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Glioblastoma (GB) is the most common primary malignant brain tumor, and despite the 

availability of chemotherapy and radiotherapy to combat the disease, overall survival 

remains low with a high incidence of tumor recurrence. Technological advances are 

continually improving our understanding of the disease, and in particular, our knowl-

edge of clonal evolution, intratumor heterogeneity, and possible reservoirs of residual 

disease. These may inform how we approach clinical treatment and recurrence in GB. 

Mathematical modeling (including neural networks) and strategies such as multiple 

sampling during tumor resection and genetic analysis of circulating cancer cells, may 

be of great future benefit to help predict the nature of residual disease and resistance to 

standard and molecular therapies in GB.

Keywords: GBM, intratumor heterogeneity, neural networks, residual disease, Bayesian models

iNTRODUCTiON

Glioblastoma (GB) accounts for approximately 65% of all primary brain tumors and is characterized 
by low survival, with only 10% of patients surviving 5 years (1). It is for this reason that there is an 
urgent need for a deeper understanding of the genetic pathways behind the development of GB, as 
well as its maintenance and progression. The increased use of novel technologies to identify critical 
genomic alterations in each individual tumor may help identify specific predictive biomarkers, lead-
ing to a personalized treatment approach (2).

The emergence of molecular biomarkers in brain tumors has been of great benefit both diagnosti-
cally and for stratifying therapies (3). Routine tests for both predicting prognosis and stratifying 
patients for therapies now include assessing BRAF and IDH1/2 mutations, as well as MGMT pro-
moter methylation status to predict response to temozolomide – the current gold standard in GB 
treatment (Stupp protocol) (4–6). Inactivation of the MGMT enzyme by promoter hypermethylation 
can be a positive predictor of response to temozolomide due to the resultant inability of the MGMT 
enzyme to remove alkyl groups from DNA (5). However, treatment of GBs that harbor the hyper-
methylated MGMT with alkylating agents introduces thousands of new mutations, culminating in a 
highly mutable phenotype via loss of DNA mismatch repair or other repair mechanisms (7).

Following the study by the TCGA consortium (8), Verhaak et al. described a gene expression-based 
classification of GB into four molecular subgroups based on the previously elucidated expression of 
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signature genes (as shown in Table 1) (9). The group obtained 
microarray data for 601 genes from 116 core samples used in 
the recent TCGA project, in addition to 73 samples previously 
described (9). In this study, different subgroups of GB appeared 
to have different responses to therapy (p = 0.02) (9). However, 
the identification of different subgroups of GB does not account 
for intratumour heterogeneity within the primary tumor nor for 
the tumor clonal evolution during the course of the disease and 
in response to treatment (10).

This review will discuss the problems presented by genomic and 
transcriptomic intratumour heterogeneities in tumor evolution 
and treatment resistance, as well as the effect of residual disease 
from cells in the subependymal zone. Examples of mathematical 
models including neural networks and Bayesian models will then 
be outlined, and their potential for application to the field of brain 
tumor genetics and disease prediction will be evaluated. Overall, 
this review aims to address the utility of mathematical models as 
tools for predicting intratumour heterogeneity, disease progres-
sion, and treatment resistance in GB using the next-generation 
sequencing techniques.

iNTRATUMOUR HeTeROGeNeiTY AND 
TReATMeNT ReSiSTANCe

Comparative analysis of subsections from the same tumor mass 
using microdissection has been used to illustrate intratumor 
heterogeneity since the late 1990s, though current advances in 
the next-generation sequencing and single-cell analysis have only 
recently begun to identify possible mechanisms with which intra-
tumour heterogeneity is linked to treatment resistance (11, 12). 
It is becoming increasingly recognized that one of the primary 
mechanisms related to treatment failure and tumor recurrence 
in GB may be intratumour molecular heterogeneity, though the 
pathways that underlie this process require further elucidation, as 
summarized in the recent review by Parker et al. (13–18).

