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CLUSTERING NONSTATIONARY CIRCADIAN RHYTHMS USING1

LOCALLY STATIONARY WAVELET REPRESENTATIONS∗2

JESSICA K. HARGREAVES † , MARINA I. KNIGHT † , JON W. PITCHFORD ‡ ,3

RACHAEL J. OAKENFULL § , AND SETH J. DAVIS§4

Abstract. Rhythmic processes are found at all biological and ecological scales, and are fun-5
damental to the efficient functioning of living systems in changing environments. The biochemical6
mechanisms underpinning these rhythms are therefore of importance, especially in the context of7
anthropogenic challenges such as pollution or changes in climate and land use. Here we develop and8
test a new method for clustering rhythmic biological data with a focus on circadian oscillations. The9
method combines locally stationary wavelet time series modelling with functional principal compo-10
nents analysis and thus extracts the time-scale patterns arising in a range of rhythmic data. We11
demonstrate the advantages of our methodology over alternative approaches, by means of a simula-12
tion study and real data applications, using both a published circadian dataset and a newly generated13
one. The new dataset records plant response to various levels of stress induced by a soil pollutant, a14
biological system where existing methods which assume stationarity are shown to be inappropriate.15
Our method successfully clusters the circadian data in an interesting way, thereby facilitating wider16
ranging analyses of the response of biological rhythms to environmental changes.17

Key words. evolutionary wavelet spectrum, nondecimated wavelet transform, nonstationary18
processes, unsupervised learning, plant circadian clock19

AMS subject classifications. 62P1020

1. Introduction. The earth rotates on its axis every 24 hours resulting in a day21

and night cycle. Correspondingly, almost all species exhibit changes in their behaviour22

between day and night (Bell-Pedersen et al., 2005). These daily rhythms are not only23

caused by a response to daily changes in the physical environment, but are also the24

result of an internal timekeeping system or ‘biological clock’ within the organism25

(Vitaterna et al., 2001; Minors and Waterhouse, 2013). In particular, most plants are26

able to anticipate dawn and adjust their biochemistry accordingly. When an organism27

is deprived of external time cues, these rhythms typically persist qualitatively but28

may change in detail; the study of these changes can reveal the biochemical reactions29

underpinning the circadian clock and, at a larger scale, can provide valuable insight30

into the possible consequences of environmental change (McClung, 2006; Bujdoso and31

Davis, 2013).32

Experiments recording plant response to light entrainment result in datasets that,33

from a statistical point of view, can be considered as time series realisations. Period34

and phase estimation (see Figure S1 in Appendix A for a visual interpretation of35

this terminology) are the fundamental elements of most circadian analyses. The cur-36

rent standard uses BRASS (Biological Rhythm Analysis Software System (Edwards37

et al., 2010)) to estimate the period of each time series using Fourier analysis (see38

Moore et al. (2014) or Zielinski et al. (2014) for a complete description of the under-39

∗Submitted to the editors December 13, 2016.
Funding: This work was supported by the EPSRC. Circadian work in the SJD group is currently

funded by the BBSRC awards BB/M000435/1 and BB/N018540/1.
†Department of Mathematics, University of York, York, YO10 5GE, UK (jkh516@york.ac.uk,

marina.knight@york.ac.uk).
‡Departments of Mathematics and Biology, University of York, York, YO10 5GE, UK

(jon.pitchford@york.ac.uk ).
§Department of Biology, University of York, York, YO10 5GE, UK (rachael.oakenfull@york.ac.uk,

seth.davis@york.ac.uk).

1

This manuscript is for review purposes only.

mailto:jkh516@york.ac.uk
mailto:marina.knight@york.ac.uk
mailto:jon.pitchford@york.ac.uk 
mailto:rachael.oakenfull@york.ac.uk
mailto:seth.davis@york.ac.uk


2 HARGREAVES, KNIGHT, PITCHFORD, OAKENFULL AND DAVIS

lying period analysis methods). Data stationarity is an implicit assumption within40

the underlying methodology – put simply, its statistical characteristics are assumed41

constant over time. However, in reality, nonstationary behaviour is common in bio-42

logical systems (Zielinski et al., 2014). Here we propose, develop and test methods43

that are capable of detecting changes of period over time by drawing on the plant44

time-frequency signature as quantified by its spectrum.45

The methodology developed here is general, but our concrete example concerns46

(i) identifying if a plant’s clock is affected under exposure to different concentrations47

of ammonium cerium nitrate, (ii) establishing which concentrations produce similar48

effects and (iii) subsequently characterising these effects. The answers to these ques-49

tions have important implications, not only for the understanding of the mechanism50

of the plant’s circadian clock, but also for the environmental impact associated with51

soil pollution (Yang et al., 2016).52

In order to answer the above questions, we propose to estimate the spectral be-53

haviour of our time series under the formal framework of locally stationary wavelet54

(LSW) processes (Nason et al., 2000), which are able to account for data nonstation-55

arity. Wavelets are ideal for identifying discriminant local time and scale (frequency)56

features, and time-frequency (scale) patterns are known to be indicative of the plant57

response to various stimuli (Zielinski et al., 2014). A functional principal components58

analysis on the spectral data treated as an ‘image’ (as suggested in a Fourier context59

by Holan et al. (2010)) is then used to reduce the data dimensionality and allows60

the extraction of important behavioural features. Furthermore, this functional repre-61

sentation is also used to inform a clustering method that facilitates quantifying the62

effects induced by different concentrations of ammonium cerium nitrate.63

This article is organized as follows. Section 2 outlines the novel circadian dataset64

and establishes its nonstationary behaviour; it also reviews state-of-the-art circadian65

data analysis tools present in the current literature. Section 3 develops our proposed66

novel locally stationary wavelet-based clustering method. The findings of an extensive67

simulation study are presented in Section 4. Section 5.1 demonstrates the additional68

insight our clustering method can provide when applied to a published circadian plant69

dataset. Section 5.2 presents the results of clustering the novel circadian plant dataset70

using the proposed methodology and examines them in the context of several relevant71

biological questions. Section 6 concludes with a brief discussion and suggests topics72

for further investigation.73

2. Motivation. In this section we briefly outline the experimental details that74

led to a novel circadian plant dataset and assess the prominent features of the cir-75

cadian plant rhythms under analysis, namely their lack of stationarity. This result,76

along with several others recorded in the literature (e.g. Price et al. (2008), Leise77

et al. (2013)) motivates the development of analysis techniques that can account for78

nonstationarity. Furthermore, we also discuss the phenomenon of individual-level79

variability in plant response to stimuli, despite their sharing identical genetic charac-80

teristics (Doyle et al., 2002). The presence of multiple behaviours within the same81

treatment group motivates our development of a clustering procedure that can detect82

these different characteristics and analyse them separately. For completeness, we also83

report the results of the analysis a circadian biologist would typically use.84

2.1. Experimental details. The novel circadian dataset (henceforth referred85

to as the cerium dataset) was obtained by the Davis Lab (Biology, University of86

York) following a similar method to Hanano et al. (2006). For a detailed description87

of these methods see Appendix B. Briefly, for each plant, gene expression levels are88
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CLUSTERING NONSTATIONARY TIME SERIES 3

Fig. 1. Luminescence evolution over time for plants subjected to a control and 3 different
ammonium cerium nitrate concentrations. Time is measured in hours relative to zeitgeber time
(time of last external temporal cue: the dawn signal of lights-on). Top left: Each plant signal
from the control group (in grey) along with the group average (dashed black). Other panels: Each
realisation from the groups (in grey) along with the group average and the control group average
(dashed black). Group 1: 100µM ammonium cerium nitrate with average in blue. Group 2: 150µM
ammonium cerium nitrate with average in green. Group 3: 200µM ammonium cerium nitrate with
average in red. (Each time series has been normalised to have mean zero.) Note: the free run started
from time 24; shaded bars below each graph indicate the subjective darkness that plants expected to
experience during the ‘normal’ day.

measured (using a firefly luciferase reporter system) at regular intervals resulting in an89

individual time series. In this experiment, the gene of interest was ‘cold and circadian90

regulated and RNA binding 2’, known as CCR2 (Doyle et al., 2002).91

The cerium dataset consists of a total 96 plant signals (time series) recorded at92

128 time points, with the control and groups 1–3 (each corresponding to a different93

concentration of ammonium cerium nitrate) all containing 24 plants. The control94

group is grown in Hoagland’s media (Hoagland et al., 1950), which contains essential95

nutrients required for plant growth, and is not exposed to any additional levels of96

ammonium cerium nitrate. To examine the effects of cerium on the circadian clock, the97

other three groups, while also grown in Hoagland’s media, were additionally exposed98

to varying additional concentrations of ammonium cerium nitrate– 100µM for Group99

1, 150µM for Group 2 and 200µM for Group 3. A plot of individual luminescence time100

series, the average expression at each time point, for each of the treatment groups,101

is shown in Figure 1. Note that time is measured in hours relative to zeitgeber time,102

which is the time of the last external temporal cue: the dawn signal of lights-on.103

