of patients with CRP levels above 50 mg/L were transfusion-dependent. CRP 

levels correlated positively with hepcidin levels (r = 0.30, p<0.001) and ferritin levels (r=0.22, 

p<0.001).  

 

Impact of MDS subtype and transfusions on iron parameters over time  

The impact of transfusions and MDS subtype (RS versus nonRS) on TSAT, hepcidin, GDF15, 

NTBI and LPI levels over time is shown in Table 2. Both serum ferritin and serum iron levels 

increased significantly (r=0.59, p<0.001 and r=0.32, p<0.001, respectively) with cumulative 

number of transfused units over time in transfusion dependent patients (Table S2) as well as 

in RS patients (Table S3). TSAT remained stable and within reference range in the TI patients 
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with the exception of a minority of RS patients (Figure S2) and increased over time in the TD 

patients up to 94.9% in patients with >10 RBC units transfused (Table S2). Hepcidin levels 

increased with the number of units transfused, but in contrast, hepcidin levels significantly 

decreased over time in transfusion independent MDS-RS patients. (Table S3). GDF15 levels 

were not associated with transfusion status alone, but did increase over time in TD MDS-RS 

patients with a median of 2893 ng/L at registration compared to 5361 ng/L at two years 

follow up.  

STfR levels increased significantly (p<0.001) over time both in TI- and TD MDS-RS patients 

(p=0.01) (Table 2). STfR levels did not change over time in non-RS MDS patients. The lowest 

sTfR levels were observed in patients who had received more than 10 units (Table S2).  TD 

MDS-RS patients had the most elevated levels of NTBI and LPI over time (Table S2, S3).  

Correlation between markers of iron overload  

Both elevated NTBI and LPI levels (>LLOD) showed a threshold effect with TSAT of >70% and 

>80%, respectively (Figure 1A-B). Detectable LPI levels occurred almost exclusively in 

patients with MDS-RS and/or patients who had received transfusions. NTBI and LPI levels 

above the LLOD were mutually positively correlated (r = 0.46; p<0.001). Both NTBI and LPI 

showed a linear relationship (P<0.001) with ferritin, but no threshold levels could be 

detected (Figure 1C-D). The highest values were observed in transfusion dependent MDS 

patients; and subgroup analyses showed mainly a positive correlation in the transfusion 

dependent and/or RS subgroup (Figure 1C-D). 

 

Prognostic impact of iron overload markers  

Time-dependent, multivariate analysis of overall survival, adjusted for age and IPSS-R risk 

groups revealed no significant effect on overall survival for NTBI (HR=0.56, 95%CI=0.21-1.52; 

p=0.26) and for TSAT (HR=0.91, 95%CI=0.29-2.86; p=0.88) (table 3, figure 2B and Figure S1).   

Ten out of 19 patients who died during this study had detectable LPI. The majority (7 

patients) died from progression or MDS-related causes (table S4). Kaplan-Meier curves 

demonstrate prognostic impact on survival of detectable LPI levels by transfusion status 

(Figure 2), but no significant effect in the multivariate analysis adjusted for age and IPSS-R 

risk (HR=2.1, 95%CI 0.7-6.2; table 3). Once LPI is increased in both transfusion dependent 

and independent patients, survival time decreases, with greatest impact in patients who are 

transfusion dependent and have increased LPI levels (adjusted HR=3.0, 95%CI= 0.7-13.3). 

Since 41 patients were also treated with erythropoietin stimulating agents (ESA), we 

repeated the analyses adjusted for whether or not the patient had been treated with 

erythropoietin stimulating agents (ESA) at each visit (Figure 3). These adjustments did not 

significantly alter the magnitude of the risk estimates on overall survival (HR=3.0, 95%CI= 

0.7-13.5) (Table 3). 

Because the survival of patients with RS-MDS is usually considered better than in the nonRS 

MDS population, we repeated the analyses in the largest group of 66 nonRS patients (table 

4). Detectable LPI levels had a remarkable impact on survival in the whole nonRS group, but 
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the impact was only significant in the TD subgroup (HR=17.0, 95%CI 2.0-146.6). TSAT levels 

had a borderline impact on survival in TI patients. 

 

Six patients received iron chelation in this study (Table S3). LPI levels during treatment with 

deferasirox decreased below LLOD (four patients), even in patients with high TSAT.  Only 

three patients have been treated with lenalidomide. 

Ferritin levels and elevated CRP are time dependent variables, which correlate closely with 

transfusion burden/transfusion intensity, and presumably with infections (detailed data not 

available). Ferritin levels and elevated CRP predict survival when adjusted for age and IPSS-R 

group only, but the prognostic impact is less clear when transfusion intensity was added to 

the model (data not shown).  
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Discussion  

This study among 100 European lower-risk MDS patients showed that both red blood cell 

transfusions and presence of RS increased the occurrence of the toxic iron species NTBI and 

LPI in serum. Our data on iron parameters over time suggest that body  iron accumulation 

and toxic iron species (NTBI and LPI)  in RS-MDS patients occur along the axis of ineffective 

erythropoiesis, characterized by elevated sTfR, increased GDF15, low hepcidin, and 

increased circulating and parenchymal iron levels (Figure 4a). Interestingly, we found 

detectable LPI, but not NTBI, to be associated with a significantly decreased overall survival 

in the nonsideroblastic MDS patients.  