In a recent study, we examined intratumour heterogeneity 
across 11 GBs at a genomic and transcriptomic levels by com-
paring superficial and deep tumor fragments from the same 

TABLe 1 | Gene expression in hypothesized glioma subclasses.

Classical Mesenchymal Proneural Neural

chr7 ↑/

chr10 – (100%)

NF1 ↓ (53%) PDGFRA ↑ NEFL

EGFR ↑ (97%) NF1 ↓/PTEN ↓ 

(86%)

IDH1 GABRA1

EGFRvIII (55%) MET TP53 +/− SYT1

CDKN2A −/− CHI3L1 TP53 LOH SLC12A5

NES ↑/Notch ↑ CD44 ↑/MERTK ↑ chr7 ↑/chr10 – (54%)

SHH signaling ↑ NFκB signaling ↑ OLIG2 ↑ (CDKN1A ↓)

SOX

TCF4

The table shows changes in gene expression and LOH/deletions in genes in the four 

subclasses of glioma proposed by Verhaak et al. (9). The changes in gene expression 

that are characteristic of each subtype are highlighted in each column, and the 

percentage of cases that express these changes are present for the most ubiquitously 

expressed genes.

patient (10). Interestingly, differences in gene expression and 
copy numbers meant that fragments from the same patient were 
often categorized into distinct subclasses of GB according to the 
Verhaak criteria (10).

Some of the copy number aberrations (CNAs) occurring 
in the key pathways involved in gliomagenesis (p53, Rb, and 
RAS/RTK/PI3K) were found to be heterogeneous within tumor 
samples, as exemplified by PDGFRA (see in Figure 1). Although 
the genetic signature of fragments from the same patient shows 
a level of similarity that indicates clonal expansion from a com-
mon ancestor during gliomagenesis, great variation in CNAs 
was found between fragments reflecting the underlying tumor 
evolution (10). The methodology employed in this study has 
allowed both spatial and temporal analyses of intratumoural 
heterogeneity in GB at the genotype level (copy number) as well 
as the cellular phenotype (dictated by gene expression levels) (see 
Figure 1) (10).

Recent technological advances have also allowed the analysis 
of cancer genetics to be conducted on the single-cell level. Patel 
et al. recently profiled 430 cells from five primary GBs and found 
that individual cells could be classified as different types of GB 
according to the TGCA classification scheme (21). This may be 
indicative of a problem with the clinical efficacy of molecular 
therapies, as significant intercell variability was found between 
different splice variants and levels of expression of RTKs, among 
other signaling molecules, often used as therapeutic targets (21). 
This observation of heterogeneous amplification appears several 
times across the literature, most commonly studied in EGFR, 
PDGFRA, and MET due to their significance in GB (22, 23).

Similar methods, including ultradeep sequencing, were used 
by Nickel et  al. to analyze the mutational heterogeneity across 
time in recurrent GB as a part of a case study (24). Candidate 
mutations were identified and independently validated to pro-
duce a coherent mutational landscape of CNVs across primary 
GB and recurrences, citing mutation calling accurate to a 10% 
frequency detection threshold (24). The total gene coverage var-
ied substantially in this study (sample mean range 81–145 across 
interrogated exons); however, intragene coverage was consistent, 
and a 10% threshold has also been cited in other similar studies 
(24, 25). Furthermore, studies of this nature can be rare due to the 
difficulty of obtaining tissue that has been adequately preserved, 
and the necessity for such high levels of coverage required to 
detect somatic mutations in such small subsections of tissue.

Genomic variation During Tumor evolution 
and Recurrence
The variation in CNA as described over time in tumor develop-
ment is summarized in Table 2. It appears that early in the growth 
phase of the tumor, the CNAs are most frequently localized to 
chromosomes 7 and 10, as these are the locations of the driver 
genes EGFR, MET, PTEN, and CDK6 (10). Copy number dele-
tions on chromosome 9 (CDKN2A/B locus) and the 10p12 locus 
were also described during the common early phase (10). The 
middle shared phase of development consists of an accumulation 
of chromosome 7 and 19q12/13 amplifications, as well as focal 
amplifications of PDGFRA; during this stage, deletions occur 
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almost exclusively at the PTEN locus on chromosome 10, which 
leads to further deregulation (10). The late phase (inferred by the 
presence of unique variants) harbors a peak of variance at the 
GLUT9 gene on chromosome 4p16 which has previously been 
described as a regulator of cancer cell glucose metabolism (26), 
but the most significant observation was that late-phase muta-
tions were more widely scattered across the genome than the 
previous proposed stages (10).