2.2. BRASS analysis. In the circadian community, analysis of this data would104

typically be performed by the Microsoft Excel macro BRASS. Table 1 provides a105

summary of the output of the analysis of the cerium dataset in BRASS. In particular,106

it shows the mean period estimate (obtained using FFT-NLLS analysis (Plautz et al.,107

1997) considering only period estimates between 15 and 40 hours), the number of108

plants that could not be analysed by BRASS and the mean Relative Amplitude Error109

(RAE) for each of the 4 groups. RAE is a value between 0 and 1 and gives information110

about the goodness of fit of the model (a value of 0 indicates a perfect fit). Circadian111
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4 HARGREAVES, KNIGHT, PITCHFORD, OAKENFULL AND DAVIS

Group Hoagland’s
Group 1 Group 2 Group 3
(100µM) (150µM) (200µM)

Average period estimate
27 27 26 24

(in hours)
Number of plants

7 10 12 21
excluded by BRASS

Average RAE 0.23 0.44 0.41 0.74
Table 1

Summary of the output of the analysis of the circadian dataset in BRASS. The ‘number of
plants excluded by BRASS’ is the number of time series for which BRASS was not able to return a
period estimate. ‘RAE’ (Relative Amplitude Error) is a value between 0 and 1 and gives information
about the goodness of fit of the model (a value of 0 indicates a perfect fit). Recall: there are 24 plants
in each of the groups.

biologists often visualise these results in a scatter plot of relative amplitude error112

against period length for the plants analysed by BRASS (see e.g. Hanano et al.113

(2006)) and such a plot for this dataset is given in Figure S2, Appendix A.114

On examining Table 1, note that not all data is used to produce the period esti-115

mate reported by BRASS– in particular, the ‘number of plants excluded by BRASS’116

is the number of time series for which the FFT–NLLS algorithm (Plautz et al., 1997)117

was not able to return a period estimate, possibly due to a loss of rhythmicity. Thus,118

under the assumption of stationarity (and the above constraints), these methods are119

not able to analyse all data produced by this experiment, indicating that this dataset120

is not suitably modelled using Fourier methods. Furthermore, by just reporting the121

results of this analysis, the biologist would conclude that adding 100µM or 150µM am-122

monium cerium nitrate produces no detectable effect on the circadian clock (as these123

period estimates are similar). However, visual examination of Figure 1 shows that124

ammonium cerium nitrate appears to have a strong effect on these plants, providing125

further evidence that more statistically advanced approaches are needed.126

2.3. Nonstationarity in circadian rhythms. Price et al. (2008) asserted that127

data arising from circadian experiments is nonstationary and discussed the features128

which support this claim, namely a progressively dampened signal with a changing129

period. The authors advocated the use of wavelets to analyse circadian data and devel-130

oped a technique for characterising the modal periods present in circadian data using131

a continuous wavelet decomposition (this is disseminated in the waveclock package132

in R, currently on CRAN archive). Later, Harang et al. (2012) also supported the133

circadian data nonstationarity view, and furthermore claimed that circadian analysis134

under nonstationary behaviour by means of traditional Fourier methods can lead to135

inaccurate results. Harang et al. (2012) thus recommended the use of wavelets, which136

allow the changes in period to be tracked through time, and developed ‘WAVOS’- a137

wavelet-based MATLAB toolkit that allows for analysis of nonstationary circadian138

data.139

Leise et al. (2013) discussed the appropriateness of traditional methods to deter-140

mine period length from experimental datasets that assume a rhythm of fixed period141

and amplitude, proposing that most biological rhythms exhibit changes in both pe-142

riod and amplitude. Therefore, the authors extended wavelet methods to measure143

how biological rhythms vary over time and developed MATLAB scripts to implement144

their analysis using both continuous and discrete wavelet transforms.145

For our novel circadian dataset, we investigated whether the individual plant146
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CLUSTERING NONSTATIONARY TIME SERIES 5

Group Hoagland’s
Group 1 Group 2 Group 3
(100µM) (150µM) (200µM)

Number of nonstationary plants 22 19 19 8
Table 2

Results for the Priestley-Subba Rao test of stationarity, implemented in the fractal package
in R and available from the CRAN package repository. Number of nonstationary plants indicates
the number of time series (in each group) with enough evidence to reject the null hypothesis of
stationarity at the 1% significance level. Recall: there are 24 plants in each of the groups.

signals are (second-order) stationary via hypothesis testing. We employed two tests147

for stationarity– a Fourier-based test (Priestley and Rao, 1969) and a wavelet-based148

test (Nason, 2013). The Fourier-based test we used was the Priestley-Subba Rao149

(PSR) test. The results, which can be found in Table 2, show that over 70% of the150

plant signals provided enough evidence to reject the null hypothesis of stationarity.151

This conclusion is backed-up by the wavelet-based spectrum test for stationarity.152

Additionally, this test also indicates where the nonstationarities are located in the153

series. (A visual representation for each group can be found in Figure S3, Appendix154

A.)155

Therefore, in agreement with previous observations in circadian literature, both156

tests suggest that our circadian data also displays nonstationary features. In order to157

assess the impact of different concentrations of ammonium cerium nitrate, we propose158

a novel clustering technique that combines the use of wavelets (ideal for analysing159

nonstationary behaviour) with rigorous statistical (process) modelling. Additionally,160

to mitigate against individual plant variability, our technique proposes the use of161

time-scale patterns as explained next.162

2.4. Individual-level variability in circadian rhythms. We noticed in our163

dataset the presence of individual-level variability in plant responses to the same164

stimuli, despite their sharing identical genetic characteristics (Doyle et al., 2002). For165

example, different types of behaviour can be seen in the control group of Figure 1.166

This is particularly noticeable at the beginning (prior to time T = 36) and end (after167

time T = 96) of the experiment where the plant signals displayed one of two different168

amplitudes. This variability highlights the issues caused by taking an average period169

estimate for each group and comparing the results, or comparing the average raw time170

series for each group. Although all plants in each treatment group share identical171

genetic characteristics and have been treated in identical conditions, they respond172

differently. In such situations, looking at average behaviour masks the individual173

differences and is conducive to misleading conclusions, as also acknowledged in other174

fields (Fiecas and Ombao, 2016). This motivates our choice to cluster the circadian175

plant data using their time-frequency (scale) patterns and further accounts for their176

proven (see Section 2.3) nonstationary features.177

3. Proposed clustering method. Our proposed methodology combines the178

use of wavelets, as recommended (but not implemented) by Zielinski et al. (2014) in179

their review of period estimation methods for circadian data, with rigorous stochastic180

nonstationary time series modelling. We exploit the locally stationary wavelet pro-181

cesses of Nason et al. (2000), arriving at a novel and general approach for clustering182

circadian signals according to their leading time-scale spectral patterns, as extracted183

by functional principal components analysis.184
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6 HARGREAVES, KNIGHT, PITCHFORD, OAKENFULL AND DAVIS

3.1. Modelling nonstationary time series. Many of the statistically rigor-185

ous approaches to modelling nonstationary time series are based on the Cramér-Rao186

representation of stationary processes: all zero-mean discrete time second-order sta-187

tionary time series {Xt}t∈ Z can be represented as188

(1) Xt =

∫ π

−π

A(ω) exp(iωt)dξ(ω),189

where A(ω) is the amplitude of the process and dξ(ω) is an orthonormal increments190

process (Priestley, 1982).191

In the representation in equation (1) above, we note that, for stationary pro-192

cesses, the amplitude A(ω) does not depend on time (i.e. the frequency behaviour193

is the same across time). However, for many real time series, including the cerium194

dataset, this assumption is not realistic and a model where the frequency behaviour195

can vary with time would therefore be preferable. One way of introducing time depen-196

dence into a model is by replacing the amplitudes A(ω) with a time-dependent form.197

Priestley (1965) introduced a time-frequency model with the amplitude replaced by198

A(ω, t), while Dahlhaus (1997) introduced the locally stationary modelling philoso-199

phy and developed the locally stationary Fourier (LSF) model. In this setting, the200

time-dependent amplitude function is defined on ‘rescaled time’ to enable asymptotic201

considerations.202

Later, Nason et al. (2000) introduced a locally stationary wavelet model, where the203

Fourier building blocks (present in the LSF model) are replaced by families of discrete204

nondecimated wavelets. This statistical modelling framework allows the process to205

have time-dependent amplitudes that in their turn induce a time-dependent second-206

order structure (e.g. time-dependent evolutionary wavelet spectrum). The advantage207

of wavelets is that they are localised in both time and scale (frequency) and are208

therefore well-suited to modelling second-order characteristics that evolve over time.209

Therefore, the locally stationary wavelet model combines the advantages of a wavelet210

analysis with rigorous stochastic nonstationary time series modelling. (We refer the211

interested reader to Daubechies (1992) and Nason (2010) for detailed texts on wavelets212

and their applications in statistics.)213

In our work we adopt the locally stationary wavelet (LSW) process framework,214

under which a time series {Xt;T }
T−1
t=0 , T = 2J ≥ 1 is defined to be a sequence of215