Hepcidin levels were significantly elevated in all transfusion dependent (TD) patient 

categories, immediately after initiation of transfusions and remained elevated during 

transfusion dependency, confirming recent studies in transfused MDS patients and 

illustrated in Figure 4b.5,7 However, the elevated hepcidin levels showed a tendency to 

decrease during continued exposure to transfusions. In addition, sTfR levels decreased over 

time in TD patients, compatible with previously reported suppression of erythropoiesis by 

continued transfusions.20,25 Interestingly, GDF15 increased over time in TD MDS patients and 

especially in TD RS-MDS patients. Increased GDF15 has previously been associated with 

ineffective erythropoiesis, but not with TD-mediated suppression of erythropoiesis.5 This 

suggests that TD-mediated suppression of ineffective erythropoiesis may be less effective 

during prolonged transfusions. This is supported by the gradual decline over time of the 

initially elevated hepcidin levels during prolonged transfusions. These data show that 

previous conflicting observations on the relationship of GDF15 and hepcidin can be 

explained by the impact of transfusions on GDF15 and hepcidin levels, especially in RS-MDS 

patients.5  

Hepcidin levels decreased over time in TI patients of the RS subtype. An earlier study in 107 

untransfused patients observed generally elevated hepcidin levels in MDS, but they 

observed low hepcidin/ferritin ratios in the RS subtypes, compatible with the low hepcidin 

levels in the RS patients of our study.39 In addition, RS patients showed elevated sTfR levels 

and decreased hepcidin levels compared to TI non-RS at all time points. These observations 

confirm the previously reported association between sTfR and ineffective erythropoiesis, 

resulting in increased uptake of dietary iron and iron release by macrophages, subsequently 

leading to increased circulating iron levels, elevated parenchymal iron stores and toxic iron 

species.7 Interestingly, recently developed hepcidin agonists prevented low-hepcidin 

induced toxicity pre-clinically showing the potential of these compounds to prevent iron 

loading erythropoietic activity in MDS, especially in RS-MDS.25,40 Altogether, our data suggest 

worsening over time of the ineffective erythropoiesis in RS patients and lower hepcidin 

levels in these patients.41,42  

Elevated NTBI levels could be demonstrated in our study early in follow up of all patient 

groups. In iron loading anemias, such as thalassemia syndromes, iron species, like NTBI and 

LPI, have been suggested to serve as early indicators of iron toxicity and as measures for the 
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effectiveness of iron chelation therapy in reducing potentially toxic iron molecules in the 

plasma.7,43 Excess toxic iron species catalyze the cellular generation of ROS. Oxidative stress, 

and high TSAT, as in combination with subsequent decrease in cellular antioxidants, may 

lead to oxidation of lipids, proteins and DNA causing cell and tissue damage.44,45 Biomarkers 

of oxidative stress have been found to be increased in patients with MDS and iron 

overload.3,46-49 The combination of high serum ferritin levels as well as the presence of NTBI 

and LPI, was noted more frequently in RS patients compared to non-RS patients in our 

study. Here, it is important to realize that in general practice, including our study, serum 

samples are collected immediately prior to transfusions. LPI levels are usually elevated for a 

few days after transfusion (except when transferrin is highly saturated) in contrast to the 

more stable NTBI which have been reported to have a longer half-life.50,51  These free iron 

molecules are easily translocated intracellularly and cause oxidative stress as shown in 

thalassemia.33 Oxidative stress may explain why elevated LPI levels are associated with an 

increased risk of dying prematurely, too early to die from causes related to classical iron 

overload in lungs, liver and heart as observed in young thalassemia patients after long-term 

transfusions.  

Less is known about pathophysiology and tissue toxicity of iron overload caused by 

ineffective erythropoiesis in MDS. We observed that high NTBI and LPI levels also occurred 

in RS patients not receiving transfusions, indicating that iron toxicity (oxidative stress) may 

also occur in this category of MDS patients (Figure 4), similar to transfusion independent β-

thalassemia intermedia, α-thalassemia (Hb-H disease), and X-linked sideroblastic 

anemia.52,53  

 

Previously, we reported that detectable LPI occurred almost exclusively in samples with TSAT 

>80%.29 Interestingly, in the current study survival of patients with TSAT >80% was not 

different from the survival of patients with a TSAT below this level (Figure S1). The lowest 

hepcidin levels have been observed in RS patients,5 similar to our observations. Elevation of 

LPI in TI patients occurred exclusively in RS patients as expected in view of the low hepcidin 

levels leading to increased serum iron levels, through increased intestinal iron absorption 

and increased iron release from macrophages. Non-RS patients with SF3B1 mutations may 

show a similar iron pathophysiology since they appear to have a similar outcome compared 

to RS-MDS patients with SF3B1 mutations.54 In addition, significant relationships were found 

between SF3B1 mutations and marrow erythroblasts (P=0.001) or soluble transferrin 

receptor factor 15 (P=0.033).11 Our data show that elevated LPI levels - in contrast to 

elevated NTBI levels and TSAT - associate with decreased survival. The risk of dying 

prematurely  in patients with detectable LPI levels occurred too early in this study to explain 

this risk by classical iron overload due to organ toxicity (lungs, liver and heart) after long 

term transfusions, but this indicates a direct effect associated with elevated LPI levels. The 

impact of detectable LPI was only significant in the large nonRS group, but the same 

tendency was observed in the smaller RS subpopulation. This effect was independent of ESA 

treatment indicating that the effect of LPI on outcome is not simply an effect of the 
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interaction of LPI with ESA - as a previously described outcome modifier.55,56 The widely used 

parameter TSAT cannot serve as a parameter to predict survival. However, TSAT can be used 

as a pre-screening method to identify patients who are at risk to develop detectable LPI 

levels and associated poor prognosis. This approach may reduce the number of LPI 

determinations considerably.  

