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Here we test Neutral models against the evolution of English word frequency and
vocabulary at the corpus scale, as recorded in annual word frequencies from three
centuries of English language books. Against these data, we test both static and
dynamic predictions of two neutral models, including the relation between corpus size
and vocabulary size, frequency distributions, and turnover within those frequency
distributions. Although a commonly used Neutral model fails to replicate all these
emergent properties at once, we find that modified two-stage Neutral model does
replicate the static and dynamic properties of the corpus data. This two-stage model
is meant to represent a relatively small corpus of English books, analogous to a
‘canon’, sampled by an exponentially increasing corpus of books among the wider
population of authors. More broadly, this model—a smaller neutral model within a
larger neutral model—could represent more broadly those situations where mass
attention is focused on a small subset of the cultural variants.

Introduction

English has evolved continually over the centuries, in the branching off from antecedent languages
in Indo-European prehistory [35, 40], in the rates of regularisation of verbs [35] and in the waxing
and waning in the popularity of individual words [3, 13, 38]. At a much finer scale of time and
population, languages change through modifications and errors in the learning process [14, 28].

This continual change and diversity contrasts with the simplicity and consistency of Zipf’s law,
by which the frequency a word, f , is inversely proportional to its rank k, as f ⇠ k−γ and Heaps
law, by which vocabulary size scales sub-linearly with total number of words, across diverse textual
and spoken samples [33, 42, 48, 51, 15, 22, 50, 44].

The Google Ngram corpus [38] provides new support for these statistical regularities in word
frequency dynamics at timescales from decades to centuries [23, 42, 44, 1, 29]. With annual counts
of n-grams —an n-gram being n consecutive character strings, separated by spaces —derived from
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millions of books over multiple centuries [36], the n-gram data now covers English books from the
year 1500 to year 2008.

Further research on common words and phrases made possible by the n-gram data
demonstrates the “Matthew effect” of stochastic proportional growth, which has been observed in
a range of natural, biological and socio-cultural realms [43]. In English, the Zipf’s law in the
n-gram data [42] exhibits two regimes: one among words with frequencies above about 0.01%
(Zipf’s exponent γ ⇡ 1) and another (γ ⇡ 1.4) among words with frequency below 0.0001% [44].
The latter Zipf’s law exponent γ of 1.4 is equivalent to a probability distribution function (PDF)
exponent, α, of about 1.7 (α = 1 + 1/γ).

While the well-known Zipf’s law demonstrates a necessary but incomplete characterization of
stochastic proportional growth, a more complete characterization requires analyzing change in
time-resolved data [43]. In this respect, word frequency data have at least two other statistical
properties. One, known as Heaps law, refers to the way that vocabulary size scales sub-linearly
with corpus size (raw word count). The n-gram data show Heaps law in that, if Nt is corpus size

and vt is vocabulary size at time t, then vt ⇡ Nβ
t , with β ⇡ 0.5, for all English words in the corpus

[44]. If the n-gram corpus is truncated by a minimum word count, then as that minimum is raised
the Heaps scaling exponent increases from β < 0.5, approaching β < 1 [44].

The other statistical property is dynamic turnover in the ranked list of most commonly used
words. This can be measured in terms of how many words are replaced through time on “Top y”
ranked lists of different sizes y of most frequently-used words [12, 18, 20, 24]. We can define this
turnover zy(t) as the number of new words to have entered the top y most common words in year
t, which is equivalent to the the top y in that year. The plotting of turnover zy for different list
sizes y can therefore be useful in characterising turnover dynamics [2].

Many functional or network models readily yield the static Zipf distribution [22, 15, 43] and
Heaps law [37], but not the dynamic aspects such as turnover. Here we focus on how Heaps law
and Zipf’s law can be modeled together with continual turnover of words within the rankings by
frequency [4, 24]. We focus on the 1-grams in Google’s English 2012 data set, which samples
English language books published in any country [26].

Our overall finding is a model that can replicate observed the Google corpus, which we assume
to be representative of overall language through time. Even if the Google sample is biased toward
more recent texts [16], the model reveals its utility in replicating multiple dynamic properties,
including growing corpus and vocabulary sizes, frequency distributions, and turnover within those
frequency distributions.