More recently, multiregion sequencing efforts have elucidated 
on the evolution of recurrence in GB by profiling multiple regions 
of the primary tumor as well as multiple regions of the recur-
rent mass. These have identified mixed evolutionary patterns 
between patients, where some patients were characterized by 
linear evolution and others by divergent evolution (27, 28). These 
next-generation sequencing efforts provide crucial evidence on 
the dynamics of both the intra- and interpatient genomic hetero-
geneities in GB-driving recurrent disease.

Consequently, studies using tissue obtained from single 
sample methods may be at risk of sampling bias, as evidenced 
by the significant genetic variance between samples from the 
same tumor mass (19). Thus, it may also be important to factor 
intratumour heterogeneity and its subsequent effects on tumor 
subpopulations into any molecular guidelines that may be used 
for patient stratification for targeted molecular therapies (19). 
This could be furthered by analyzing the evolutionary dynamics 

FiGURe 1 | intratumour heterogeneity in the evolution of GB. (A) Phylogenetic reconstruction of a GB case based on copy number alterations. (B) It has been 

hypothesized that TICs reside in the SEZ and can contribute to tumor maintenance (19). These cells (shown in purple) may be potential new targets for molecular 

therapies in GB. Also shown is the maintenance of the tumor bulk by cells in the SEZ containing the same mutations as described in the phylogenetic tree, and how 

current therapies target the tumor bulk (shown in red). (C) combines (A,B) to give an overview of tumor evolution in this case across time and in physical location. 

The case described in all parts of this diagram and all corresponding genetic information was obtained from Sottoriva et al. (10). (B) is adapted from the review by 

Goffart et al. (20).

of genetic variance within a larger population, using paired pri-
mary and recurrent tumor samples to identify variance (19). 
Future studies should also attempt to further elucidate the cellular 
interactions of tumor fragments within the microenvironment, 
as this would shed further light on the intricate pathways that 
facilitate gliomagenesis (19).

iDeNTiFYiNG ReSiDUAL DiSeASe iN THe 
SUBePeNDYMAL ZONe

Another significant challenge in the treatment of GB may be the 
presence of residual disease in the subependymal zone (SEZ). In the 
adult brain, neurogenesis occurs in the SEZ, supplying the cortex 
and corpus callosum with glial cells and the olfactory bulbs with 
neurons (29). In a previous study, we identified malignant cells in 
the SEZ of GB patients, which could contribute to disease recur-
rence by harboring the tumor-initiating cells (TICs) that comprise 
residual disease (see Figure 1) (19). The TICs were isolated using 
a cell-surface marker-independent approach, as CD133 and CD15 
glioma stem cell markers have been proven unreliable (30). It is not 
yet known whether the TICs in the SEZ are tumor precursors or 
the result of cell migration during cancer evolution (19).

The technique of fluorescence-guided surgical resection was 
used to isolate matched tumor bulk and SEZ samples from 14 

TABLe 2 | A summary of copy number variations during tumor progression.

early phase (common mutations) Middle phase (shared mutations) Late phase (unique mutations)

Gain/amplification Deletion Gain/amplification Deletion Gain/amplification Deletion