Ferritin levels have been reported as a prognostic indicator in MDS, but ferritin as a marker 

of iron toxicity may be compromised by the stage of MDS, the cumulative transfusional load 

and its properties as an acute phase protein.57,58,59 Moreover, the level of ferritin does not 

indicate whether iron is stored in parenchymal cells or in the reticulo-endothelial system 

(RES), of which the former is considered to be a more toxic form of iron overload. The 

foregoing is reflected by the weaker correlation of ferritin levels with LPI when compared 

with the correlation between TSAT and LPI levels. The positive correlation between CRP and 

hepcidin in our study suggests that inflammation also influences iron homeostasis in some 

MDS patients, as reported for patients with other inflammatory diseases.4 Similar to ferritin, 

CRP has a significant impact on survival, potentially reflecting the impact of infections and 

autoimmune diseases on survival in this patient group. Finally, we could show in the limited 

number of patients treated with iron chelators in this study that LPI levels decreased below 

LLOD, even in patients with high TSAT during treatment with deferasirox. These data 

corroborate with the post-hoc data from a large chelation study in MDS.43 

 

In conclusion, we demonstrated a disturbed iron homeostasis both in transfusion dependent 

MDS patients and in the subgroup of transfusion independent RS patients. This is the first 

clinical study that identifies LPI as a relevant marker for the potentially toxic fraction of iron 

species and its impact on overall survival.  Increased LPI levels were restricted to patients 

with TSAT percentages exceeding 80%. However, TSAT exceeding 80% alone was not 

prognostic for survival. Therefore, we propose TSAT as a screening parameter to assess risk 

for detectable LPI.  Additional studies are warranted to show that intervention with iron 

chelation improves survival, co-morbidities and quality of life in lower-risk MDS patients by 

lowering LPI levels.   
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Table 1  Frequency, median and quartiles of iron substudy parameters overall, by transfusion status and MDS subtype at first sample 

 

 

  Transfusion 

 

Ring Sideroblasts 

 Total Independent Dependent  No Yes 

 N 
Median  

(p10-p90) 
N 

Median  

(p10-p90) 
N 

Median  

(p10-p90) 
N 

Median  

(p10-p90) 
N 

Median  

(p10-p90) 

            

Hemoglobin (g/dl) 100 10.2 (8.3 - 12.4) 85 10.3 (8.6 - 12.6) 15 9.3 (6.4 - 10.9)  66 10.4 (8.5 - 12.5) 34 9.9 (7.3 - 12.1) 

White blood cells (10
9
/L) 100 4.8 (2.4 - 8.7) 85 5.1 (2.5 - 8.7) 15 3.8 (2.3 - 10.7)  66 3.9 (2.3 - 7.4) 34 6.0 (3.9 - 11.4) 

Platelets (10
9

/L) 99 212 (94 - 475) 84 218 (97 - 475) 15 158 (87 - 463)  66 168 (89 - 341) 33 316 (169 - 501) 

Serum Iron (µmol/L) 100 20 (12 - 38) 85 19 (12 - 34) 15 26.0 (4.0 - 47.0)  66 17 (10 - 26) 34 30 (16 - 45) 

Ferritin (µg/L)  100 287 (48 - 982) 85 264 (49 - 692) 15 634 (20 - 1897)  66 246 (36 - 665) 34 376 (127 - 1242) 

Transferrin saturation (%)  100 36 (19 - 87) 85 35 (19 - 81) 15 52 (13 - 93)  66 31 (17 - 61) 34 59 (25 - 93) 

Hepcidin (nmol/L)  99 4.5 (1.1 - 21.7) 84 4.2 (1.2 - 13.8) 15 6.8 (0.5 - 53.7)  66 4.7 (1.1 - 24.2) 33 4.2 (1.2 - 10.3) 

Soluble transferrin receptor (mg/L) 100 1.3 (0.7 - 2.8) 85 1.3 (0.8 - 2.8) 15 0.9 (0.6 - 3.0)  66 1.2 (0.7 - 2.7) 34 1.5 (0.8 - 3.1) 

C-reactive protein (mg/L) 100 5.0 (4.0 - 11.5) 85 5.0 (4.0 - 11.0) 15 5.0 (4.0 - 139.0)  66 5.0 (4.0 - 13.0) 34 5.0 (4.0 - 10.0) 

Non transferrin bound iron (µmol/L) 100 0.7 (0.1 - 3.0) 85 0.6 (0.1 - 2.9) 15 1.0 (0.1 - 3.4)  66 0.5 (0.1 - 1.8) 34 1.2 (0.3 - 3.8) 

Labile plasma iron (µmol/L) 100 0.1 (0.0 - 0.2) 85 0.1 (0.0 - 0.2) 15 0.1 (0.0 - 0.3)  66 0.1 (0.0 - 0.2) 34 0.1 (0.0 - 0.3) 

Growth differentiation  factor 15 (ng/L) 100 2193 (952 - 5663) 85 2140 (921 - 6084) 15 2823 (1232 - 5026)  66 1844 (921 - 4828) 34 2888 (1026 - 10361
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Table 2 Frequency, median and quartiles of iron parameters by transfusion status per MDS subtype at registration, 1 year and 2 years follow-up 

 

 Registration 1 year follow-up 2 years follow-up 

 N Median(p10-p90) N Median(p10-p90) N Median(p10-p90) 

       