Neutral models of vocabulary change

One promising, parsimonious approach incorporates the class of neutral evolutionary models
[11, 12, 7, 25, 39] that are now proving insightful for language transmission [13, 10, 47]. The null
hypothesis of a Neutral model is that copying is undirected, without biases or different ‘fitnesses’
of the words being replicated [2, 30].

A basic neutral model, which we will call the full-sampling Neutral model (FNM), would assume
simply that authors choose to write words by copying those published in the past and occasionally
inventing or introducing new words. As shown in Fig 1a, the FNM represents each word choice by
an author as selecting at random among the Nt words that were published in the previous year
[47, 10]. This copying occurs with probability 1� µ, where µ ⌧ 1 is the fixed, dimensionless
probability that an author invents a new word (even if the word had originated somewhere
‘outside’ books, e.g. in spoken slang). Each newly-invented word enters with frequency one,
regardless of Nt. In terms of the modeled corpus, a total of about µNt unique new words are
invented per time step. Note that Nt represents the total number of written words, or corpus size,
for year t, which contrasts with the smaller “vocabulary” size, vt, defined as the number of
different words in each year t regardless of their frequency of usage (these terms, which we use for
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generality, are equivalent to token and type in corpus linguistics, where token is the number of
words in the corpus and type is the number of unique words).

As has been well demonstrated, the FNM readily yields Zipf’s law [11, 9, 49], which can also be
shown analytically (see Appendix 1). Also, simulations of the FNM show that the resulting Zipf
distribution undergoes dynamic turnover [12]. Extensive simulations [20] show that when list size y
is small compared to the corpus (0.15y < Ntµ), this neutral turnover zy per time step is more
precisely approximated by:

zy = 1.4 · µ0.55
· y0.86 · n0.13, (1)

where n is the number of words per time interval.
This prediction can be visualized by plotting the measured turnover zy for different list sizes y.

The FNM predicts the results to follow zy / y0.86, such that departures from this expected curve
can be identified to indicate biases such as conformity or anti-conformity[2]. It would appear from
eq. 1 that turnover should increase with corpus size. This is the nominal equilibrium for FNM
with constant Nt. If corpus size Nt in the FNM is growing exponentially with time, however, then
there may be no such nominal equilibrium. In this case we predict that the turnover zy can
actually decrease with time as Nt increases. This is because newly invented words start with
frequency one, and under the neutral model they must essentially make a stochastic walk into the
top 100, say. As Nt grows, so does the minimum frequency needed to break into the top 100. As
the “bar” is raised, words are more likely to ‘die’ before they ever reach the bar by stochastic walk
[45]. As a result, turnover in the Top y can slow down over time and growth of Nt.

The FNM does not, however, readily yield Heaps law (vt = Nβ
t , where β < 1), for which

β ⇡ 0.5 among the 1-gram data for English [44]. In the FNM, the expected exponent β is 1.0, as
the number of different variants (vocabulary) normally scales linearly with µNt [11].

While the FNM has been a powerful null model, in the case of books, we can make a notable
improvement to account for the fact that most published material goes unnoticed while a relatively
small portion of the corpus is highly visible. To name a few examples across the centuries, literally
billions of copies of the Bible and the works of Shakespeare have been read since the seventeenth
century, as well as tens or hundreds of millions of copies of works by Voltaire, Swift, Austen,
Dickens, Tolkien, Fleming, Rawling and so on. While these and hundreds more books become
considered part of the “Western Canon,” that canon is constantly evolving [29] and many books
that were enormously popular in their time —e.g., Arabian Nights or the works of Fanny
Burney—fall out of favour. As the published corpus has grown exponentially over the centuries,
early authors were more able to sample the full range of historically published works, whereas
contemporary authors sample from an increasingly small and more recent fraction of the corpus,
simply due to its exponential expansion [29, 41].

As a simple way of capturing this, we propose a modified neutral model, called the
partial-sampling Neutral model (PNM), of an evolving “canon” that is sampled by an
exponentially-growing corpus of books. As shown in Fig 1b, the PNM represents an exponentially
growing number of books that sample words from a fixed size canon over all previous years since
1700. Our PNM represents a world where there exists an evolving canonical literature as a
relatively small subset of the world’s books on which all writers are educated. As new
contributions to the canon are contributed, authors sample from the recent generation of writers
with occasional innovation. Because the canon is a high-visibility subset of all books, only a fixed,
constant number words of text per year are allowed into a year’s canon. The rest of the population
learns from the cumulative canon since our chosen reference year of 1700.