(doubly-indexed) stochastic processes with the following representation216

(2) Xt,T =

J
∑

j=1

∑

k∈Z

wj,k;Tψj,k(t)ξj,k,217

where {ξj,k} is a random orthonormal increment sequence, {ψj,k(t) = ψj,t−k}j,k is a218

set of discrete non-decimated wavelets and {wj,k;T } is a set of amplitudes, each of219

which at a scale j and time k.220

The properties of the random increment sequence {ξj,k} ensure that {Xt,T } is a221

zero-mean process– in practice, it is customary to detrend a process with non-zero222

mean, and this is our approach here.223

Estimation under the LSW framework is made possible by controlling the speed224

of evolution of the amplitudes {wj,k;T } using a condition of the form supk|wj,k;T −225

Wj(k/T )| ≤ Cj/T , where Wj(z), z ∈ (0, 1) is a ‘limiting’ amplitude function with226
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various smoothness constraints and {Cj}j is a set of constants with
∑∞

j=1 Cj < ∞227

(Nason et al., 2000).228

The definition of the LSW process in Equation (2) requires the data to be of229

dyadic length (T = 2J). In many practical applications, this is not realistic and there230

are a number of approaches to address this situation. For example, the practitioner231

could truncate the time series and analyse a segment of the data (of length T = 2J),232

and this is our approach here. Alternatively, it is possible to extend the data to the233

next greater power of two by artificially appending values. In particular, common234

approaches include padding the data with zeros, replicating a data value (such as235

the final value) or reflecting the dataset about an end point. Another approach is236

to interpolate data values to produce a new data set of the required length (Ogden,237

1997). However, preconditioning the data could lead to misleading results. Therefore,238

we do not artificially extend the data in this paper.239

An analogous quantity to the spectrum of a stationary process, which quantifies240

the contribution of a frequency (ω) to the process variance, is introduced in the LSW241

setting. This quantity, commonly referred to as the evolutionary wavelet spectrum242

(EWS), quantifies the power distribution in an LSW process over time and scale and243

is formally defined as244

(3) Sj(z) = |Wj(z)|
2,245

at each scale j ∈ 1, J and rescaled time z = k/T ∈ (0, 1).246

An unbiased estimator of the EWS {Sj(z)} is obtained by correcting the raw247

wavelet periodogram Ijk,T = |dj,k;T |
2, where dj,k;T =

∑T

t=0Xt,Tψj,k(t) are the empir-248

ical nondecimated wavelet coefficients. The correction is attained by premultiplying249

the raw wavelet periodogram vector I(z) := (Ij[zT ],T )
J
j=1 by the inverse of the auto-250

correlation wavelet inner product (J × J) matrix, AJ = (
∑

τ Ψj(τ)Ψl(τ))j,l, where251

Ψj(τ) =
∑

k ψj,k(0)ψj,k(τ) is the autocorrelation wavelet.252

Thus, the corrected wavelet periodogram is253

(4) L(z) = A−1
J I(z), for all z ∈ (0, 1).254

As in the stationary setting, the wavelet periodogram is not a consistent estimator255

of the wavelet spectrum (Nason, 2010). One method to overcome this is to smooth the256

raw wavelet periodogram as a function of (rescaled) time within each scale j, and then257

to apply the correction above. Various smoothing approaches have been proposed in258

the literature, see e.g. smoothing using variance stabilisation of Fryzlewicz and Nason259

(2006).260

In what follows, let us denote the corrected and smoothed periodogram of a time261

series (plant signal) {Xt,T }
T−1
t=0 as {Ŝj(z)}j , for rescaled time z ∈ (0, 1).262

3.2. Overview of current clustering/classification techniques that ac-263

count for nonstationarity. The problem of clustering and classification for non-264

stationary data has received a good deal of attention in the statistical literature,265

thanks to its relevance in many applied fields. In the context of monitoring poten-266

tial nuclear testing, Shumway (2003) considered the use of time-varying spectra for267

the classification and clustering of nonstationary time series by means of locally sta-268

tionary Fourier models and Kullback-Leibler discrimination measures. Also in this269

context, Fryzlewicz and Ombao (2009) developed a procedure for the classification of270

nonstationary time series. The observed data were modelled as realisations of locally271
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8 HARGREAVES, KNIGHT, PITCHFORD, OAKENFULL AND DAVIS

stationary wavelet processes and their corresponding wavelet spectra were estimated272

and used as the signal classification signature. In the context of an industrial exper-273

iment, Krzemieniewska et al. (2014) further developed this method by proposing an274

alternative divergence index to the simple squared quadratic distance of Fryzlewicz275

and Ombao (2009) for comparing the spectra of two time series. Note that the above276

techniques are underpinned by rigorous process modelling but the focus is on clas-277

sification into known groups, rather than on clustering. When classifying animal278

communication signals, known to have a nonstationary character, Holan et al. (2010)279

achieved dimension reduction by treating each windowed Fourier spectrum as an ‘im-280

age’ and performing a functional principal components analysis. In this context, the281

authors proposed to classify nonstationary time series by means of a generalised linear282

model that incorporated the (dimension-reduced) spectrogram of a short-time Fourier283

transform into the model as a predictor.284

For clustering applications, the maximum covariance analysis (MCA) on wavelet285

representations of two series has been proposed in previous works. MCA has the286

advantage of extracting common time-scale (frequency) patterns while also reducing287

the dimension of the data. Rouyer et al. (2008) used MCA to yield a quantitative288

measure of the common time-scale content in squared wavelet coefficients for pairs of289

time series. This subsequently yields a distance matrix used to obtain a cluster tree290

that groups signals according to their spectral time-scale patterns. In the context of291

an energy application, Antoniadis et al. (2013) also used an MCA over the wavelet292

coefficients obtained via a continuous wavelet transform and quantify signal similarity293

by comparing the evolution in time of each pair of leading patterns. This builds a dis-294

tance matrix which is then used within classical clustering algorithms to differentiate295

among high dimensional populations.296

Formally, consider two time series, {X
(i)
t } and {X

(j)
t }. Both Antoniadis et al.297

(2013) and Rouyer et al. (2008) obtained a time-scale decomposition of each time298

series (the wavelet transform and its squared version, respectively). Regardless of the299

usage of wavelet coefficients or their squared version, denote these new quantities in300

the wavelet domain by Q(i) and Q(j), for the {X
(i)
t } and {X

(j)
t } signals respectively,301

and define the time-scale covariance matrix by302

(5) R(i,j) = Q(i)Q(j)H ,303

where Q(j)H denotes the conjugate transpose and R(i,j) is a J×J matrix with possibly304

complex values. Performing a singular value decomposition of R(i,j) gives the following305

decomposition:306

(6) R(i,j) = U (i)Λ(i,j)V (j)H
307

where the columns of U (i) and V (j) are the orthonormal singular vectors of Q(i)308

and Q(j) respectively, and Λ(i,j) is a diagonal matrix with the singular values of the309

decomposition arranged in decreasing order. Denote the k-th pair of the singular310

vectors of U (i) and V (j) as uk and vk respectively. We can then define the k-th311

leading pattern as the projections of Q(i) and Q(j) over their respective k-th singular312

vectors:313

(7) P
(i)
k = uHk Q

(i) and P
(j)
k = vHk Q

(j).314

This process is then repeated for each pair of time series to produce the leading315

patterns and singular vectors which are then used with various distance measures316
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(described in Section 3.4.1) to obtain the dissimilarity matrix which forms the input317

of classical clustering algorithms.318

Contrasting with the classification techniques described above, these clustering319

approaches are not underpinned by rigorous statistical modelling, and while they pro-320

pose respectively the usage of wavelet coefficients or their squares, the reasoning that321

should drive this choice is not discussed by either Rouyer et al. (2008) or Antoniadis322

et al. (2013).323
3.3. Proposed functional principal components analysis for the wavelet324

spectral content. In this work we propose to combine the rigorous modelling frame-325

work provided by the locally stationary wavelet (LSW) processes that allows for the326

reliable (unbiased and consistent) estimation of the spectral time-scale features specific327

to each plant, with the dimension reduction afforded through the use of a functional328

principal components analysis (FPCA).329

In our biological problem of interest, the time-scale representation of the sig-330

nal is high-dimensional. Since any useful biological information is likely to relate to331

the low-dimensional mechanisms known to regulate the clock (Bujdoso and Davis,332

2013), this motivates our proposal to use a FPCA to perform dimension reduction333

over the spectral content. In the spirit of Holan et al. (2010), we treat our LSW334

spectral estimate as an ‘image’ and the spectral coefficients as time-scale ‘pixels’.335

The pixels are not independent– in fact, the spectrum presents coherent patterns336

that should be accounted for. This motivates the use of the Karhunen-Loéve repre-337

sentation (at the heart of FPCA) which, in our context, for a continuous spectrum338

{S(v) : v = (j, z),v ∈ R×(0, 1)} allows for its covariance function CS(v,v
′) to be de-339

composed via an eigen-decomposition (Ramsay and Silverman, 2005). Consequently,340

the spectra may be decomposed as S(v) =
∑

m≥1 αmφm(v), with scores (αm)m inde-341

pendent random variables whose variance is given by the corresponding eigenvalues342