EGFR CDKN2A/B chr7 chr10 GLUT9

CDK6 PTEN 19p12/13 (PTEN) PDGFRA

MET PDGFRA

The patterns in genetic variance over time described in this table were obtained from the study by Sottoriva et al. (10).
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GB patients in order to study the levels of gene expression and 
copy number variation between the tumor bulk and the SEZ 
harboring the TICs (10, 19). Cells isolated from the SEZ were 
found to express increased levels of glial fibrillary acidic protein 
(GFAP) and the angiogenesis marker CD31 when compared to 
cells from the tumor bulk, which supports the idea that these cells 
may have greater replicative potential (19). Interestingly in this 
study, seven of the nine SEZ samples used for gene expression 
analysis were classified as mesenchymal GBs (the other two were 
described as classical), with six of the nine SEZ samples being 
classified into a different group than the corresponding tumor 
bulk (19). We statistically validated that the SEZ has differentially 
expressed genes compared to tissue obtained from the tumor bulk 
(p < 0.00001) and may represent a proliferative center as a result 
of tumor diversification (19).

Tumor-initiating cells isolated from the SEZ may contribute to 
therapy resistance, as cells in the SEZ and the tumor bulk contin-
ued to proliferate at supramaximal doses of temozolomide while 
cells were cultured in media that preserved the initial disease 
genotype (19).

NeURAL NeTwORKS AND THeiR USe iN 
GB ANALYSiS

While no single algorithm can be used to explain the complexity 
of tumor evolution over time, several theoretical methodologies 
now exist which may be able to predict tumor response to therapy 
(31) (see Figure 2).

Neural Networks and Bayesian Networks
Artificial neural networks are analytical models commonly used 
to solve classification problems, consisting of nodes and edges 
that are informal analogs of neurons and synapses in the brain 
(32–35). External, or visible, nodes correspond to meaningful 
physical quantities and are divided into input and output nodes 
(36). Between these two sets of visible nodes lies a large network 
of hidden nodes, which are not attributed physical significance 
but act only as a structure for relating the inputs and outputs (36).

The flexibility of this structure is simultaneously a neural 
networks greatest strength and weakness. With enough data 
and computing power, neural networks have recently been 
shown to exhibit extraordinary predictive power and to learn 
from data without being informed of, or constrained by, causal 
structures supplied by experts in the system being analyzed (37). 
Conversely, this flexibility also provides great potential to over-fit 
to noise or otherwise irrelevant features in the data presented to 
it (37). Furthermore, without a notional causal model structure 
with which to compare our system knowledge, or another large 
dataset to validate against, a fitted neural network may be very 
difficult to apply sanity-checks to.

So while neural networks certainly constitute an exciting field 
of quantitative inference, it is also one we should be cautious 
about. When data are plentiful and the costs associated with 
incorrect predictions are relatively low, then a neural network 
may be of great utility  –  potentially finding model structures 
modelers had not even imagined or could write down. When data 

are not plentiful, however, and we require our model to comply 
with the knowledge of domain experts so that we can more 
confidently defend its predictions, a Bayesian network model is 
arguably the more appropriate tool (38). Like a neural network, 
these models consist of nodes and edges but tend to be much 
smaller and more rigidly specified (see Figure 2) (36, 38). Here, 
internal nodes are present only if they, and their connections to 
other nodes, can be reconciled with mechanisms in the system 
under consideration (38). Accordingly, the literature on Bayesian 
networks places significant emphasis on rigorous understanding 
of a network’s structural properties both in terms of computation 
and epistemological significance.

A glimpse of the power of cutting-edge neural networks is 
available in the recent Nature review by LeCun et al. (37), while 
an interesting discussion on their place in statistical learning 
can be found in the considerably older, but still relevant, Cheng 
and Titterington (39) and in the responses to that paper. An 
exploration of the mathematical richness of even quite simple 
Bayesian networks can be found in Koski and Noble (38), while 
an advanced introduction to neural networks and related models 
is provided by Mackay (36).

Biological Application of Mathematical 
Models
Kinetic modeling using both experimental and mathematical 
data can now be used to assess tumor biology over time (31). 
Some neural networks have been in place clinically for several 
years for the conversion of MRI data into a three-dimensional 
tumor landscape in order to determine a target area for radio-
therapy (40, 41).