Results

The average result from 100 runs in each of the FNM and PNM were used to match summary
statistics with the 1-gram data. Several key statistical results emerge from analysis of the 1-gram
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Figure 1: Schematic representation of the Full-sampling Neutral model (FNM) and
Partial sampling Neutral model (PNM). (a) In the FNM, each of the Nt words in year t,
represented by different colored circles in each box, is copied (arrows) from from the previous year
t � 1 with probability 1 � µ, or newly-invented with probability µ. The FNM shown in (a) has
a corpus size Nt that grows through time. In (b) the PNM samples from all previous results of
the FNM since the initial time step representing year 1700. The PNM corpus grows exponentially
(N0e

0.021t) through time, from 3000 to 1.5 million. As the PNM samples from all previous years
of FNM corpus, the PNM samples from a corpus that increases linearly (by 10,000 words per year)
from 10,000 words in year 1700 to 3 million words by year 2000. For the PNM, the big blue arrows
represent how each generation can sample any year of the canon randomly, all the way back to 1700,
the smaller arrows representing individual sampling events.

data which we compare the FNM to the PNM in terms of these results: (1) Heaps law, which is
the sublinear scaling of vocabulary size with corpus size, (2) a Zipf’s law frequency distribution for
unique words, (3) a rate of turnover that decreases exponentially with time and a turnover vs
popular list size that is approximately linear. Here we describe our results in terms of
rank-frequency distributions, turnover and corpus and vocabulary size. We compare the
partial-sample Neutral model (PNM) to the full 1-gram data for English.

First, we check that the model replicates the Zipf’s law that characterizes the 1-gram
frequencies in multiple languages [42]. Our own maximum likelihood determinations, applying
available code [15] to the Google 1-gram data, confirm that the mean α = 1.75± 0.12 for the Zipf’s
law over all English words in the hundred years from 1700 to 1800 (beyond 1800, the corpus size
becomes too large for our computation). Normalising by the word count [22], the form of the Zipf
distribution is virtually identical for each year of the dataset, reaching eight orders of magnitude
by the year 2000 (Fig 2a). The FNM replicates the Zipf (Fig 2b) but the PNM replicates it better
and over more orders of magnitude (Fig 2c). It was not computationally possible with either the
FNM or PNM to replicate the Zipf across all nine orders of magnitude, as the modeled corpus size
Nt grows exponentially (Fig 2d).

Fig 3a illustrates the relationship between corpus size and vocabulary size in our
partial-sampling Neutral model. Due to the exponentially increasing sample size, the ratio of
vocabulary size over corpus size becomes increasingly small, thus the model gives us the sub-linear
relationship described by vt = Nβ

t , where β < 1. On the double-logarithmic plot in Fig 3a, the
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Figure 2: Rank-frequency distributions among English words, (a) In the 1-gram corpus.
Black symbols show the distribution for the year 1800, blue shows year 1900 and red shows year
2000. The simulated results are shown for the FNM in (b) and the PNM in (c). Panel (d) shows the
actual number of English words, Nt in the 1-gram corpus versus the modeled corpus size N0e

0.021t,
where t is number of years since1700.

Figure 3: Heaps law in simulated Neutral models versus 1-gram data. (a): A double-
logarithmic plot, showing corpus size versus vocabulary size, i.e. Heaps Law, for all 1-grams (black),
the FNM (blue) and the PNM (red). (b): The Heaps law exponents, β, for the data series on the
left, as well as additional data series, using Table 1 in [44]: all English 1-grams: 0.54± 0.01; English
fiction: 0.49± 0.01; English GB: 0.44± 0.01; English US: 0.51± 0.01. The 100 independent runs of
each neutral model, using parameters listed in the text, yielded β = 0.52 ± 0.07 for the PNM, and
β = 1.00± 0.002 for the FNM (not shown).