(Var(αm) = λm) and φm(v) orthonormal eigenvectors that capture the variability in343

the spectral domain.344

Assuming we observed N plant signals at T = 128 equally spaced time points,345

we model the i-th plant signal as an LSW process {X
(i)
t,T }

T−1
t=0 for each i = 1, . . . , N .346

As biological evidence points towards the relevance of the plant spectral signature in347

understanding its response to stimuli, we estimate the wavelet spectrum by means of348

its corresponding corrected and smoothed periodogram, {Ŝ
(i)
j (t/T )}Jj=1 for each time349

series i = 1, . . . , N , where t = 0, . . . , T − 1 and J = log2(T ). The estimated spectra,350

viewed as continuous functions {Ŝ(i)(v)} with v = (j, z = t/T ) ∈ R× (0, 1), are then351

treated as input observations in a FPCA. Their corresponding estimated covariance352

function Ĉ(v,v′) thus summarises the dependence of plants across time and scale.353

Although the continuous Karhunen-Loéve representation is often the most realis-354

tic from the point of view of modelling a biological process, due to the discrete nature355

of observations resulting from most experiments, it is rarely considered in applica-356

tions. In practice, we use its empirical version, also known as empirical orthogonal357

function analysis, as is common in e.g. spatial statistics and geophysics (Cressie and358

Wikle, 2015). In particular, the estimated spectral coefficients can be arranged in N359

matrices, each of size J × T , which we denote Ŝ(1), . . . , Ŝ(N). For each plant signal360

(each i = 1, . . . , N), vectorise the matrix Ŝ(i), i.e. concatenate the rows of the matrix361

Ŝ(i) to produce a vector ŝ(i) with length J × T = n. These N vectors are combined362

to form a data matrix Q of size N × n, where each row of Q represents the spectral363

content of a plant. Formally,364

(8) Q =
[

ŝ(1), . . . , ŝ(N)
]T

.365
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Note that in practice, this analysis is equivalent to performing a classical principal366

components analysis on the mean centred data, which we still denote by Q in order not367

to further clutter the notation. The spectral decomposition of the sample covariance368

matrix R = QTQ is given by369

(9) R = UΛUT ,370

where U is an orthonormal matrix whose columns are the eigenvectors of R (also371

known as the principal directions of the data; here, we can conceptualise these as372

representing ‘images’) and Λ is a diagonal matrix whose diagonal elements are eigen-373

values of R (positive real numbers arranged in decreasing order of magnitude; these374

are proportional to the variance accounted for by each direction). We can achieve size375

reduction by choosing to represent our data in fewer dimensions. The usual practice376

is to use the set of p < n eigenvectors of R corresponding to the p largest eigenvalues377

and aggregate these in an n × p matrix, UPCA, which performs the PCA projection.378

Therefore, for each eigenvector, we can find a corresponding projection in the princi-379

pal component space by computing QUPCA. In this transformed space, each process380

is now represented by a p-dimensional vector, i.e. the principal co-ordinates of the381

i-th process are given by the i-th row of the matrix QUPCA, denoted from now on as382

Score(i) (p-dimensional vector).383

3.4. Proposed clustering method. Our proposal is to construct a clustering384

method that assesses time series similarity/ dissimilarity on the basis of their spectral385

content as distilled in the scores developed in Section 3.3 above. Next we shall intro-386

duce potential distance measure candidates and assess various methods to determine387

the number of principal components to retain and the optimal number of clusters.388

3.4.1. Distance measures. The success of any clustering algorithm depends on389

the adopted dissimilarity measure. In this section, we propose four possible distance390

measures and discuss their advantages and disadvantages. The proposed distance391

measures consist of developments of those adopted in the work reviewed in Section392

3.2. In our simulation studies (Section 4), we compare the performance of clustering393

algorithms embedding the different distance measures outlined below.394

The simplest choice for the dissimilarity measure is the squared quadratic (SQ)395

distance between two time series, {X
(i)
t,T }

T−1
t=0 and {X

(j)
t,T }

T−1
t=0 . This distance measure is396

adopted by Fryzlewicz and Ombao (2009) who quote its advantages of good practical397

performance and computational ease. In our context it is defined as the sum of the398

squared differences between the scores relating to the p principal components retained399

(10) SQ(X
(i)
t,T , X

(j)
t,T ) =

p
∑

k=1

[

Score
(i)
k − Score

(j)
k

]2

,400

where Score
(i)
k denotes the score associated to the k-th principal component of time401

series {X
(i)
t,T }, as explained above. The value SQ(i, j) is the (i, j)th entry of the402

dissimilarity matrix, D.403

Our proposal is to develop this simplistic measure by aggregating the scores in the404

most significant p directions using a weighted combination with weights given by the405

squared singular values. We refer to this measure as the weighted squared quadratic406

(WSQ) distance and define the WSQ distance between two time series, {X
(i)
t,T }

T−1
t=0407
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and {X
(j)
t,T }

T−1
t=0 as the weighted sum of the squared differences between their scores408

in p directions. Formally409

(11) WSQ(X
(i)
t,T , X

(j)
t,T ) =

∑p

k=1 λk

[

Score
(i)
k − Score

(j)
k

]2

∑p

k=1 λk
,410

where Score
(i)
k is as in equation (10) and λk denotes the corresponding k-th squared411

singular value. The value WSQ(i, j) is the (i, j)th entry of the dissimilarity matrix,412

D.413

We now outline the distance measures as adopted in Antoniadis et al. (2013)414

and Rouyer et al. (2008). Both approaches hinge on the singular vectors and leading415

patterns for each time series pair. Specifically, Antoniadis et al. (2013) compared the416

time evolution of each pair of leading patterns. In particular, for the k-th pair of417

leading patterns corresponding to time series {X
(i)
t,T }

T−1
t=0 and {X

(j)
t,T }

T−1
t=0 , the authors418

take the first difference (∆) and measure energy by means of its modulus419

(12) dk(i, j) = |∆(P
(i)
k − P

(j)
k )|.420

Finally, the most significant p directions are aggregated using a weighted combi-421

nation with weights given by the squared singular values:422

(13) D(i, j) =

∑p

k=1 λkd
2
k(i, j)

∑p

k=1 λk
.423

The last comparison metric is424

(14) DT (i, j) =

∑p

k=1 λk(RD(P
(i)
k , P

(j)
k ) +RD(u

(i)
k ,u

(j)
k ))

∑p

j=1 λk
,425

where u
(i)
k and u

(j)
k are the k-th singular vectors of X

(i)
t,T and X

(j)
t,T respectively, and426

RD denotes the measure from Rouyer et al. (2008), adapted from Keogh and Pazzani427

(1998). This metric compares two vectors by measuring the angle between each pair428

of corresponding segments (a segment is defined as a pair of consecutive points of429

a vector) and is a method for measuring parallelism between curves. The overall430

distance is then computed as a weighted mean of the distance for each of the p pairs431

of leading patterns and singular vectors retained (with the weights being equal to the432

amount of covariance explained by each axis).433

Note that in the simulation study (Section 4), when comparing our method with434

the methods outlined in Antoniadis et al. (2013) and Rouyer et al. (2008), we cluster435

the data using their specified time-scale decomposition and distance measure.436

3.4.2. Determining the number of principal components to retain. Re-437

call the aim to reduce the dimensionality of our problem; for each of the distance438

metrics above, we must decide how many axes, p, to retain. Antoniadis et al. (2013)439

and Rouyer et al. (2008) both decided to use the number of axes that correspond to a440

fixed percentage of the total covariance (as is common in principal components analy-441

sis). A different approach is to select the number of components based on a screeplot.442

This displays the proportion of variance explained by the (ordered) eigenvalues, and443

p is then selected by looking for an elbow in the screeplot. Cho et al. (2013) proposed444

selecting this value based on the dimension of the correlation between two curves, r.445

This manuscript is for review purposes only.



