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Abstract.

Timelapse microscopy imaging allows for long term monitoring of biological pro-

cesses however a major bottleneck in assesing experimental outcome is the need for an

automated analysis framework to extract essential statistics. In this study, we use Gabor

texture descriptors to generate a high dimensional feature space which is analysed with

PCA to provide unsupervised characterisation of texture differences between pairs of

images. We apply this technique to differentiation of carcinoma cells in the presence of

retinoic acid (RA) and show that differentiation outcome can be predicted directly from

texture information. A microfluidic environment is used to accurately control the timing

of RA signal over five days in culture. Results provide insight into the dynamics of cell

response to differentiation signals over time.

1 Scientific Background

Embryonic stem cells have the ability to generate all cells in the adult body through

differentiation, a process by which cells acquire highly specialised function and mor-

phology. In the developing embryo, cell differentiation undergoes a complex spatial

patterning with very precise timings difficult to replicate in vitro. As a result, differen-

tiation of cells in culture is inefficient and not well understood. Recent studies indicate

that cell response to external factors can be amplified by pulsing of signals as opposed to

constant exposure [1, 2]. Two main technologies can be used to enable control of input

signal properties, fast solution switching in microfluidic environment [1] and photo-

activatable systems [2]. Microfluidics have the advantage of delivering multiple inputs

and controlling other culture parameters such as shear stress [3]. We investigated the

differentiation of NTERA2 human embryonic carcinoma cells in controlled microflu-

idic flow. When exposed to retinoic acid, NTERA2 are known to differentiate towards

a non-neural fate identified by surface marker ME311 and neural cells detected after

3-4 weeks [4] , however expression at early stages in differentiation is not fully under-

stood. In this study, we combine timelapse imaging and unsupervised characterisation

of texture to describe the timeline of early differentiation.

2 Materials and Methods

Texture feature set using Gabor energy. Texture descriptors can be used to de-

compose intensity values in an image I(u, v) into sub-bands with preffered orientation

and sparial frequency, revealing hidden spatial information. The Gabor filter [5] implies
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kernel convolution with a Gaussian kernel g:
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. The Gabor energy filter is

defined by:

fλ,σ,γ,θ(x, y) =
√

r2λ,σ,γ,θ,0(x, y) + r2λ,σ,γ,θ,−π
2

(x, y) . (2)

Multiple filter outputs were combined into a texture feature set using parameters: λ =
[1/15; 1/30; 1/60; 1/120; 1/240]; θ = [0; π/4; π/2; π/2; 3π/4; π; 5π/4; 6π/4; 7π/4]; σ =
[0.0375; 0.0187; 0.0094; 0.0047; 0.0023]; γ = [0.001; 0.005; 0.010; 0.015] and b = 1.

PCA-based analysis using random window sampling. Statistical analysis of the

feature set was implemented with Principal Component Analysis (PCA) [6]. Random

window sampling was used to reduce computational complexity by collecting informa-

tion from windows found at random locations in the image. For each sampling window i
and a given parameter combination j texture was analysed with filters (2) and integrated

to produce a texture set: Z(i, j) =
∫ ∫

fn,k(x, y)dxdy. The Matlab function princomp.m

was used to obtain the projection W = ATZ and data was visualised in the principal

component space ( Figure 1). Where indicated, multiple images and timepoints were

analysed in the same principal component space and labelled accordingly.
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Figure 1: Texture feature extraction and comparison tech-

nique. (a) Sampling from Texture 1 at locations in red;

(b) sampling from Texture 2 at locations in blue; (c) Com-

bined feature dataset organised by window number vs fil-

ter number; (d) PCA representation of Texture Set 1 (red)

and Texture Set 2 (blue).