Transferrin 

saturation (%)  
100 35.6 (19.0 - 87.4) 78 34.4 (16.4 - 92.9) 64 37.5 (22.2 - 94.3) 

MDS non-RS: TI 56 32.8 (17.1 - 55.6) 32 28.4 (17.4 - 59.1) 26 30.1 (18.8 - 54.2) 

MDS non-RS: TD 10 28.7 (8.5 - 77.9) 21 36.8 (14.0 - 89.1) 17 39.3 (20.4 - 97.7) 

MDS-RS: TI 29 48.8 (24.6 - 92.5) 16 36.4 (20.8 - 86.4) 9 35.6 (23.9 - 92.6) 

MDS-RS: TD 5 90.0 (53.1 - 120.4) 9 93.6 (42.1 - 110.6) 12 93.1 (71.7 - 97.6) 

       

Hepcidin (nmol/L) 99 4.5 (1.1 - 21.7) 78 5.6 (1.2 - 19.6) 65 5.2 (1.0 - 19.6) 

MDS non-RS: TI 56 4.5 (1.7 - 22.1) 32 4.3 (1.5 - 11.8) 26 4.6 (0.9 - 13.6) 

MDS non-RS: TD 10 4.9 (0.5 - 75.9) 21 17.3 (0.5 - 29.2) 17 9.2 (1.3 - 28.4) 

MDS-RS: TI 28 3.8 (1.0 - 8.7) 16 3.4 (0.5 - 5.8) 9 2.9 (0.8 - 12.2) 

MDS-RS: TD 5 10.3 (3.8 - 15.9) 9 9.2 (3.8 - 14.4) 13 5.2 (1.0 - 14.6) 

       

Growth differentiation 

factor 15 (ng/L) 
100 2193 (952 - 5663) 77 2479 (1016 - 7982) 63 2576 (1045 - 7746) 

MDS non-RS: TI 56 1777 (731 - 4658) 32 1653 (615 - 5684) 26 1685 (633 - 5736) 

MDS non-RS: TD 10 2306 (1218 - 4927) 20 2583 (1725 - 7166) 17 2998 (1398 - 8037) 

MDS-RS: TI 29 2619 (996 - 11083) 16 2694 (1223 - 10303) 8 2780 (1331 - 9554) 

MDS-RS: TD 5 2893 (2113 - 5370) 9 3866 (830 - 15167) 12 5361 (1053 - 8399) 
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Soluble transferrin 

receptor (mg/L) 
100 1.3 (0.7 - 2.8) 78 1.4 (0.7 - 3.0) 62 1.3 (0.8 - 2.7) 

MDS non-RS: TI 56 1.2 (0.8 - 2.7) 32 1.4 (0.9 - 2.8) 26 1.2 (0.9 - 2.7) 

MDS non-RS: TD 10 1.0 (0.6 - 2.8) 21 1.1 (0.4 - 3.1) 16 1.2 (0.6 - 2.2) 

MDS-RS: TI 29 1.6 (0.8 - 3.3) 16 2.0 (1.1 - 2.8) 8 2.2 (1.0 - 2.8) 

MDS-RS: TD 5 0.9 (0.4 - 3.1) 9 1.2 (0.6 - 3.1) 12 1.4 (0.4 - 3.6) 

       

Non transferrin 

bound iron (µmol/L) 
100 0.65 (0.14 - 3.03) 77 0.59 (0.15 - 3.64) 65 0.64 (0.14 - 5.42) 

MDS non-RS: TI 56 0.41 (0.10 - 1.51) 31 0.42 (0.03 - 0.91) 26 0.50 (0.18 - 1.78) 

MDS non-RS: TD 10 0.80 (0.05 - 2.73) 21 0.69 (0.16 - 3.64) 17 1.00 (0.12 - 7.25) 

MDS-RS: TI 29 0.88 (0.26 - 3.99) 16 0.70 (0.16 - 3.52) 9 0.52 (0.05 - 5.42) 

MDS-RS: TD 5 3.03 (1.90 - 3.40) 9 3.60 (0.15 - 8.64) 13 2.86 (0.46 - 7.57) 

       

Labile plasma 

iron (µmol/L) 
100 0.09 (0.02 - 0.22) 77 0.13 (0.03 - 0.38) 65 0.13 (0.02 - 0.38) 

MDS non-RS: TI 56 0.10 (0.03 - 0.19) 31 0.10 (0.02 - 0.17) 26 0.11 (0.01 - 0.30) 

MDS non-RS: TD 10 0.06 (0.01 - 0.18) 21 0.17 (0.06 - 0.38) 17 0.14 (0.02 - 1.08) 

MDS-RS: TI 29 0.10 (0.02 - 0.32) 16 0.09 (0.05 - 0.24) 9 0.10 (0.03 - 0.17) 

MDS-RS: TD 5 0.08 (0.00 - 0.35) 9 0.47 (0.06 - 1.26) 13 0.19 (0.08 - 1.39) 

       

RS: ring sideroblastic; TI = Transfusion Independent, TD = Transfusion Dependent 
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Table 3   Cox model of overall survival by labile plasma iron, non-transferrin bound iron and transferrin saturation along with transfusion status 

as time varying variable for all patients (n=100) 

 

 Unadjusted  Adjusted
1

  Adjusted
2

 Adjusted
3

 

 
Hazard ratio 

(95% CI) 
p  

Hazard ratio 

(95% CI) 
p  

Hazard ratio 

(95% CI) 
p 

Hazard ratio 

(95% CI) 
p 

LPI (µmol/L) <LLOD
1

 1 -  1 -  1 - 1 - 

≥LLOD 2.2 (0.8 – 6.2) 0.14  2.0 (0.7 – 6.0) 0.21  2.0 (0.7 – 5.8) 0.23 2.0 (0.7 – 6.2) 0.20 

           