Heaps law exponent is equivalent to the slope of the data series. The PNM matches the 1-gram
data with Heaps exponent (slope) of about 0.5, whereas the FNM, with exponent about 1.0, does
not. Fig 3b shows how 100 runs of the PNM yields a Heaps law exponent within the range derived
by [44] for several different n-grams corpora (all English, English fiction, English GB, English US
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Figure 4: Turnover decay in neutral model versus 1-gram data, for different toplist sizes.
Each panel shows the annual turnover among the ranked lists of the top y most frequently-used
1-grams, for list sizes of (a)y = 50, (b) y = 100 and (c) y = 200. The respective line and error bars
in each color represent the range of FNM and PNM simulation results. Bands indicate 95% range
of simulated values.

and English 1M). The PNM yields Heaps law exponent β ⇡ 0.52± 0.006, within the range of
English corpora, whereas the FNM yields a mismatch with the data of β ⇡ 1± 0.002 (Fig 3b).

In Fig 3a, there is a constant offset on the y-axis between vocabulary size in the PNM
(α = 0.02, N = 10000) versus the 1-gram data. Both data series follow Heaps exponent b ⇡ 0.5,
but the coefficient, A, is several times larger for the 1-gram data than for the PNM. We do not
think this is due to our choice of canon size N in the PNM, because if we halve it to 5000, the
resulting A does not significantly change. The difference could be resolved, however, with larger
exponential growth in PNM corpus size, St, over the 300 time steps. Computationally, we could
only model the PNM with growth exponent α = 0.02—using α = 0.03, as would fit the actual
growth of the n-gram corpus over 300 years [8], makes the PNM too large to compute.
Nevertheless, we can roughly estimate the effect; when we reduce α from 0.02 to 0.01, while
keeping N = 10000, we find that A averaged over one hundred PNM runs is reduced from 6.3± 0.5
to 1.4± 0.3. Given an exponential relationship, increasing alpha to 0.03 would increase A to about
20, which is within the magnitude of offset we see in Fig 3a. Of course, this question can be
resolved precisely when the much larger PNM can be simulated.

Regarding dynamic turnover, we consider turnover in ranked lists of size y, varying the list size
y from the top 1000 most common words down to the top 10 (the top word has been “the” since
before the year 1700). We measure turnover in the word-frequency rankings by determining the
top y rankings independently for each year, and then counting the number of new words to appear
on the list from one year to the next. Fig 4 shows the number of 1-grams to drop out of the top
1000, top 500 and top 200 per year in the 1-gram data. Annual turnover among the top 1000 and
the top 500 decreased exponentially from the year 1700 to 2000, proportional to e−0.012t (r2 > 0.91
for both), where t is years since 1700. This exponential decay equates to roughly a halving of
turnover per century.

Since the corpus size was increasing with time, Fig 4 effectively also shows how turnover in top
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Figure 5: Turnover profiles in 1-gram data and in simulated results, for (a) the year 1800,
(b) the year 1900 and (c) the year 2000. In each panel, the circles show turnover z in 1-grams
versus list size y, averaged over the decade from five years before the new century to five years after.
For the FNM, the corpus size, Nt, is 1.5 million by year 2000. For the PNM, the sample St grows
exponentially as S0e

αt and the sampled canon size, Nt, grows linearly at 10,000 words per year,
reaching 3 million by year 2000 (t = 301). For the FNM and the PNM, bands indicate 95% range
of simulated values.

Table 1: Seven predictions of the Full Neutral Model (FNM) and Partial Sampling Neutral Model
(PNM) and how they fare against 1-gram data.

Zipf’s Heaps Heaps Turnover Turnover z vs y z vs y

Model Law exponent coefficient y = 50 y = 200 yr 1800 yr 2000

FNM Yes/No No No Yes No Yes No

PNM Yes Yes No Yes Yes? Yes Yes

y list decreases as corpus size increases in the partial-sampling Neutral model. The exponential
decay in turnover in the partial-sampling Neutral model is markedly different than the base Neutral
model, in which turnover would be growing as corpus size grew, due to term n0.013

s in equation 1.
Finally, we also look at the “turnover profile”, plotting list size y versus turnover zy for different

time slices (Fig 5). For all words, zy / y1.26 for different time periods (Fig 5). We can then
compare the turnover profile for the 1-grams to the prediction from eq. 1 that turnover will be
proportional to y0.86, as shown in Fig 5b.