Cross-validation of linear dis-

criminant classifier. A linear

discriminant classification technique

was used to separate texture charac-

teristics from different images. This

was implemented in Matlab using

classify.m. The classifier was op-

timised using n-fold cross valida-

tion: (i)data was divided un into

four groups; (ii) the linear discrim-

inant was trained on one group and

tested on the remaining groups; (iii)

classifier with overall best rate was

chosen. As expected, the classifi-

cation results were highly depedent

on window number and size. To

optimise window parameters, global

classifiers that produced > 95% clas-

sification rates at the smallest % cov-

erage of an image were chosen. On

average, high classification rates (>
95%) could be obtained from 10%
coverage of images highlighting in-

herent redundancy found in data.

Differentiation assay using microfluidic perfusion system. Cell differentiation

assays were carried out experimentally by exposing NTERA2 to a low concentration

of retinoic acid (RA) at 1 : 10−7 dilution (RA-7) for a period of five days. Cells were

grown in culture media containing DMEM F-12 with 20% FBS supplemented with RA-

7 and incubated at 37◦ and 5%CO2. Cells were cultured in M04S mammalian plates
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Figure 2: PCA-based detection applied to textured images from Brodatz dataset. (a) Set of two different

textured images, corresponding histograms and PCA analysis indicating a separation boundary with min-

imal overlap (bottom); (b) Set of two highly similar textured images, corresponding histograms and PCA

analysis showing complete overlap.

and the frequency at which RA was added to the culture was manipulated using the

microfluidic platform Cellasic ONIX [7]. Pulses of signal were created by flowing RA-

7 solution for 5 min followed by flowing of media. Continuous conditions indicate that

RA-7 was always present in the media. At the end of the incubation period, cell cultures

were differentiated and appeared morphologically different compared to cells grown in

media without RA (data not shown). The efficiency of differentiation was assessed by in

situ staining with an antibody detecting surface marker ME311 and nuclei were detected

with Hoechst33342.

3 Results

3.1 Unsupervised texture discrimination applied to Brodatz images

Images can be distinguished by texture in PCA projection. PCA-based identi-

fication of distinct textures was tested on a number of representative images from the

Brodatz1 dataset (Figure 1). The technique involved: (i) sampling at random locations

from two images (Figure 1a, 1b); (ii) generating a feature matrix containing Gabor en-

ergy cumulative features from both images (Figure 1c); (iii) using PCA to visualise

the separation between observations from the two textured images (Figure 1d). In this

representative example, the clear separation between observations from the two sets

demonstrate that PCA can correctly discriminate between distinct images without any

prior knowledge of the data.

Texture discrimination is more accurate than grayscale intensity. One commonly

used feature to describe an image is the intensity histogram which does not contain spa-

tial information. However, distinct images can show similarity in grayscale histogram.

We investigated the ability to use multi-dimensional texture features to discriminate be-

1http://www.ux.uis.no/ tranden/brodatz.html
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tween images with similar histogram (Figure 2a). Indeed, the PCA-based approach in-

dicates separation between observations sampled from distict images (Figure 2a). Only

few observations are overlapping and a separation boundary can be found.

In assessing similarity it is critical to be able to determine when images are identi-

cal in texture. To test this, separate images acquired from the same real material were

analysed (Figure 2b). As expected, the two textured images showed high similarity

in their histogram. In this case, the PCA-based approach indicated complete overlap

between observations from the two images (Figure 2b). Taken together, these results

demonstrate that the PCA-based approach for analysing texture can provide a qualita-

tive measure of similarity between images. This technique was coupled with a linear

discriminant classification method and used to describe the timeline of differentiation in

human embryonic carcinoma cells under microfluidic flow.