LPI<LLOD, TI 1 -  1 -  1 - 1 - 

LPI≥LLOD, TI 4.6 (0.5 – 42.4) 0.18  3.2 (0.3 – 30.2) 0.31  3.3 (0.4 – 31.1) 0.30 3.2 (0.3 – 30.4) 0.31 

LPI <LLOD, TD 4.1 (1.2 – 13.6) 0.02  2.0 (0.5 – 7.1) 0.30  2.2 (0.6 – 8.1) 0.24 2.0 (0.5 – 7.1) 0.31 

LPI ≥LLOD, TD 4.7 (1.1 – 19.7) 0.03  3.0 (0.7 – 13.3) 0.15  3.0 (0.7 – 13.5) 0.14 3.0 (0.7 – 13.4) 0.15 

           

NTBI (µmol/L) <LLOD
1
 1 -  1 -  1 - 1 - 

≥LLOD 0.7 (0.3 – 1.7) 0.39  0.6 (0.2 – 1.6) 0.27  0.5 (0.2 – 1.5) 0.24 0.6 (0.2 – 1.5) 0.26 

           

NTBI<LLOD, TI 1 -  1 -  1 - 1 - 

NTBI≥LLOD, TI 0.6 (0.1 – 3.8) 0.61  0.7 (0.1 – 4.0) 0.65  0.7 (0.1 – 4.2) 0.67 0.6 (0.1 – 4.0) 0.62 

NTBI<LLOD, TD 4.7 (1.1 – 19.0) 0.03  2.6 (0.6 – 11.6) 0.22  3.1 (0.7 – 14.4) 0.14 2.5 (0.6 – 11.5) 0.22 

NTBI≥LLOD, TD 2.2 (0.5 – 8.6) 0.27  1.1 (0.3 – 5.0) 0.86  1.2 (0.3 – 5.4) 0.80 1.1 (0.3 – 4.9) 0.89 

           

TSAT <80% 1 -  1 -  1 - 1 - 

>80% 1.3 (0.4 – 3.6) 0.66  0.9 (0.3 – 2.9) 0.88  0.9 (0.3 – 2.8) 0.85 1.0 (0.3 – 3.1) 0.97 

           

TSAT <80%, TI 1 -  1 -  1 - 1 - 

TSAT≥80%, TI 2.5 (1.0 – 6.2) 0.04  2.3 (0.9 – 5.7) 0.08  2.5 (1.0 – 6.5) 0.05 2.3 (0.9 – 5.9) 0.10 

TSAT <80%, TD 1.9 (1.2 – 3.0) 0.003  1.6 (1.0 – 2.5) 0.05  1.7 (1.1 – 2.7) 0.03 1.6 (0.99 – 2.5) 0.053 

TSAT≥80%, TD 1.3 (0.9 – 2.0) 0.19  1.1 (0.7 – 1.7) 0.70  1.1 (0.7 – 1.7) 0.67 1.1 (0.7 – 1.7) 0.70 

LLOD = lowest level of detection, LPI = Labile Plasma Iron, TI = Transfusion Independent, TD = Transfusion Dependent, NTBI = NonTransferin Bound Iron, 

TSAT = Transferin SATuration 
1
 Adjusted for age at diagnosis and IPSS-R; 

2
 Adjusted for age at diagnosis, IPSS-R and ESA treatment status at each visit; 

3
 Adjusted for age, IPSS-R and RS 

status 
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Table 4 Cox model of overall survival by labile plasma iron, non-transferrin bound iron and transferrin saturation along with transfusion status as time 

varying variable for non-ring sideroblast patients only (n=66) 

 Unadjusted  Adjusted
1
  Adjusted

2
 

 
Hazard ratio 

(95% CI) 
p  

Hazard ratio 

(95% CI) 
p  

Hazard ratio 

(95% CI) 
P 

LPI (µmol/L) <LLOD
1
 1 -  1 -  1 - 

Elevated 4.9 (1.4 – 16.8) 0.01  5.4 (1.5 – 19.6) 0.01  9.3 (2.0 – 43.3) 0.004 

         

LPI<LLOD, TI 1 -  1 -  1 - 

LPI≥LLOD, TI 10.2 (0.9 – 115.4) 0.06  5.3 (0.4 – 68.9) 0.20  5.9 (0.4 – 86.2) 0.19 

LPI <LLOD, TD 4.6 (0.9 – 23.5) 0.07  2.0 (0.3 – 12.0) 0.47  1.4 (0.2 – 8.9) 0.70 

LPI ≥LLOD, TD 11.8 (1.9 – 74.0) 0.008  10.3 (1.3 – 79.5) 0.03  17.0 (2.0 – 146.6) 0.01 

         

NTBI (µmol/L) <LLOD
1
 1 -  1 -  1 - 

Elevated 0.6 (0.2 – 1.9) 0.37  0.6 (0.2 – 2.0) 0.38  0.6 (0.2 – 2.2) 0.46 

         

NTBI<LLOD, TI 1 -  1 -  1 - 

NTBI≥LLOD, TI 0.6 (0.1 – 6.9) 0.70  1.1 (0.1 – 14.4) 0.92  1.1 (0.09 – 14.3) 0.92 

NTBI<LLOD, TD 5.7 (1.1 – 30.3) 0.04  5.7 (0.8 – 42.2) 0.09  5.4 (0.7 – 43.7) 0.11 

NTBI≥LLOD, TD 2.1 (0.4 – 12.3) 0.39  1.4 (0.2 – 8.2) 0.74  1.4 (0.2 – 8.2) 0.74 

         