12 HARGREAVES, KNIGHT, PITCHFORD, OAKENFULL AND DAVIS

They showed that retaining r principal components gave a good approximation and446

also provided a method of estimating the correlation dimension using an information447

criterion. We do not adopt the method of Cho et al. (2013) in this work. Instead, we448

choose to select the number of components either based on a screeplot or by retaining449

the number of axes that correspond to a fixed percentage of the total covariance, as450

these two methods carry less computational burden.451

3.4.3. Determining the number of clusters. One of the most difficult tasks452

in clustering is determining the number of clusters (Antoniadis et al., 2013). This can453

be informed through a number of statistical techniques (Kaufman and Rousseeuw,454

2009) as well as by scientific expert knowledge. For example, the ‘elbow method’455

examines the percentage of variance explained as a function of the number of clus-456

ters; the number of clusters is then chosen by looking for an elbow in the plot of457

this function. Tibshirani et al. (2001) developed this methodology by estimating the458

number of clusters in a dataset via the gap statistic. Alternatively, the ‘silhouette459

method’ (Rousseeuw, 1987) can be used. The ‘silhouette’ of a data point is a number460

between −1 and 1, with values of 1 indicating correct clustering, and optimization461

techniques are then used to determine the number of clusters that gives rise to the462

largest ‘silhouette’ (Kaufman and Rousseeuw, 2009).463

3.4.4. Proposed LSW-PCA clustering algorithm. Our proposed clustering464

method, which we shall refer to as LSW-PCA clustering, is outlined in Algorithm 1465

below. We perform a partitioning around medoids (PAM) that admits a general466

dissimilarity matrix as input and is known to be more robust than other alternatives467

such as k-means (Antoniadis et al., 2013). Each of the proposed choices, i.e. spectral468

information, number of principal components retained (p) and distance measure, are469

informed by the findings of the simulation study (see Section 4 and Appendix C).470

Algorithm 1 Proposed LSW-PCA clustering algorithm

Assume that each of the N observed (e.g. circadian) signals is a realisation of a

locally stationary LSW process {X
(i)
t,T }

T−1
t=0 , with i = 1, 2, . . . , N .

1. Spectral estimation: estimate the spectral content of each process by using
a model-based LSW corrected estimator and aggregate all information in
a matrix (see Section 3.3).

2. Dimension reduction: achieve dimension reduction by projecting the spec-
tral information of each process in a functional principal component space
and obtain the scores associated to each signal. The number of principal
components retained (p) is decided by means of the screeplot of percentage
variance explained (see Section 3.4.2).

3. Spectral distance matrix: quantify the spectral differences between two sig-
nals by using the (weighted) squared quadratic distance measure (see Sec-
tion 3.4.1).

4. Cluster the data: by performing a partitioning around medoids (PAM) with
the distance matrix above as input.

4. Simulation study. The goals of our simulation study are twofold. First,471

we investigate the impact of the wavelet information choice (e.g. wavelet coefficients472

versus model-based spectral estimate), distance measure choice and methods to de-473

termine the number of principal components to retain. Secondly, we assess the com-474

parative performance of our proposed procedure with other methods. Since our work475
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is motivated by an application in the field of circadian biology, we have designed our476

simulated scenarios to display typical characteristics of circadian rhythms and also to477

reflect the limitations of empirical work in the life sciences, where the resolution and478

length of the time series would be limited in practice.479

4.1. Simulated data. The basic structure of each simulated experiment can480

be described as follows. A dataset of N = 100 (50 simulations from each of the481

two groups) was generated using the LSW representation (see equation (2)) with482

Daubechies’ extremal phase wavelet with one vanishing moment and a Gaussian or-483

thonormal increment sequence with mean zero and unit variance (the locits R pack-484

age was used). Each periodogram was level smoothed by log transform, followed485

by translation invariant global universal thresholding and then the inverse transform486

was applied. For each scale of the wavelet periodogram, only levels 3 and finer were487

thresholded. Using the estimated spectral information, we obtained a dissimilarity488

matrix for each of the methods under investigation. This matrix was the input of a489

PAM algorithm (performed in the cluster R package) which clustered the data into490

two groups. We then compared the clusters with the known group memberships and491

recorded the correctly clustered percentage. The above procedure was then repeated492

100 times and the results for each method were averaged.493

494

Case 1: Defined spectra. For this study, we assume each time series is a realisation495

from one of g = 1, 2 possible groups, each with different spectral characteristics. Define496

the evolutionary wavelet spectrum of each group {S
(g)
j (z)}Jj=1 with J = log2(T ) for497

all z ∈ (0, 1) and T = 64 by498

(15) S
(1)
j (z) =











4 cos2(4πz), for j = 2, z ∈ (1/64, 16/64)

4 cos2(2πz), for j = 3, z ∈ (17/64, 1)

0, otherwise;

499

and500

(16) S
(2)
j (z) =











4 cos2(2πz), for j = 2, z ∈ (17/64, 1)

4 cos2(4πz), for j = 3, z ∈ (1/64, 1/2)

0, otherwise;

501

The choice above encompasses changes in amplitude and period through time, akin502

to those of interest to the circadian biologist. Figure 2 provides a visualisation of the503

wavelet spectra above (top row) and an example of a signal realisation from each of504

the two groups (bottom row).505

506

Case 2: Gradual period change. For our second study, we assume each time series507

is a realisation from one of 3 possible groups, each with different spectral characteris-508

tics. In particular, each group represents a time series that gradually changes period509

from 24 to: 25 (Group 1), 26 (Group 2) and 27 (Group 3) over (approximately) two510

days, before continuing with the relevant period for a further two days. The purpose511

of this simulation study is to replicate a typical circadian experiment with changes512

that could not be captured by standard analyses that assume stationarity and report513

an average period value. Therefore, we will take T = 256 which is equivalent to a514

free-running period of 4 days with equally spaced observations every 22.5 minutes.515

Figure 3 shows the wavelet spectra which represent the gradually changing periods516

This manuscript is for review purposes only.



14 HARGREAVES, KNIGHT, PITCHFORD, OAKENFULL AND DAVIS

Fig. 2. Case 1. Top left: Group 1 wavelet spectrum; Top right: Group 2 wavelet spectrum;
Bottom left: Group 1 realisation and Bottom right: Group 2 realisation.

that define each of the 3 groups above. Notice that the increased period is shown517

by the movement up through the resolution levels and the gradual increase in period518

of the wavelet coefficients. To determine which changes can be discriminated by the519

methods, we perform two studies within this setting (i) Case 2A: simulations from520

Group 1 and Group 2, and (ii) Case 2B: simulations from Group 1 and Group 3.521

522

Fig. 3. Case 2. Left: Group 1 wavelet spectrum (gradual period change from 24 to 25 hours);
Centre: Group 2 wavelet spectrum (gradual period change from 24 to 26 hours); Right: Group 3
wavelet spectrum (gradual period change from 24 to 27 hours).

Case 3: Different rates of change. For our final study, let us assume each time523

series is a realisation from one of 3 possible groups, each with different spectral char-524

acteristics. In particular, each group represents a time series that gradually changes525
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period from 24 to period 27 over 2 days (Group 1), 3 days (Group 2), 5 days (Group 3)526

and then continues with period 27 for the remainder of the experiment. The purpose527

of this simulation study is to replicate a circadian experiment with changes that could528

not be captured by standard analyses that assume stationarity and report an average529

period value. Therefore, we also take T = 256 which is equivalent to a free-running530

period of 4 days with equally spaced observations every 22.5 minutes. Figure 4 shows531

the wavelet spectra which represent the characteristics that define each of the 3 groups532

above. To determine which changes can be discriminated by the methods, we perform533

three studies within this setting: (i) Case 3A: simulations from Group 1 and Group 2,534

(ii) Case 3B: simulations from Group 1 and Group 3, and (iii) Case 3C: simulations535

from Group 2 and Group 3.536

Fig. 4. Case 3. Left: Group 1 wavelet spectrum (2-day transition); Centre: Group 2 wavelet
spectrum (3-day transition); Right: Group 3 wavelet spectrum (5-day transition).

4.2. Results. For each of our simulation studies outlined above, we investi-537

gate the impact of the wavelet information choice (e.g. wavelet coefficients versus538

model-based spectral estimate), distance measure choice and methods to determine539

the number of principal components to retain. We report our findings next, with540

detailed results for Case 1 presented in Appendix C.541

542

Distance measure choice. To examine the effect of the choice of distance measure543

on our proposed clustering method, we performed the simulation studies as outlined544

above using all four distance measures defined in Section 3.4.1. We found that our545

method is fairly robust to the choice of distance measure, although the squared and546

weighted quadratic distances (SQ, respectively WSQ), appear to give superior results547

to the distance choices in Antoniadis et al. (2013) and Rouyer et al. (2008).548

549

Dimension choice. We also examined the different methods outlined in Section550

3.4.2 to select the number of principal components to retain for our LSW-PCA clus-551

tering method. We thus compared determining the number of principal components552

to retain by examining the screeplot with the situation where we retain the minimal553

number of components that correspond to 90% of the total covariance. Once again554
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we found that the LSW-PCA clustering method is robust to the way in which we555

choose the number of principal components to retain. Based on these results, we556

suggest using the LSW-PCA clustering method with the squared quadratic distance557

(see equation (10)), and retaining principal components by examining the screeplot.558

However, note that our algorithm is robust to an automatic choice based on a set559

percentage of the total covariance.560

561

Wavelet information choice. In Section 3.2 we noted that other wavelet-based562

clustering approaches in the literature, while non-model based techniques (unlike our563

proposed LSW-PCA), extract the information by means of wavelet coefficients (An-564

toniadis et al., 2013) or squared wavelet coefficients (Rouyer et al., 2008). Therefore,565

using the Case 1 setting, to investigate the impact of wavelet information choice,566

we performed a simulation study with the following input data: original signals (thus567

extracting time-dependent information only), wavelet coefficients (time-scale informa-568

tion), squared wavelet coefficients (second-order time scale information) and finally569

the LSW corrected wavelet periodogram (to consistently estimate the spectrum un-570

der the LSW modelling, but without the FPCA stage). We found that clustering571

based on the raw data and the raw wavelet transform gave poor results (54% cor-572

rectly clustered compared to 63% for squared wavelet coefficients and 69% for the573

corrected periodogram) which supports the assertion that clustering based on the574

second-moment information is preferable. Also note that using the FPCA approach575

further improves the results, from 69% correctly clustered to 76% (see Table 3).576