3.2 PCA-based analysis of cell culture differentiation from timelapse videos

Microfluidic frequency control of Retinoic Acid (RA-7) ellicits differential re-

sponse in cell fate. Cells maintained in media containing RA-7 exhibited varying levels

of differentiation over five days in culture (Figure 3a). Although cells in all conditions

proliferated and became confluent, the frequency of RA-7 greatly affected the propor-

tion of cells expressing the surface marker ME311 (Figure 3b).
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Figure 3: Microfluidic cell differentiation. (a) Repre-

sentative images from experiments carried out at set fre-

quencies of RA-7, every 1h pulse of RA-7/3 (1h/3p);

every 3h pulse (3hp); every 1h pulse (1hp); every 1h

continuous (1hc); Left panels show staining of cells ex-

pressing surface marker ME311 (red) and nuclear marker

Hoechst33342 (blue); (b) Overall quantification of total

cell numbers and ME311 expression.

Adding RA at low concentration

every 1h (Figure 3: 1hRA3p) as a

pulse caused only 9% of cells to ex-

press ME311. However, when the

same overall concentration of RA

was added as a single pulse every 3h

(Figure 3: 3hRAp), the proportion of

ME311+ cells increased to 27±14%.

This indicats that cell response to RA

is not integrated over time and differ-

entiation is triggered at high concen-

trations.

We hypothesised that more fre-

quent addition while keeping the con-

centration fixed would lead to in-

creased differentiation potential. In-

deed, when increasing the frequency

of adding RA from every 3h to ev-

ery 1h, we noted an 18% increase in

ME311+ cells up to 48± 4% (Figure

3b: 3hRAp, 1hRAp). These results

showed nonlinear response, i.e. when

frequency is increased 3x, the num-

ber of ME311+ cells increased 1.8x.

Remarkably, when RA-7 was contin-

uously present, the proportion of cells expressing ME311 dropped by 18% compared to

pulsing (Figure 3b: 1hRAc, 1hRAp). The continous condition best resembles classical

differentiation experiments where the morphogen is always present in the media. This

indicated that pulsing at particular frequencies increases differentiation potential most

likely by preventing cells from saturating and becoming unresponsive for a set amount

of time when the morphogen is always present. Overall, levels of ME311 showed that

cell response appeared nonlinear with respect to frequency and concentration of mor-

phogen. However, the timeline of differentiation remained unknown. In the follow-
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Figure 4: Texture analysis of differentiation experiments. (a) Texture characteristics extracted from two

culture conditions 1hRA (red) pulse and 3h RA pulse (blue) are visualised in the first principal component

space; (b) Classification rates for linear discriminant trained on the last timepoint describe the divergence

between the two clusters at every 6h.

ing, the texture-based analysis strategy is used to describe differentiation potential from

video data acquired over five days differentiation experiments.

Texture characteristics reveal the onset of differentiation. Conditions 1h RA

pulse and 3hRA pulse ellicited the largest fate shift as evidenced by surface marker

expression (Figure 3b). Images from these conditions acquired with a timelapse micro-

scope were sampled for texture and the first principal components were used to visu-

alise the appearance of cell cultures at Days1 to 5 (Figure 4a). As expected, the cultures

appear very similar in the first 48h post-plating (Day 1 to 2). The first detectable dif-

ferences in texture characteristics appear in Day 3 and continue to amplify in Days 4

to 5. Specifically, compared to the location of clusters representing 1hRA and 3hRA at

Day1, at later incubation times the two conditions appear to move in opposite directions

in terms of texture characteristics leading to best separation at Day 5. The gradual shift

observed in Days 3 to 5 indicate that after the onset of differentiation at approx 72h

post-plating, the cells in the two flow conditions continue to differentiate.

Timeline of differenentiation is mapped by linear discriminant. Differences in

texture characteristics over time were quantified using a linear discriminant determined

from images in the two conditions at end (Day 5) thus the classification rate shows high

separation at the final timpoint. By applying the same linear discriminant throughout

the dataset, a quantitative measure of differentiation is obtained (Figure 4b). At the

initial timepoints, classification rates are approx. 50%, therefore the two conditions are

very similar consistent with no differentiation. At Day 3 the first points registering 75%
classification rates occur indicating that in some image pairs it is possible to discriminate

between the two conditions but that the results are variable. However, starting from 72h

post-plating, the classification rate is persistently above 75% indicating that in Days 4

and 5, the two conditions produce clear differences in texture and are consistent with
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surface marker expression levels (Figure 3b).