TSAT <80 1 -  1 -  1 - 

Elevated 2.1 (0.6 – 7.8) 0.28  1.1 (0.2 – 5.4) 0.90  1.5 (0.3 – 8.6) 0.63 

         

TSAT <80, TI 1 -  1 -  1 - 

TSAT≥80, TI 3.8 (1.1 – 12.7) 0.03  3.7 (0.98 – 13.8) 0.053  3.7 (0.99 – 14.1) 0.052 

TSAT <80, TD 1.9 (1.1 – 3.2) 0.02  1.7 (0.9 – 3.2) 0.13  1.6 (0.8 – 3.2) 0.21 

TSAT≥80, TD 1.5 (0.9 – 2.5) 0.12  1.1 (0.6 – 1.9) 0.80  1.1 (0.6 – 1.9) 0.77 

LLOD = lowest level of detection, LPI = Labile Plasma Iron, TI = Transfusion Independent, TD = Transfusion Dependent 
1
 Adjusted for age at diagnosis and IPSS-R; 

2
 Adjusted for age at diagnosis, IPSS-R and ESA treatment status at each visit 

 

 

  



 

 

  24 

Legends to figures 

 

Figure 1 LPI and NTBI correlated to TSAT and Ferritin in different patient groups. A) relation between LPI and TSAT. B) relation between  NTBI 

and TSAT C) relation between LPI and ferritin. D) relation between NTBI and ferritin. Each dot represents one sample (median: 5 

samples/patient). 

RS = ring sideroblastic, TI = Transfusion Independent, TD = Transfusion Dependent 

 

Figure 2 Survival according to LPI (2A) or NTBI (2B) and transfusion status. LPI, NTBI and transfusion status were analyzed as time dependent 

factors, implicating that patients may switch groups over time according to the LPI/NTBI and transfusion status at each specific time point. 

LLOD = Lower Limit of detection, TI = Transfusion Independent, TD = Transfusion Dependent  

Figure 3 Flow diagram of patients treated with transfusions and erythropoietin stimulating agents (ESAs). In total, 10 patients became 

transfusion independent after  starting ESA treatment 

Figure 4 Proposed pathogenesis of iron toxicity in lower-risk MDS: the impact of ineffective erythropoiesis (4a) and of transfusions (4b) 

Ineffective erythropoiesis (IE), especially in ring sideroblastic MDS,  results in increased bone marrow production of GDF15 and possibly twisted 

gastrulation 1(TWSG1) and erythroferrone (ERFE). These  factors inhibit hepcidin production by the hepatocytes. Low hepcidin levels increase 

iron absorption from intestinal mucosa and increase iron release from the macrophages. Finally, this may lead to toxic levels of NTBI and LPI 

causing damage in solid organs, immune system and the marrow. During transfusions hepcidin levels increase, despite higher GDF15 levels, 

leading to lower iron absorption in the gut. However, transfusions cause massive iron loading of  RES-macrophages leading to elevated 

circulating, stored iron levels and toxic iron species - despite elevated hepcidin levels - and subsequent toxicities. Figure adapted from M. 

Cuijpers, et al 
6
 











 

  1 

Online supplemental information 

Methods  

Study design and participants  

Serum samples were collected just prior to transfusion in transfusion dependent patients, 

stored at -80C and shipped on dry ice to the central Laboratory in Nijmegen, the Netherlands.  

The overall analyses had to be restricted to 100 patients, since samples from three centers 

showed consistently elevated NTBI/LPI levels (even in samples with low transferrin 

saturation), due to technical issues. Clinical Information was collected at registration and 6-

monthly intervals thereafter via a bespoke web-based database on: concomitant diseases, 

detailed red cell transfusion history, other treatment modalities, peripheral blood values, 

bone marrow pathology, progression of MDS or acute myeloid leukemia (AML), and loss to 

follow-up. Additionally analyzed parameters included the conventional iron parameters 

ferritin, serum iron, TSAT, the less standard iron parameters: hepcidin, GDF15, sTfR, NTBI, LPI 

and the inflammation parameter CRP.  

Biochemical assays 

Serum ferritin, iron, transferrin, and CRP were measured with routine methodologies. The 

serum hepcidin-25 assay was based on a combination of weak cation exchange 

chromatography and time-of-flight mass spectrometry using an stable hepcidin-25 isotope for 

quantification at nM level as previously reported40 (www.hepcidinanalysis.com). The lower 

limit of detection of this method was 0.5 nM. The median reference value  of serum hepcidin-

25 (Dutch population) is 4.5 nM for men, 2.0 nM for premenopausal women, and 4.9 nM for 

postmenopausal women (www.hepcidinanalysis.com).41 

GDF15 levels were measured with DuoSet (R&D Systems, Minneapolis, MN) enzyme-linked 

immunosorbent assay for human GDF15 following the manufacturer's protocol. Serum 

concentration of sTfR was measured immunonephelometrically with the use of polystyrene 

particles coated with monoclonal antibody specific to human sTfR on a BN II System (Dade 

Behring Marburg GmbH, Marburg, Germany).  

http://www.hepcidinanalysis.com/
http://www.hepcidinanalysis.com/
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Table S1 Treatment with iron chelation and corresponding LPI and follow-up 

 