577

Performance comparison. Finally, we compare the LSW-PCA method with the578

competitor methods proposed by Rouyer et al. (2008) and Antoniadis et al. (2013)579

(outlined in Section 3.2). Both of these benchmark methods do well in practice and580

represent the state-of-the-art among procedures for clustering nonstationary time se-581

ries. The results are summarised in Table 3. These simulation studies provide empiri-582

cal evidence that our proposed LSW-PCA method works very well and outperforms its583

competitors for clustering nonstationary time series. Again we see that (for this par-584

ticular application) methods based on the second-order information (our LSW-PCA585

method and the Rouyer et al. (2008) method) perform better than the method based586

on the wavelet transform (Antoniadis et al., 2013). Moreover, our method, which587

utilises an LSW model to obtain an unbiased, consistent estimator of the underlying588

spectral information, performs considerably better still than the method which uses589

the raw wavelet periodogram. These results also show that our proposed method,590

which performs a FPCA on the estimated spectral coefficients of the entire dataset,591

outperforms the pairwise methods of Rouyer et al. (2008) and Antoniadis et al. (2013).592

However, note that in Cases 2A, 3A and 3C, the LSW-PCA method also has diffi-593

culty discriminating between the defined groups. These results may be due to the594

resolution of the data. Therefore, if the analyst predicted that a treatment effect595

would be characterised by this behaviour, we would recommend increasing the length596

of the experiment and taking observations at shorter intervals which would improve597

the resolution of all methods.598

5. Real data analysis.599

5.1. Previously published circadian data. In this section, we apply our600

method to an already published circadian dataset, which tested the effects of cop-601

per on plants in a method similar to our cerium dataset. Our aim is to demonstrate602

the additional insights provided by our proposed method. The dataset from Perea-603
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Sim. Study Rouyer et al. (2008) Antoniadis et al. (2013)
LSW-PCA
Method

Case 1 66% 61% 76%

Case 2A 56% 54% 65%
Case 2B 58% 55% 76%

Case 3A 54% 54% 61%
Case 3B 55% 55% 75%
Case 3C 55% 54% 63%

Table 3

Comparison of the proposed LSW-PCA clustering method with the methods proposed by Rouyer
et al. (2008) and Antoniadis et al. (2013) for the simulation studies. Percentages show correct
clustering rates.

Garćıa et al. (2016a,b) examined circadian rhythms in high concentrations of copper604

as well as copper deficiency. This previously published circadian data will henceforth605

be referred to as the copper dataset.606

The copper dataset was also obtained using a firefly luciferase reporter system as607

described in Appendix B. However, this experiment used a different gene of interest608

GIGANTEA (GI). For a detailed description of these experimental methods see Ap-609

pendix D and Perea-Garćıa et al. (2016a,b). Briefly, plants were grown under different610

copper regimes: ‘Deficiency’ (no CuSO4), ‘Sufficiency’ or ‘Control’ (1 µM CuSO4),611

and ‘Excess’ (10 µM CuSO4). The copper dataset consists of a total of 74 plant sig-612

nals (time series) recorded at 151 time points, with the ‘Deficiency’ group containing613

19 plants; the ‘Control’ or ‘Sufficiency’ group, 26 plants and the ‘Excess’ group, 29614

plants. Perea-Garćıa et al. (2016a) conducted an analysis in BRASS (see Section 2.2)615

and concluded that the period did not seem to be affected by copper deficiency or616

excess. In particular, the average period estimates for each group were reported not617

statistically significantly different. Therefore, it was concluded that changes in avail-618

able copper were not readily detected by BRASS, even though qualitative differences619

were easily noted. These findings provide supportive evidence that more statistically620

advanced approaches are needed to analyse these types of data.621

We analysed the circadian copper data by means of the proposed LSW-PCA clus-622

tering method (outlined in Algorithm 1) to establish and characterise the effect copper623

has on GI within the Arabidopsis circadian clock. As the LSW model is underpinned624

by wavelets and requires the data to be of dyadic length (T = 2J), in our analysis625

we chose a segment of length T = 128 out of the copper dataset. This truncation626

was decided upon after consultation with the experimental scientists, who confirmed627

that the selected segments contained the times during which the plant transfered628

from entrained cycles into ‘free-running conditions’ (constant light). Figure 5 shows629

each individual luminescence time series from each treatment group (in grey) along630

with the group average (in bold) for our truncated demeaned dataset. The average631

of the ‘Control’ group is also shown in (dashed) black in each plot for comparison.632

For each plant we estimated the wavelet spectrum by means of the corrected wavelet633

periodogram estimate (with the same setting as described in the simulation study).634

After examining the screeplot, and for ease of interpretation, we retained two principal635

components to use for clustering. Using a dissimilarity matrix obtained by computing636

the squared quadratic distance between the first two scores of each time series, the637

proposed LSW-PCA clustering method yielded the results detailed in Table 4.638
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Fig. 5. Luminescence evolution over time for plants subjected to a control and 2 different
copper regimes. Time is measured in hours relative to zeitgeber time (time of last external temporal
cue: the dawn signal of lights-on). Centre: Each plant signal from the ‘Control’ group (in grey)
along with the group average (dashed black). Other panels: Each realisation from the groups (in
grey) along with the group average (in blue) and the control group average (dashed black). Left:
‘Deficiency’ Group (1/2 MS). Right: ‘Excess’ group (10 µM CuSO4). (Each time series has been
normalised to have mean zero.) The grey and white bars indicate the subjective night and day,
respectively.

Number of plants Deficiency Control Excess Total

Cluster 1 11 14 13 38
Cluster 2 8 12 16 36

Total 19 26 29 74
Table 4

Results of clustering the copper dataset into two clusters using the proposed LSW-PCA method.
The modal cluster for each copper regime is highlighted in bold.

In determining the optimal number of clusters, we used the ‘elbow method’ and639

then validated this result via the ‘silhouette method’ (implemented in the fpc R pack-640

age) and consultations with experimental scientists, as outlined in Section 3.4.3. All641

approaches indicated that we should cluster the data into two groups, which suggests642

the presence of two distinct groups within this dataset, each with different time-643

frequency behaviour. This is in contrast to the results in Perea-Garćıa et al. (2016a),644

which found no detectable difference in period. This illustrates the point in Section645

2.4, that although plants in each treatment group share identical genetic character-646

istics and have been treated in identical conditions, they can respond differently and647

average behaviour assessment can mask these differences.648

649

Discussion of findings. On examining Table 4, we can see that the LSW-PCA650

clustering method has clustered the behaviour of the data into the following two651

groups: Cluster 1 identifies similar behaviour of plants in the ‘Control’ and copper652

‘Deficiency’ groups, and Cluster 2 is the modal cluster of the copper ‘Excess’ group.653

These results are in agreement with Figure 5 which provides visual evidence that the654
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Fig. 6. Results of clustering the copper dataset into two clusters using the proposed LSW-PCA
method. The individual signals (grey) along with the cluster average in: red for Cluster 1 and
(dashed) blue for Cluster 2.

plants in the copper ‘Excess’ group seemed to display distinct behaviour from the other655

groups. However, the Cluster 2 ‘Excess’ behaviour can also be seen in some plants in656

the other two groups, particularly in the ‘Control’ group. The presence of ‘Control’657

and ‘Deficiency’ treated plants in the cluster associated mostly with ‘Excess’ levels658

of copper, highlights individual-level variability in plant response to stimuli, despite659

their sharing identical genetic characteristics (Doyle et al., 2002). This result may be660

due to the individual plants in some instances showing a stress response, particularly661

those individuals from the ‘Deficiency’ group in Cluster 2. Alternatively, this may be662

due to stress induced by the experimental method itself. Thus, although both types663

of behaviour are present in each treatment group, increased levels of copper increase664

the likelihood of a Cluster 2-type response.665

Our proposed method also allows us to characterise the behaviour associated with666

each cluster. The signals within each cluster are shown (in grey) along with the cluster667

average (in bold) in Figure 6. Figure 7 shows the final cluster each individual time668

series was assigned to: the individual signals are plotted in red for Cluster 1 and blue669

for Cluster 2, for each treatment group. The cluster estimated average spectra appear670

in Figure 8.671

Note in Figure 6 that Cluster 1 is characterised by a gradual increase in period672

throughout the experiment and gradual amplitude dampening with time. The am-673

plitude dampening can also clearly be seen in the decreasing coefficients in resolution674

levels 2–4 (and particularly in level 2) in the average spectrum of Cluster 1 in Figure675

8. The gradual increase in period can be seen as the activity in the spectrum begins676

in resolution level 4 and moves into levels 3 and 2 with time.677

Cluster 2 is characterised by low frequency behaviour throughout the experiment678

(a longer period) and marked amplitude dampening with time, resulting in a rhyth-679

micity loss. Indeed, this behaviour is also identified by the average spectrum in Figure680

8. The increased period is reflected in the large coefficients at coarsest levels and the681

increased period of the wavelet coefficients in resolution levels 2 and 3. The dampening682

is apparent as the magnitude of the spectral coefficients decreases as time progresses.683
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Fig. 7. Results of clustering the copper dataset into two clusters using the proposed LSW-PCA
method. For each treatment group the individual signals are plotted in: red for Cluster 1 and blue
for Cluster 2. The average of each treatment group is shown in black. Within each treatment group,
the Cluster 1 average is shown in bold red and the Cluster 2 average in bold blue.