The ultimate aim of these neural networks is to provide a 
methodology that can be used to convert biomarker data (and 
associated aberrant pathway signaling) into a treatment regime, 
based on a predicted outcome (31). If this were the case, the true 
nature of tumor biology may be identified, allowing a reduction 
in the use of inferred cancer dynamics from biomarker analysis 
(31). However, the capacity of any such mathematical model 
means it is unlikely to be able to describe all parts of the network 
over space and time due to the amount of biological variation 
present (31). In order to overcome this, different types of model 
must be used to analyze different aspects of tumor biology.

Bayesian Networks and S-Systems to 
Predict Molecular interactions
Process-driven modeling allows analysis of molecular interac-
tions between some known pathway components to make 
mechanistic predictions and evaluate possible outcomes from 
applying specific pathway inhibitors (see Figure 2) (31). These 
models have been clinically applied with some success in the 
case of RTK-inhibitor application for patients with HER2 
expression (31). Generally HER2 amplification status is of poor 
predictive value and not a sufficient predictor of response (42, 
43), but a process-driven model has been applied to describe the 
interactions between inhibitor-receptor binding, HER2/HER3 
inhibition, and the regulatory role of PTEN, all in the context of 
MAPK/PI3K pathway (31). This model was used to determine 



FiGURe 2 | Neural networks used in cancer systems biology. (A,B) illustrate the use of dynamic Bayesian networks. (A) describes how events interact in a 

cyclic causal manner, as displayed in a dynamic Bayesian network (B) that represents all variables at two time points, allowing inference of causal relationships. 

(C–e) are visualizations of S-systems’ analyses. The data represents breast cancer cells treated with heregulin concurrently with pertuzumab (a HER2 inhibitor). The 

thickness of the lines indicates the strength of the interaction. (C) represents the first three time points at which data was obtained, (D) the next three overlapping 

time points, and (e) a further three overlapping time points. These diagrams may assist analysis of interactions in the network, as they appear to show dissociation 

of HER2 in response to treatment with its inhibitor. All components of this figure, including Bayesian networks and S-systems’ analysis, are adapted from the review 

by Faratian et al. (31).
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that PTEN has an important role in resistance to RTK-inhibitors 
depending on the ratio of PTEN to activated PI3K, and that if 
PTEN was to be accurately assessed in a clinical setting, it may 
be used to stratify patients for adjuvant therapies including HER2 
inhibitors (31, 44).

Other pathways in cancer are still in need of further elucida-
tion, and it is in these cases when biological knowledge is limited 
that data-driven modeling can be useful for describing some 
molecular interactions (31). Bayesian networks (see Figure 2A) 
can be used to differentiate between direct and indirect rela-
tionships of a wide variety of data sets (45), although causality 
cannot be confirmed (46) unless a time variable is available, 
which is referred to as a dynamic Bayesian network (Figure 2B) 
(47). Similarly, S-systems can also be used to fit data in a time-
dependent manner to construct a network of interactions for 
given variables with data sets (31). In application, Biochemical 
Systems Theory means that S-systems can be used to visualize 
which links are most susceptible to affecting changes within 

the system as a whole and therefore can be used to determine 
new drug targets or identify tumor-suppressor nodes (see 
Figures 2C–E) (31, 48).

Mathematical Models in Cancer evolution 
and the Cancer Stem Cell Model
Mathematical models are becoming increasingly used in the 
prediction of cancer initiation and progression (49). The cancer 
stem cell model was initially developed to describe the dynamics, 
therapeutic response, and progression of myeloid leukemias, 
such as CML and APL, but the concept has since been expanded 
to solid tumors (50, 51). Tumors modeled using the cancer stem 
cell model have been found to more accurately represent the het-
erogeneity and invasiveness of human cancer when compared to 
tumors without the cancer stem cell hierarchy (52, 53). Bayesian 
networks have previously been used to model melanoma onco-
genesis but were ultimately deemed expensive and too complex to 
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interpret (54). Branching processes have also been used to dem-
onstrate the efficacy of combinatorial chemotherapy by analyzing 
the probability of mono- and combination therapy efficacy (55).