Table 1 lays out the specific predictions of each of the models and how they fare against
empirical data. Bands indicate 95% range of simulated values. While the predictions for the FNM
and PNM are similar for y = 50 and for the year 1800 (Fig 4a and Fig 5a), they do differ
substantially in their predictions for Zipf’s law and Heaps law under list size y = 200 and for the
year 2000 (Fig 4c and Fig 5c). Although the FNM can fit Zipf’s Law with the right parameters, it
cannot also fit Heaps law or the turnover patterns at the same time as matching Zipf’s Law. In
contrast, the PNM can fit Zipf’s law, Heaps law exponent (Fig 3a), and the 2000 series in Fig 4
(but starts to breakdown at y > 150). Neither the FNM nor the PNM does very well at y = 200.
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Discussion

We have explored how ‘neutral’ models of word choice could replicate a series of static and
dynamic observations from a historical 1-gram corpora: corpus size, frequency distributions, and
turnover within those frequency distributions. Our goal was to capture two static and three
dynamic properties of word frequency statistics in one model. The static properties are not only
the well-known (a) Zipf’s law, which a range of proportionate-advantage models can replicate, but
also (b) Heaps law. The dynamic properties are (c) the continual turnover in words ranked by
popularity, (d) the decline in that turnover rate through time, and (e) the relationship between list
size and turnover, which we call the turnover profile.

We found that, although the full-sample Neutral model (FNM) predicts the Zipf’s law in
ranked word frequencies, the FNM does not replicate Heaps law between corpus and vocabulary
size, or the concavity in the non-linear relationship between list size y and turnover zy, or the
slowing of this turnover through time among English words.

It is notable that we found it impossible to capture all five of these properties at once with the
FNM. It was a bit like trying to juggle five balls, as soon as the FNM could replicate some of those
properties, it dropped the others. Having explored the FNM under broad range of under a range of
parameter combinations, we ultimately determined that it could never replicate all these properties
at once. This is mainly because both vocabulary size in the FNM is proportional to corpus size
(rather than roughly the square root of corpus size as in Heaps law) and also because turnover in
FNM should increase slightly with growing corpus, not decrease as we see in the 1-gram data over
300 years. Other hypotheses to modify the FNM, such as introducing a conformity bias [2], can
also be ruled out. In the case of conformity bias—where agents choose high-frequency words with
even greater probability than just in proportion to frequency—both the Zipf law and turnover
deteriorate under strong conformity in ways that mis-match with the data.

What did ultimately work very well was our partial-sampling Neutral model, or PNM (Fig 1b),
which models a growing sample from a fixed-sized FNM. Our PNM, which takes exponentially
increasing sample sizes from a neutrally evolved latent corpus, replicated the Zipf’s law, Heaps law,
and turnover patterns in the 1-gram data. Although it did not replicate exactly the particular
1-gram corpus we used here, the Heaps law exponent yielded by the PNM does fall within the
range—from 0.44 to 0.54—observed in different English 1-gram corpora [44]. Among all features
we attempted to replicate, the one mismatch between PNM and the 1-gram data is that the PNM
yielded an order of magnitude fewer vocabulary words for a given corpus size, while increasing
with corpus size according to the same Heaps law exponent. The reason for this mismatch appears
to be a computational constraint: we could not run the PNM with exponential growth quite as
large as that of the actual 300 years of exponential growth in the real English corpus.

As a heuristic device, we consider the fixed-size FNM to represent a canonical literature, while
the growing sample represents the real world of exponentially growing numbers of books published
ever year in English. Of course, the world is not as simple as our model; there is no official fixed
canon, that canon does not strictly copy words from the previous year only and there are plenty of
words being invented that occur outside this canon. Also, the Google dataset is an imperfect
sample of the language for earlier years. At least some of the growth observed over time is due to
greater availability and easier digitization of later texts, such that the Google corpus grows faster
than the language itself over the years [16].

This does not change our overall result, however, in the PNM can replicate dynamic properties
observed in an exponentially-growing corpus (even if that exponent were smaller) that the FNM
cannot. In particular, our canonical model of the PNM differs from the explanation by [44], in
which a “decreasing marginal need for additional words” as the corpus grows is underlain by the
“dependency network between the common words ... and their more esoteric counterparts.” In our
PNM representation, there is no network structure between words at all, such as “inter-word
statistical dependencies” [46] or grammar as a hierarchical network structure between words [21].
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Conclusion