Fig. 8. Cluster average estimated spectra on the copper dataset using the proposed LSW-PCA
method.

Furthermore, note the nonstationary behaviour that characterises both clusters684

(changing period and amplitude). The presence of these nonstationary characteris-685

tics supports our assertion that the existing methods (which assume stationarity) are686

inappropriate for such datasets and cannot capture this behaviour. Figure 7 shows687

that, although all plants in each treatment group share identical genetic characteris-688

tics and have been treated in identical conditions, they respond in two different ways.689

Note that the treatment group averages (in black) lie between the two (within treat-690

ment group) cluster averages. This is particularly noticable in the ‘Deficiency’ group.691

Therefore, the presence of both types of behaviour in each of the original treatment692
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Number of plants Hoagland’s 100 µM 150 µM 200 µM Total

Cluster 1 13 2 3 0 18
Cluster 2 6 14 0 0 20
Cluster 3 5 8 21 24 58

Total 24 24 24 24 96
Table 5

Results of clustering the (normalised, truncated) cerium dataset into three groups using the
proposed LSW-PCA method. The modal cluster for each concentration is highlighted in bold.

groups has resulted in similar average behaviour.693

In conclusion, our LSW-PCA clustering method has detected and characterised694

the interesting effects excess levels of copper have on the circadian clock, that were not695

detectable in the original analysis of the copper dataset (Perea-Garćıa et al., 2016a).696

5.2. Novel circadian plant data. We now return to the circadian data that697

motivated this work and apply our proposed LSW-PCA clustering method to analyse698

the novel cerium data. As the LSW model is underpinned by wavelets and requires the699

data to be of dyadic length (T = 2J), in our analysis we chose a segment of length T =700

128 out of the original dataset. This truncation was decided upon after consultation701

with the experimental scientists, as in Section 5.1. For each plant we estimated the702

wavelet spectrum by means of the corrected wavelet periodogram estimate (with the703

same setting as described in the simulation study in Section 4). On examining the704

screeplot (see Figure S4 in Appendix A) and for ease of interpretation, we retained705

two principal components to cluster the data. The proposed LSW-PCA clustering706

method yielded the results detailed in Table 5.707

The methods outlined in Section 3.4.3 were used to determine the optimal number708

of clusters. All methods indicated that we should cluster the data into three groups.709

This was supported by experimental scientists who confirmed that it would be useful710

to cluster the data into three groups: ‘No Change’ and two distinct departures from711

this group. In particular, we hoped to differentiate between and characterise the ef-712

fects of lower and higher concentrations of cerium. This is because recent research713

has shown that certain compounds can produce very different effects on plant growth714

at low and high doses (Yang et al., 2016). Furthermore, this phenomenon seems to be715

present in our circadian dataset. On examining Figure 1, it appears that plants sub-716

jected to higher concentrations of cerium (150µM and 200µM) seem to exhibit similar717

behaviour, while the control group and concentration 100µM seem to display average718

behaviour which is distinct from each other and from the higher concentrations.719

720

Discussion of findings. On examining Table 5, we can see that this method has721

effectively clustered the behaviour of the data into the following three groups:722

1. Cluster 1: contains mostly plants in the Control dataset (Hoagland’s), and723

very few plants subjected to lower-medium concentrations of ammonium724

cerium nitrate (100µM and 150µM)– conceptualised as essentially ‘Control’;725

2. Cluster 2: contains mostly plants with lower concentration of ammonium726

cerium nitrate (100µM) and a few plants from the Control dataset– concep-727

tualised as ‘Low concentration’;728

3. Cluster 3: identifies similar behaviour to plants mostly exposed to medium-729

high concentrations (150µM, 200µM ), but interestingly also contains a few730

plants from the Control and 100µM concentration.731
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These results are in agreement with Figure 1 (which we recall provided visual732

evidence that the plants subjected to higher concentrations of cerium exhibit similar733

behaviour, while the control group and concentration 100µM seem to display distinct734

behaviour). Therefore, this analysis has enabled us to achieve our first goal: to differ-735

entiate between the effects of lower and higher concentrations of cerium. Of interest to736

circadian biologists, however, is the presence of control and low concentration treated737

plants in the group associated mostly with higher concentrations. This highlights738

individual-level variability in plant response to stimuli, despite their sharing identical739

genetic characteristics (Doyle et al., 2002).740

Our proposed method also allows us to characterise these groups, both in terms741

of first and second-order plant behaviour. The signals within each clustered group are742

shown (in grey) along with the cluster average (in bold) in Figure 9, while the cluster743

estimated average spectra appear in Figure 10.744

On examining Figure 9, notice the different behaviour of Cluster 3 from the745

other clusters– this effect is characterised by high frequency behaviour throughout the746

experiment and a marked amplitude dampening with time, resulting in a rhythmicity747

loss. Indeed, this behaviour is also identified by the average spectrum in Figure 10.748

The high frequency behaviour is reflected in the large coefficients in resolution level749

6. The dampening is apparent as the magnitude of the spectral coefficients decreases750

as time progresses (particularly in resolution level 2).751

In contrast, Clusters 1 and 2 (approximately corresponding to the control and752

low concentration groups respectively) display more similar, rhythmic behaviour. On753

examining Figure 9, the rhythmic periods of the cluster averages seem approximately754

equal. However, there are also clear differences between the two groups. Firstly, there755

is a difference in the amplitudes of the two cluster averages. Cluster 1 has a larger756

peak at approximately t = 36 and an even larger peak at t = 120. This can be seen in757

the large coefficients around these time points in resolution levels 1-4 in the average758

spectrum of Cluster 1. Alternatively, Cluster 2 seems to have a very large peak at759

t = 36 followed by a distinct reduction in the amplitude of the other peaks. This can760

also be seen in the large coefficients in resolution levels 2-4 in the average spectrum761

of Cluster 2 in Figure 10.762

The spectral content extracted in the first two principal components can be found763

in Figure 11. The projection of the original plant signals onto the principal compo-764

nent plane appears in Figure 12, by cluster and group membership. These indicate765

that the first principal component represents the departure from the control group766

after exposure to ammonium cerium nitrate, with larger values indicating a distinct767

change. The second principal component appears to reflect the spectral behaviour of768

the 100µM group, in particular the larger amplitude at around t = 36. Finally, note769

that Figure 12 shows that Cluster 1 has the biggest spread, while Cluster 3 is the770

most tightly packed. This supports biological expectations that plants behave in a771

similar manner when ‘under stress’ (Hanano et al., 2006).772

6. Conclusions and Further Work. In this manuscript, we have developed773

a new procedure for clustering inherently nonstationary rhythmic data by modelling774

them as locally stationary wavelet processes and exploiting their local time-scale spec-775

tral properties by means of a functional principal component analysis. Our method776

combines the advantages of a wavelet analysis with the benefits of rigorous stochastic777

nonstationary time series modelling and has desirable properties, such as low sen-778

sitivity to the choice of distance measure and number of principal components to779

retain. These characteristics show the method’s suitability in organising and under-780
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Fig. 9. The results of clustering the cerium dataset into three groups using the proposed LSW-
PCA method. The individual signals (grey) along with the cluster average in: (dashed) black for
Cluster 1; blue for Cluster 2 and red for Cluster 3. The average of Cluster 1 (conceptualised as
essentially ‘Control’) is shown (in dashed black) in all plots for reference.

Fig. 10. Cluster average estimated spectra on the cerium dataset using the proposed LSW-
PCA method. Cluster 1 approximately corresponds to the ‘Control’ group; Cluster 2 depicts ‘Low
concentration’ behaviour (100 µM) and Cluster 3 the ‘Higher concentration’ (150 µM and 200 µM).

standing multiple nonstationary time series, such as the gene expression levels in our781

novel circadian dataset. When compared to competitor (non-model based) methods,782

we found that our methodology brought clear gains for simulated data (Table 3).783

Furthermore, when compared to existing methods (which assume stationarity), the784

LSW-PCA clustering method also displayed advantages for real data (Table 5).785

The proposed model-based clusterings can be used to answer questions such as,786

‘What other concentrations of this compound produce similar effects in plants?’ Our787

approach can also produce visualisations helpful in answering questions such as, ‘What788
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Fig. 11. First two principal components obtained using the proposed LSW-PCA method on the
cerium dataset.