4 Conclusion

In this study, we discuss extracting texture information from imaging data using Ga-

bor energy and analysing differences between distinct images with conventional PCA.

We show that this framework can successfully discriminate between distinct Brodatz

images and at the same time it can show similarity in identical textures. By coupling

PCA analysis of texture with a linear discriminant, an unsupervised technique for mea-

suring textural differences in a set of images is constructed. We apply this technique to

data showing differentiation of human embryonic carcinoma cells.

By using a microfluidic environment we designed controlled variations in media con-

ditions over five days. Differentiation potential was monitored only at the end of the ex-

periment using the non-neural surface marker ME311. Experimental results showed that

frequency patterns ellicit quantifiable differences in the amount of differentiated cells

expressing ME311 most evident between 1h and 3h pulsed conditions. Cell response

was highly nonlinear with concentration and frequency. Remarkably, the behaviour of

cells exposed continuously to RA diverged greatly from cells exposed to 5 min pulses

indicating saturation occurs when the trigger molecule is always present inthe media.

To investigate the timeline of differentiation, we analysed texture differences in im-

ages collected over the entire incubation period. The results showed that a shift in

differentiation outcome can be predicted directly from texture information. The trajec-

tory of clusters containing observations from the two conditions was indicative of a fate

shift away from the appearance at 48h post-plating (undifferentiated) and also diverging

from each other. Since ME311 was favoured in the 1h RA condition, a potential mech-

anism by which cells in the 3hRA undergo a fate shift is by expressing higher levels of

a neuronal marker, for example A2B5.

The classification rates are consistent with the surface marker expression levels and

in addition, provide a quantitative description of the timeline of differentiation which

is unsupervised and label free. By combining statistical analysis and knowledge of the

biological processes involved, this technique could greatly benefit experimentalists in

statistically assessing the efficiency of differentiation protocols directly from images.

Acknowledgments

This work was funded by a Human Frontier Science Program grant. OC was funded

by Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico, Brazil. VB kindly

thanks James E Mason from Centre for Stem Cell Biology for contributing to the design

of cell culture protocols and in situ staining for the M04S microfluidic plate.

References
[1] B. Sorre, A. Warmflash, A. H. Brivanlou, E. D. Siggia. ” Encoding of temporal signals by the TGF-β

pathways and implications for embryonic patterning”, Dev Cell, vol. 30, pp. 334-342, 2014.

[2] C. Sokolik, Y. Liu, D. Bauer, J. McPherson, M. Broeker, G. Heimberg, L. S. Qi, D. A. Sivak, M.
Thomson. ”Transcription factor competition allows embryonic stem cells to distinguish authentic
signals from noise”, Cell Syst, vol. 1, pp. 117-129, 2015.

[3] M. Mehling, Savas Tay. ”Microfluidic Cell Culture”. Current Curr Opin Biotechnol, vol. 25, pp.
95-102, 2014.

[4] S. L. Ackerman, B. B. Knowles, Peter W. Andrews. ” Gene regulation during neuronal and non-
neuronal differentiation of NTERA2 human teratocarcinoma-derived stem cells”. Molec Brain Res,
vol. 25, pp. 157-162, 1994.

[5] N. Petkov, P. Kruizinga. ”Computational models of visual neurons specialised in the detection of
periodic and aperiodic visual stimuli: Bar and grating cells”. Biol Cybern, vol.76, no. 2, pp. 83-96,
1997.

[6] I.T. Jolliffe. ”Principal Component Analysis”. Springer, 2nd ed, 2002 .

[7] http://www.biocompare.com/Application-Notes/126441-Microfluidic-Perfusion-Enables-Long-
Term-Cell-Culture-Precise-Microenvironment-Control-And-Gene-Expression-Analysis/