Since the PNM performed quite well in replicating multiple static and dynamic statistical
properties of 1-grams simultaneously, which the FNM could not do, we find two insights. The first
is that the FNM remains a powerful representation of word usage dynamics [13, 47, 27, 25, 9, 5],
but it may need to be embedded in a larger sampling process in order to represent a very large
data sample. Case studies where the PNM succeeds and the FNM fails could represent situations
where mass attention is focused on a small subset of the cultural variants. The same idea seems
appropriate for a digital world, where many cultural choices are pre-sorted in ranked lists [25]. In
the present century, published books contain only a few percent of the verbiage recorded online,
with the volume of digital data doubling about every three years. Centuries of prior evolution in
published English word use provides valuable context for future study of this digital transition.
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Models and data

Our aim is to compare key summary statistics from simulated data generated by the hypothetical FNM
and PNM processes with summary statistics from Google 1-gram data. See Acknowledgements for data
source address and the repository location for the Python code used to generate the FNM and PNM.

Neutral models

The FNM assumes words in a corpus at time t are selected at random from the corpus at time t− 1. The
corpus size Nt increases exponentially, N0e

0.021t, through time to simulate the exponentially increasing
corpus size observed in the Google n-grams data [8]. We ran a genetic algorithm (described in the
Appendix 2) to search the model state space to obtain parameter combinations—latent corpus size Nt,
innovation fraction µ and initial corpus size N0—that yielded similar summary statistics to the 1-gram
data. With the corpus growth exponent fixed at 0.021, initial corpus size, N0, was constrained by
computational capacity.

Following the genetic algorithm search, the model was initialized with corpus size N0 = 3000 and
invention fraction µ = 0.003. Once steady state was achieved, we permitted the corpus size in each
successive generation to increase at an exponential growth rate comparable to the average annual growth
rate of Google 1-gram data until it finally reached N300 = 1.5 million by time step t = 301.

At each time t in the FNM, a new set of Nt words enter the modeled corpus. Each word in the corpus,
at time t, is either a copy of a word from the previous generation of books, with probability 1− µ, or else
invented as a new word with probability µ. Each of the copied words is selected from vt−1 possible words
(the vocabulary in the previous time step), which follow a discrete Zipf’s law distribution with the
probability a word is selected being proportional to the number of copies the word had in the previous
corpus in time step t− 1 [7].

The PNM, represented schematically in Fig 1, draws an exponentially increasing sample (with
replacement) from a latent neutrally-evolving canon. We designate the number of words in the sample as
St, and the cumulative number of words in the canon as Nt, which grows by a fixed number of words in
each time step. This exponentially increasing sample, S0e

αt, has an initial corpus size S0 = 3000, growth
exponent α = 0.021, yielding a final sample size S300 = 1.5 million, matching the FNM. The latent corpus
evolves by the rules of the FNM, but with a constant corpus size of 10000 for each year t (representing a
canonical literature from which the main body of authors sample). The cumulative canon, Nt, thus grows
by 10,000 words per year. The partial sample, St, at time t can copy words from all canonical literature,
Nt, up to that time step. We set µ = 0.003 and run for t = 301 time steps representing years between 1700
and 2000, which are the same parameters used in the FNM.

1-gram data

The 1-gram data are available as csv files directly from Google’s Ngrams site [26]. As in a previous study
[1], we removed 1-grams that are common symbols or numbers, and 1-grams containing the same
consonant three or more times consecutively. As in our other studies [1, 8, 6], we normalized the count of
1-grams using the yearly occurrences of the most common English word, the. Although we track 1-grams
from the year 1700, for turnover statistics we follow other studies [44] in being cautious about the n-grams
record before the year 1800, due to misspelled words before 1800 that were surely digital scanning errors
related to antique printing styles of that may conflate letters such as ‘s’ and ‘f’ (e.g., myfelf, yourfelf,

provifions, increafe, afked etc). The code used for modeling is available at:
https://github.com/dr2g08/Neutral-evolution-and-turnover-over-centuries-of-English-word-popularity.
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37. Lü L, Zhang Z-K, Zhou T (2010). Zipf’s Law leads to Heaps’ Law: Analyzing their relation in
finite-size systems. PLoS ONE 5(12): e14139.

38. Michel JB, Shen YK, Aiden AP, Veres A, Gray MK, Pickett JP, Hoiberg D, Clancy D, Norvig P,
Orwant J, Pinker S, Nowak MA, Aiden EL (2011). Quantitative analysis of culture using millions of
digitized books. Science 331:176–182.