Patient nr Nr Visits Max LPI 

levels 

First visit 

LPI>LLOD 

Max TSAT Max Ferritin Chelation/months Survival (years)/AML 

1 5 0.38 1 96 1954 Deferasirox/7.5 5.2+ 

2 4 - - >100 3560 Deferoxamine/6.5 1.8 

3 7 0.24 1 >100 1237 Deferasirox/26 6.1+ 

4 7 0.92 3 100 2563 Deferasirox/10+ 3.5/AML 

5 6 0.81 1 >100 1840 Deferasirox/36 5.0+ 

6 10 1.25 8 98 4857 Deferoxamine/14 4.7/AML 

 

1. Good response; LPI low all the time with the exception of visit 1 before start of chelation.  

2. No LPI levels available 

3. LPI levels low all the time with the exception of one determination 

4. Only first LPI positive 

5. Only visit 6 LPI positive, the starting date of chelation.  No LPI levels measured after this date. 

6. LPI levels became positive during treatment (last visit). 
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Table S2 Frequency, median and percentiles of parameters by transfusion status at registration, 1-year follow up and 2-years follow up 

 

 At registration 1-yr follow-up(3) 2-yr follow-up(5) 

 N 
Median 

(p10-p90) 
N 

Median 

(p10-p90) 
N 

Median 

(p10-p90) 

       

Serum Iron (µmol/L) 100 20.0 (12.0 - 37.5) 78 18.5 (8.0 - 41.0) 64 21.5 (11.1 - 43.0) 

0 units 88 20.0 (12.0 - 36.0) 52 17.0 (11.0 - 32.0) 40 17.0 (11.1 - 40.0) 

<=10 units 11 23.0 (4.0 - 45.0) 12 22.0 (7.0 - 43.0) 15 22.0 (11.0 - 47.0) 

>10 units 1 16.0 (16.0 - 16.0) 14 38.0 (5.0 - 47.0) 9 38.0 (18.0 - 47.5) 

       

Ferritin (µg/L) 100 287 (48 - 982) 78 285 (57 - 1573) 64 341 (59 - 2387) 

0 units 88 272 (49 - 819) 52 207 (56 - 662) 40 237 (51 - 777) 

<=10 units 11 408 (20 - 1897) 12 593 (192 - 901) 15 590 (61 - 870) 

>10 units 1 1885 (1885 - 1885) 14 1528 (829 - 2217) 9 2085 (591 - 7904) 

       

Transferrin 

saturation (%) 
100 35.6 (19.0 - 87.4) 78 34.4 (16.4 - 92.9) 64 37.5 (22.2 - 94.3) 

0 units 88 36.1 (19.0 - 85.7) 52 31.8 (17.4 - 73.3) 40 31.6 (21.0 - 93.0) 

<=10 units 11 29.8 (12.9 - 90.0) 12 37.4 (14.0 - 93.5) 15 59.5 (22.2 - 92.9) 

>10 units 1 32.0 (32.0 - 32.0) 14 87.6 (11.1 - 102.3) 9 94.1 (31.6 - 102.2) 

       

Hepcidin (nmol/L) 99 4.5 (1.1 - 21.7) 78 5.6 (1.2 - 19.6) 65 5.2 (1.0 - 19.6) 

0 units 87 4.2 (1.2 - 13.8) 52 4.3 (1.2 - 10.4) 41 3.9 (0.9 - 13.6) 

<=10 units 11 5.1 (0.5 - 53.7) 12 9.3 (3.8 - 19.6) 15 5.2 (1.0 - 19.6) 

>10 units 1 39.1 (39.1 - 39.1) 14 15.9 (4.9 - 39.4) 9 10.5 (2.9 - 48.5) 
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GDF15 (ng/L) 100 2193 (952 - 5663) 77 2479 (1016 - 7982) 63 2576 (1045 - 7746) 

0 units 88 2165 (921 - 6084) 52 2268 (1014 - 5909) 39 1986 (664 - 6737) 

<=10 units 11 2823 (1232 - 4987) 12 2417 (1923 - 11543) 16 3235 (1053 - 7488) 

>10 units 1 1856 (1856 - 1856) 13 3210 (1765 - 7071) 8 3780 (1247 - 9474) 

       

Soluble transferrin 

receptor (mg/L) 
100 1.3 (0.7 - 2.8) 78 1.4 (0.7 - 3.0) 62 1.3 (0.8 - 2.7) 

0 units 88 1.3 (0.8 - 2.8) 52 1.5 (0.9 - 3.0) 39 1.3 (0.9 - 2.8) 

<=10 units 11 1.1 (0.6 - 2.6) 12 1.3 (1.0 - 2.6) 15 1.4 (0.7 - 2.3) 

>10 units 1 0.6 (0.6 - 0.6) 14 0.9 (0.4 - 1.7) 8 1.1 (0.4 - 5.4) 

       

Non transferrin 

bound iron (µmol/L) 
100 0.65 (0.14 - 3.03) 77 0.59 (0.15 - 3.64) 65 0.64 (0.14 - 5.42) 

0 units 88 0.63 (0.14 - 2.97) 51 0.54 (0.16 - 2.62) 41 0.52 (0.18 - 2.86) 

<=10 units 11 0.97 (0.05 - 3.36) 12 0.71 (0.20 - 4.01) 15 1.00 (0.09 - 2.91) 

>10 units 1 0.81 (0.81 - 0.81) 14 3.21 (0.08 - 5.03) 9 3.78 (0.12 - 8.42) 

       

Labile plasma 

iron (µmol/L) 
100 0.09 (0.02 - 0.22) 77 0.13 (0.03 - 0.38) 65 0.13 (0.02 - 0.38) 