Neural Networks for GB Analysis
At present, there is no artificial neural network implemented 
for clinical glioma diagnosis, as there is no single commercial 
gene signature currently available, although several studies have 
described differences between glioma and normal brain tissue 
(56, 57). The study by Mekler et al. aimed to demonstrate the abil-
ity of artificial neural networks to cluster gene-expression data 
from GB and normal brain into two subgroups based on their 
pathology (56). The overall classification error for the training 
set was 0.96%, with only 1/160 misclassified normal as GB (0.6%) 
and 1/48 GB misclassified as normal (2.1%) (56). The subsequent 
validation set yielded 0% classification error with 44/44 cases 
correctly classified (56).

Genetic-optimized neural networks have recently been used 
to predict glioma by reducing the background signal in “noisy” 
MRI scans in order to allow a more accurate description of tumor 
location (57). These algorithms are used to cluster pixels and cre-
ate a mean pixel image to increase resolution and may soon be 
integrated into medical-imaging systems, though at present they 
remain a study tool (58).

More recently, Scribner et  al. used mathematical modeling 
to make clinical predictions regarding cell migration in patients 
treated with Bevacizumab, in an attempt to describe how GB can 
evade antiangiogenic therapies (59). This can be done by tracking 
healthy, proliferative, invasive, and necrotic cells using various 
equations to describe cell behavior in conditions of hypoxia, with 
further six equations used to monitor angiogenic activity (59, 60). 
The model was shown to accurately replicate the growth pattern 
seen in patient scans (59).

Discrimination of driver mutations from late mutations can be 
made easier by the use of neural networks to assess the effect each 
component has on the selection pressures active within the sys-
tem, allowing the identification of targets for molecular therapies 
(2, 31, 48). However, the application of neural networks to cancer 
biology is limited due to the lack of adequate temporal resolution 
that can be achieved using human disease as a model (31).

From an evolutionary perspective, it may be perceived that the 
diversification of the tumor bulk into multiple tumor subpopu-
lations could be responsible for treatment failure by harboring 
residual disease and may ultimately be the cause of GB recur-
rence (19). Further insight into the evolutionary dynamics and 
signaling pathways of GB may lead to the utilization of molecular 
therapies targeting multiple tumor subpopulations, with the aim 
of managing brain cancer as if a chronic disease.

MODeLS FOR PReDiCTiNG TUMOR 
ReSiSTANCe

At present, it is relatively easy to screen tumor biopsies for several 
genetic mutations, but the incorporation of this information 
into treatment strategy formation requires highly accurate and 
reproducible genomic profiling of tissue samples (2). This could 

also help optimize the design of clinical trials, and targeted 
therapies could be greatly beneficial in rare tumor types in which 
randomized large-scale studies can be impractical (2).

OncoMap
In 2009, MacConaill et al. developed an optimized mutation pro-
filing platform “OncoMap” in order to evaluate ~400 mutations 
in 33 known oncogenes and tumor suppressors in 903 assorted 
frozen and FFPE tumor samples, from 12 various tissue sites (61). 
Creation of this list of mutations involved mass spectrometry for 
the initial genotyping, followed by automated base-calling and 
manual validation, thus use of the OncoMap platform to generate 
mutation data takes around 7–10 days providing all reagents are 
in place (61). Many of the genes studied using this profiling sys-
tem had predictive value for targeted molecular therapies, either 
as a sensitizing mutation (such as EGFR mutations in NSCLC 
dictating sensitivity to gefitinib) or as resistance-conferring 
mutations [such as KRAS mutations in lung and colorectal 
cancers (62) and PTEN loss in GB which can be used to predict 
erlotinib resistance (63, 64)].

The specificity of the OncoMap platform operated at up 
to 100% efficiency in fresh frozen samples and up to 99.4% in 
FFPE tissue (61). The platform found actionable mutations in 
335/903 (37%) of samples across all cancer types (61). PDGFRA 
and PIK3CA mutations were identified in pediatric low-grade 
gliomas which could be used to predict response to imatinib/
nilotinib or PI3K inhibitors to refine disease prognosis (61). 
Anticipated frequencies of mutations, such as TP53 and PTEN, 
were observed in both fresh frozen tissues and FFPE samples 
(61), which highlight the potential for application of such NGS 
platforms for use in a clinical setting.