39. Neiman FD (1995). Stylistic variation in evolutionary perspective. American Antiquity 60: 7–36.

40. Pagel M, Atkinson QD, Meade A (2007). Frequency of word-use predicts rates of lexical evolution
throughout Indo-European history. Nature 449: 717–721.

41. Pan RK, Petersen AM, Pammolli F, Fortunato S (2016). The memory of science: inflation, myopia,
and the knowledge network. arXiv: 160705606v1.

42. Perc M (2012). Evolution of the most common English words and phrases over the centuries. J R

Soc Interface 9: 3323–3328.

43. Perc M (2014). The Matthew effect in empirical data. J R Soc Interface 11: 20140378.

44. Petersen AM, Tenenbaum J, Havlin S, Stanley HE, Perc M (2012). Languages cool as they expand:
Allometric scaling and the decreasing need for new words. Scientific Reports 2: 943.

45. Petersen AM, Tenenbaum J, Havlin S, Stanley HE (2012). Statistical laws governing fluctuations in
word use from Word Birth to Word Death. Scientific Reports 2: 313.

46. Piantadosi ST, Tily H, Gibson E (2011). Word lengths are optimized for efficient communication.
PNAS 108: 3526–3529.

47. Reali F, Griffiths TL (2010). Words as alleles: connecting language evolution with Bayesian learners
to models of genetic drift. Proceedings B 277: 429–436.

48. Sigurd B, Eeg-Olofsson M, van de Weijer J (2004). Word length, sentence length and frequency–Zipf
revisited. Studia Linguistica 58: 37–52.
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Appendix 1 Neutral model yields Zipf’s law. Recent analytical results [49] show that the
expected number of variants of popularity rank k under the stationary distribution is

fk = µNt

(1� µ)k−1

k

k−1Y

i=1

Nt � i

Nt � i� 1 + iµ
. (2)

Note from this expression [49], we can find the ratio of fk+1/fk, which is

fk+1

fk
=

µNt
(1−µ)k

k+1

Qk

i=1
Nt−i

Nt−i−1+iµ

µNt
(1−µ)k−1

k

Qk−1
i=1

Nt−i
Nt−i−1+iµ

. (3)

which simplifies to

fk+1

fk
=

k(1� µ)(Nt � k)

(k + 1)(Nt � k � 1 + kµ)
. (4)

If Nt is large compared to k and µ is small, then this simplifies to

fk+1

fk
⇡

k

k + 1
, (5)

which is an expression for Zipf’s law, because the ratio of the word frequencies is inversely
proportional to the ratio of their ranks.

Appendix 2. Genetic algorithm. The PNM has five parameters N , µ, S0, α and T . The
number of time steps, T is fixed at 301 (representing calendar years). The exponential growth rate
of the sampled corpus, α, is fixed at 0.02. The other three parameters - initial sampled corpus size
(S0), latent corpus size, N , and innovation rate (µ) - are free. We bound potential values of
Nbetween 5000 and 30000 and S0 between 1000 and 10000. In both cases the lower bound is
chosen to ensure a minimum acceptable vocabulary size is reached and the upper bound is limited
by computational constraints. The product Nµ was limited between 5 and 90, as the region in
which Neutral model yields a reasonable Zipf’s law. For the genetic algorithm, the fitnesses were
scored by the following equations and a variable values:

Summary statistic Equation Target variables

Heaps Law v = Anb A and b
Zipf’s law f ⇠ k−γ γ

Turnover decay (y = 50) z(50) = z0e
−β50t β50 and z0

Turnover decay (y = 100) z(100) = z0e
−β100t β100 and z0

Turnover decay (y = 200) z(200) = z0e
−β200t β200 and z0

The PNM parameter combination receives a point when each of the target statistics is
approximately the same as the equivalent value from the n-grams data. The genetic algorithm
starts with 100 random parameter combinations then the following steps are repeated until they
converge on parameter combinations that maximize fitness scores:

1. The fittest 20% from the corpus is passed to the next generation.

2. The remaining 80% is populated by recombinations of two randomly selected parents from
the fittest 20% from the previous generation.

3. 15% of the new agents are subject to random mutation of a single parameter to ensure
diversity in the corpus.
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