Fig. 12. The cerium dataset projected onto the first two principal components obtained from
the LSW-PCA clustering method. The colours represent the clusters: black for Cluster 1, blue for
Cluster 2 and red for Cluster 3. The symbols represent the plant treatments.

characterises the different types of reactions present in this dataset?’ Such answers789

have important implications for understanding the mechanism of the plant’s circadian790

clock and also environmental implications associated with soil pollution.791

Also note that our proposed algorithm is not restricted to the datasets analysed in792

this paper; it can be applied to other circadian datasets, as well as to data originating793

in other fields. The flexibility and computational efficiency of our approach allows794

more global analyses of plant behaviour to be undertaken which would not be possible795

within the stationary statistical constraints underlying traditional methods of period796

estimation. For example, the roles of a wide range of soil pollutants can be assessed797

within a single statistical framework. By extending this statistical methodology and798
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empirical protocol to include exposure to other compounds, one could address the799

question, ‘Which other elements in the periodic table, and at which concentrations,800

produce similar kinds of reactions in plants?’ We can also extend the dataset to include801

plants with deficiencies of elements other than copper. These studies would also enable802

deeper understanding of the circadian clock mechanisms and its adaptations to change803

(Perea-Garćıa et al., 2016a).804

The wavelet system gives a representation for nonstationary time series under805

which we estimate the wavelet spectrum and subsequently cluster the data. Ideally,806

we would envisage the use of the wavelet that is best suited to modelling and dis-807

criminating between the particular dataset. In simulations we found our method to808

be fairly robust to the wavelet choice. An area of further work would be to derive a809

procedure for determining which wavelet system to adopt for any given dataset.810

We are aware of the propensity of the recording equipment (see Appendix B) to811

break down, resulting in gaps in the data. Such failures in hardware are an objective812

reality of empirical work in the life sciences, and another area of future work is to adapt813

current methods under the presence of missingness, or ‘gappy’ data, often arising in814

experimental data. This estimate could then be used as a classification signature or815

within our clustering procedure.816

Appendix A. Supplementary Figures. In this section we offer visual817

evidence to support claims in Sections 1, 2 and 5 of the main article. All figures (S1,818

S2, S3 and S4) are referred to in context as part of the main body of the paper.819

Fig. S1. The defined rhythmic parameters: periodicity, phase, amplitude and clock precision
(based on an image from Hanano et al. (2006)).

Appendix B. Experimental Details: Novel Circadian Plant Data. In820

this section we outline the experimental details that led to the novel circadian plant821

rhythms under analysis (Section 2.1 of the main paper).822

To obtain this dataset, the Davis Lab (Biology, University of York) used a fire-823

fly luciferase reporter system. This method uses a fusion of the gene of interest to824

luciferase. In this experiment, the gene of interest was ‘cold and circadian regulated825

and RNA binding 2’, known as CCR2 (further details of CCR2:LUC can be found826

in Doyle et al. (2002)). When CCR2 is expressed, luciferase is produced, causing827
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Fig. S2. Summary of the BRASS analysis of the circadian plant signals in response to differing
quantities of ammonium cerium nitrate, represented by plots of period estimates plotted against the
respective relative amplitude errors (RAE). The colours and symbols represent the plant treatment
groups: blue squares for the Control Group; green circles for Group 1 (100µM); red triangles for
Group 2 (150µM) and purple stars for Group 3 (200µM).

the plant to produce quantifiable levels of light. This bioluminescence was measured828

using a TopCount NXT scintillation counter (Perkin Elmer), allowing relative gene829

expression of CCR2 to be quantified in vivo (Plautz et al., 1997; Southern and Mil-830

lar, 2005; Perea-Garćıa et al., 2016a). These experiments were carried out using the831

following methods: Arabidopsis thaliana seeds (Ws–CCR2:LUC ) were surface ster-832

ilised and plated onto Hoagland’s media containing 1% sucrose, 1.5% phyto agar833

(Hoagland et al., 1950). The seeds were stratified for 2 days at 4◦C and transferred to834

growth chambers to entrain under 12:12 light/dark cycles at a constant temperature835

of 20◦C. These conditions were chosen to simulate the ‘normal’ light/dark cycles of836

a day. Six-day-old seedlings were transferred to 96 well microtiter plates containing837

Hoagland’s 1% sucrose, 1.5% agar (Southern and Millar, 2005) also containing supple-838

mental (NH4)2Ce(NO3)6 (ammonium cerium nitrate) at a concentration of 100µM,839

150µM or 200µM. The plants were then transferred to the TOPCount machine. Mea-840

surements were taken at intervals of approximately 45 minutes. Measurement began841

after the transition to 12 hours of darkness (known as subjective dusk) on the sev-842

enth day of the plants’ life. Therefore, the plant experiences one ‘normal’ day in the843

TOPCount machine (known as entrainment). After this, the plant was exposed to844

constant light (known as an LL free-run) for approximately four days. In Figure 1,845

the shaded bars below the graph represent the light conditions the plants would ex-846

perience during the ‘normal’ day. The plants are under constant light throughout the847

experiment, however, the grey bars indicate that they would be in darkness during a848

‘normal’ 12 hour light/12 hour dark cycle.849

Our dataset therefore consists of a total 96 plant signals (time series) recorded850

at 128 time points, with each of the control and groups 1–3 (each corresponding851

to a different concentration of ammonium cerium nitrate) containing 24 plants. In852

particular, the control group is grown in Hoagland’s media (Hoagland et al., 1950)853

which contains essential nutrients required for plant growth and is not exposed to any854
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Fig. S3. Plots of the estimated locations of the nonstationarities in the circadian plant signals
in response to differing quantities of ammonium cerium nitrate, using the wavelet spectrum test
(Nason, 2013), implemented in the locits package in R which is available on CRAN. A time series
for each of the four groups is shown as an example– Group 1, a time series from the 100µM group;
Group 2, a time series from the 150µM group; Group 3, a time series from the 200µM group.

additional levels of ammonium cerium nitrate. To examine the effects of cerium on855

the circadian clock, the other three groups, while also grown in the Hoagland’s media,856

were additionally exposed to varying additional concentrations of ammonium cerium857

nitrate– 100µM for Group 1, 150µM for Group 2 and 200µM for Group 3.858

Appendix C. Results of Simulation Study Case 1. In this section we859

report the findings of the simulation study associated to Case 1 in Section 4.1 of the860

main paper. These consist of Tables S1 and S2, which further justify the distance and861

dimension reduction choices adopted for our proposed method.862

Appendix D. Experimental Details: Previously Published Circadian863

Data. In this section we outline the experimental details that led to the previously864

This manuscript is for review purposes only.



28 HARGREAVES, KNIGHT, PITCHFORD, OAKENFULL AND DAVIS

Fig. S4. The screeplot used to inform the selection of the number of principal components to
retain for the cerium dataset.

Distance Measure SQ WSQ DT D

Correctly Clustered (%) 76% 70% 69% 65%
Table S1

Case 1. Distance measure (Section 3.4.1) comparison for the proposed LSW-PCA method.

published copper dataset (Section 5.1 of the main paper).865

This dataset (Perea-Garćıa et al., 2016a,b) was also obtained using a firefly lu-866

ciferase reporter system as described in Appendix B. Experimental Details: Novel867

Circadian Plant Data. However, this experiment uses a different gene of interest868

GIGANTEA (GI). Plants were grown on plates as described in Andrés-Colás et al.869

(2010), incubated on MS (Murashige and Skoog) medium (Murashige and Skoog,870

1962) at half concentration (1/2 MS) [phytoagar 0.8% (w/v) plus 1% sucrose (w/v) in871

0.5% MES (w/v)]. WS GI:LUC seedlings were grown under different copper regimes:872
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Dimension reduction method 90% of total covariance Screeplot

SQ distance 73% 76%
WSQ distance 69% 70%
DT distance 54% 69%

Table S2

Case 1. Comparison for selection of principal components for proposed LSW-PCA clustering
method. Percentages show correct clustering rates.

‘Deficiency’ (1/2 MS), ‘Sufficiency’ or ‘Control’ (1 µM CuSO4), and ‘Excess’ (10 µM873

CuSO4). 96 plants were grown in total, 32 under each copper regime. The plants874

were entrained for 7 days under 12:12 light-dark cycles at a constant temperature of875

20◦C. The plants were then exposed to constant light (LL free-run) for the remainder876

of the experiment. Bioluminescence was then measured every hour using the same877

TopCount NXT system as in Appendix B.878

The dataset analysed in Perea-Garćıa et al. (2016a,b) consists of a total 74 plant879

signals (time series) recorded at 151 time points. Plants with an average luminescence880

of 40 or below were excluded prior to analysis as luminescence values below this are881

considered background noise. Therefore, the ‘Deficiency’ group (1/2 MS) contains 19882

plants; the ‘Control’ or ‘Sufficiency’ group (1 µM CuSO4) contains 26 plants and the883

‘Excess’ group (10 µM CuSO4) contains 29 plants.884
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