0 units 88 0.09 (0.02 - 0.21) 51 0.10 (0.02 - 0.27) 41 0.11 (0.01 - 0.30) 

<=10 units 11 0.09 (0.01 - 0.32) 12 0.16 (0.06 - 1.14) 15 0.13 (0.07 - 0.20) 

>10 units 1 0.02 (0.02 - 0.02) 14 0.17 (0.06 - 0.47) 9 0.18 (0.02 - 1.39) 
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Table S3 Frequency, median and percentiles of parameters by ring sideroblast status at registration, 1 year follow-up and 2 years follow-up 

 

 Registration 1-yr follow-up 2-yr follow-up 

 N 
Median 

(p10-p90) 
N 

Median 

(p10-p90) 
N 

Median 

(p10-p90) 

       

Serum Iron (µmol/L) 100 20.0 (12.0 - 37.5) 78 18.5 (8.0 - 41.0) 64 21.5 (11.1 - 43.0) 

Non-RS 66 17.0 (10.0 - 26.0) 53 16.0 (7.0 - 35.0) 43 18.0 (11.0 - 38.0) 

RARS/RCMD-RS 34 29.5 (16.0 - 45.0) 25 30.0 (12.0 - 44.0) 21 33.0 (13.0 - 47.0) 

       

Ferritin (µg/L) 100 287 (48 - 982) 78 285 (57 - 1573) 64 341 (59 - 2387) 

Non-RS 66 246 (36 - 665) 53 279 (56 - 1367) 43 283 (54 - 1970) 

RARS/RCMD-RS 34 376 (127 - 1242) 25 287 (149 - 2217) 21 590 (215 - 2560) 

       

Transferrin saturation (%) 100 35.6 (19.0 - 87.4) 78 34.4 (16.4 - 92.9) 64 37.5 (22.2 - 94.3) 

Non-RS 66 31.2 (17.1 - 61.2) 53 30.2 (14.0 - 76.1) 43 31.7 (20.4 - 92.7) 

RARS/RCMD-RS 34 58.5 (25.0 - 93.0) 25 46.2 (22.2 - 95.1) 21 85.0 (26.2 - 95.5) 

       

Hepcidin (nmol/L) 99 4.5 (1.1 - 21.7) 78 5.6 (1.2 - 19.6) 65 5.2 (1.0 - 19.6) 

Non-RS 66 4.7 (1.1 - 24.2) 53 7.4 (1.2 - 23.7) 43 6.3 (1.0 - 22.4) 

RARS/RCMD-RS 33 4.2 (1.2 - 10.3) 25 4.9 (1.4 - 9.8) 22 3.4 (1.0 - 14.2) 

       

Growth differentiation 

factor 15 (ng/L) 
100 2193 (952 - 5663) 77 2479 (1016 - 7982) 63 2576 (1045 - 7746) 

Non-RS 66 1844 (921 - 4828) 52 2195 (1016 - 5909) 43 2113 (982 - 5995) 

RARS/RCMD-RS 34 2888 (1026 - 10361) 25 3148 (1223 - 10303) 20 3661 (1192 - 8977) 
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Soluble transferrin 

receptor (mg/L) 
100 1.3 (0.7 - 2.8) 78 1.4 (0.7 - 3.0) 62 1.3 (0.8 - 2.7) 

Non-RS 66 1.2 (0.7 - 2.7) 53 1.3 (0.5 - 3.0) 42 1.2 (0.8 - 2.2) 

RARS/RCMD-RS 34 1.5 (0.8 - 3.1) 25 1.8 (0.9 - 2.8) 20 1.5 (0.5 - 3.2) 

       

Non transferrin 

bound iron (µmol/L) 
100 0.65 (0.14 - 3.03) 77 0.59 (0.15 - 3.64) 65 0.64 (0.14 - 5.42) 

Non-RS 66 0.46 (0.08 - 1.75) 52 0.51 (0.08 - 2.78) 43 0.52 (0.14 - 3.31) 

RARS/RCMD-RS 34 1.22 (0.30 - 3.85) 25 1.61 (0.16 - 5.20) 22 2.02 (0.16 - 6.00) 

       

Labile plasma iron (mg/L) 100 0.09 (0.02 - 0.22) 77 0.13 (0.03 - 0.38) 65 0.13 (0.02 - 0.38) 

Non-RS 66 0.09 (0.02 - 0.19) 52 0.12 (0.02 - 0.31) 43 0.12 (0.01 - 0.30) 

RARS/RCMD-RS 34 0.09 (0.02 - 0.32) 25 0.16 (0.06 - 0.87) 22 0.14 (0.04 - 0.94) 
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Table S4 Cause of death by LPI status 

 

 
Total 

n (%) 

LPI status 

N (%) 

 LPI<LLOD LPI≥LLOD 

    

Total 19 9 10 

    

AML 3 (15.8) 2 (22.2) 1 (10.0) 

Cardiovascular 2 (10.5) 1 (11.1) 1 (10.0) 

Hemorrhage 2 (10.5) - 2 (20.0) 

Infection 5 (26.3) 2 (22.2) 3 (30.0) 

Myelodysplastic 2 (10.5) 2 (22.2) - 

Not Known 2 (10.5) - 2 (20.0) 

Other 2 (10.5) 1 (11.1) 1 (10.0) 

Pulmonary 1 (5.3) 1 (11.1) - 
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Figure S1 Survival according to transferrin saturation (TSAT) and transfusion status.   

 

 

 

 