Using Liquid Biopsies to Predict Tumor 
Resistance
More recently, the development of technology to isolate circu-
lating tumor DNA has allowed analysis of DNA released from 
cancer cells into the blood plasma (65). This non-invasive form 
of liquid biopsy was carried out in six patients by the Rosenfeld 
group to track mutational changes in the evolution of various 
metastatic cancers over 1–2  years (65). The examination of 
breast, ovarian, and lung cancers meant that this study could 
span multiple treatments at several time points, describing a 
range of mutant alleles which increased in abundance (allele frac-
tion) with the appearance of therapy resistance (65). Activating 
mutations in PIK3CA and truncations in RB1 and MED1 was 
identified, as well as a splicing mutation in growth factor GAS6 
and a resistance-conferring mutation in EGFR (65).

This study acts as proof-of-principle that next-generation 
sequencing techniques can be used to analyze circulating tumor 
DNA as a non-invasive method of monitoring cancer evolution, 
as the data from this study (combined with other recent publica-
tions) show that the copy number variations and somatic muta-
tions identified in this manner are representative of the tumor 
genome (65–67). However, a more recent study found that <10% 
of gliomas patients harbor detectable ctDNA, potentially limiting 
the application of this powerful methodology to GB (68).
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Recently, several studies have successfully isolated circulat-
ing tumor cells (CTCs) from peripheral blood and CSF for GB 
and diffuse glioma, which could yield great potential for disease 
monitoring to guide treatment (69–76). Sullivan et al. used RNA-
in  situ hybridization to identify a subset of highly migratory 
tumor cells in GB with a mesenchymal phenotype (69). This led 
to the conclusion that there may be a subset of mesenchymal 
cells present in disseminated GB that have the ability to invade 
the vascular system and proliferate outside the brain as systemic 
lesions (69). The pilot study by MacArthur et al. employed an 
assay that can detect the increased telomerase activity in tumor 
cells using an adenoviral detection system, which is of great 
benefit as glioma cells oftentimes do not express the molecular 
markers (such as EpCAM) that are regularly required for CTC 
assays (71). The MacArthur study identified circulating glioma 
cells in 8 of 11 (72%) preradiotherapy patients, compared with 
1 of 8 (8%) postradiotherapy patients, demonstrating the ability 
of the liquid biopsy to identify patients at risk of recurrence/
with high tumor burdens (71). A larger study by Müller et  al. 
identified CTCs in 29/141 (20.6%) of GB patients by immu-
nostaining for GFAP (70). In this case, the use of a molecular 
biomarker for CTC isolation was supported by its absence in 
control participants, and the presence of EGFR amplifications 
in the tumor cells isolated using GFAP (70). The mobilization 
of CTCs in the peripheral blood appears to correlate with EGFR 

amplification that supports the hypothesis that these cells have 
growth potential (70).

In addition, preliminary studies have identified CTCs in 
cerebro-spinal fluid using mass spectrometry peptidomics to 
screen samples for elevated levels of single peptides linked to 
disease (77). In preliminary data, it appears that the sensitivity 
of this method allows 4 peptides associated with GB to be identi-
fied out of more than 2000 CSF peptides, potentially raising the 
possibility that lumbar puncture may be able to identify CTCs for 
disease monitoring (77).

CONCLUSiON

In conclusion, recent dramatic technological advances in the 
next-generation sequencing have significantly improved our 
understanding of intratumour heterogeneity and disease recur-
rence in GB. Both algorithmic mathematical models, including 
neural networks and experimental strategies such as multisam-
pling tumor resection, and genetic analysis of circulating cancer 
cells may in the future help predict the nature of residual disease 
and resistance to molecular therapies in GB.

However, current challenges lie in the extent of biological 
variability and the ability of bioinformatics to be able to success-
fully translate the vast amounts of data generated into a clinically 
applicable format.
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