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Abbreviations used

AICE: Activator protein 1–interferon regulatory factor composite

element

BAL: Bronchoalveolar lavage

cDC: Conventional dendritic cell

CDR3: Complementarity-determining region 3

DC: Dendritic cell

EICE: Ets–interferon regulatory factor composite element

EMSA: Electrophoretic mobility shift assay

HA: Hemagglutinin

IAD: Interferon regulatory factor–associated domain

IRF: Interferon regulatory factor

ISRE: Interferon-stimulated response element

NK: Natural killer

pDC: Plasmacytoid dendritic cell

SSC: Side scatter

STAT: Signal transducer and activator of transcription

TF: Transcription factor

TLR: Toll-like receptor

Treg: Regulatory T
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Background: The homozygous K108E mutation of interferon
regulatory factor 8 (IRF8) is reported to cause dendritic cell
(DC) and monocyte deficiency. However, more widespread
immune dysfunction is predicted from the multiple roles
ascribed to IRF8 in immune cell development and function.
Objective: We sought to describe the effect on hematopoiesis
and immunity of the compound heterozygous R83C/R291Q
mutation of IRF8, which is present in a patient with recurrent
viral infection, granuloproliferation, and intracerebral
calcification.
Methods: Variant IRF8 alleles were identified by means of
exome sequencing, and their function was tested by using
reporter assays. The cellular phenotype was studied in detail by
using flow cytometry, functional immunologic assay
transcriptional profiling, and antigen receptor profiling.
Results: Both mutations affected conserved residues, and
R291Q is orthologous to R294, which is mutated in the BXH2
IRF8-deficient mouse. R83C showed reduced nuclear
translocation, and neither mutant was able to regulate the
Ets/IRF composite element or interferon-stimulated response
element, whereas R291Q retained BATF/JUN interactions. DC
deficiency and monocytopenia were observed in blood, dermis,
and lung lavage fluid. Granulocytes were consistently increased,
dysplastic, and hypofunctional. Natural killer cell development
and maturation were arrested. TH1, TH17, and CD81 memory
T-cell differentiation was significantly reduced, and T cells did
not express CXCR3. B-cell development was impaired, with
fewer memory cells, reduced class-switching, and lower
frequency and complexity of somatic hypermutation.
Cell-specific gene expression was widely disturbed in interferon-
and IRF8-regulated transcripts.
Conclusions: This analysis defines the clinical features of human
biallelic IRF8 deficiency, revealing a complex immunodeficiency
syndrome caused by DC and monocyte deficiency combined
with widespread immune dysregulation. (J Allergy Clin
Immunol 2018;141:2234-48.)

Key words: Interferon regulatory factor 8, immunodeficiency,
dendritic cell, monocyte, myeloproliferation, interferon

Effective immunity depends on multiple interacting transcrip-
tion factors (TFs) that govern hematopoietic development and
immune cell function. Members of the interferon regulatory
factor (IRF) family of TFs have a dual role, interacting with
hematopoietic TFs to determine cell fate and with immune
signaling molecules to direct cell responses.1 IRF4 and IRF8
are structurally related family members with an N-terminal
DNA-binding domain and C-terminal interferon regulatory
factor–associated domain (IAD).2 They activate or repress
transcription at specific DNA motifs in collaboration with other
TFs interacting with the IAD.

IRF8 heterodimerization partners include SPI1/PU.1, which
binds the Ets–interferon regulatory factor composite element
(EICE), frequently activating gene expression. Other IRF family
members (IRF1, IRF2, and IRF4) are cofactors at the mostly
repressive interferon-stimulated response element (ISRE).3,4

IRF8 forms a complex with BATF3 and JUN on the activator
protein 1–interferon regulatory factor composite element
(AICE) to activate gene expression.5 IRF8 plays a critical
role in hematopoietic lineage determination through these
interactions, governing the development of granulocytes,
dendritic cells (DCs), monocytes, and B cells.6,7

In myeloid cell development IRF8 is pivotal in determining
granulocyte versus monocyte fate. IRF8 competes with CEBPA
for binding to chromatin, resulting in attenuation of neutrophil
differentiation in granulocyte-monocyte progenitors.8 IFR8/PU.1
interaction is critical in monocyte differentiation by marking
distal enhancers for subsequent activation by the master regulator
Kruppel-like factor 4.9 The Irf82/2 mouse develops massive
expansion of granulocytes and progression to fatal myeloblastic
leukemia.10 Ly6C1 and Ly6C2 monocytes are depleted, but
some tissue macrophages persist.11 The BXH2 mouse is
homozygous for the Irf8R294C mutation in the IAD region of the
gene, disrupting association with heterodimerization partners.
Monocytes and macrophages are present but rendered hypofunc-
tional in their response to IFN-g,12 production of inflammatory
cytokines,13 and defense against intracellular infection.4,14 These
2 models illustrate the dual hematopoietic and immune response
roles of IRF8 and their differential sensitivity to IRF8 deficiency.

DCs are critical for activation of the immune response and arise
independently of monocytes. All mammalian species have
IFN-a–producing plasmacytoid dendritic cells (pDCs) and 2
myeloid or conventional dendritic cell (cDC) populations.15

cDC1s express C-type lectin containing domain type 9A/
chemokine XC receptor 1 (CLEC9A/XCR1) and are specialized
for cross-presentation, whereas cDC2s express signal regulatory
protein a (SIRPA) and mediate TH2 and TH17 responses. In
human subjects they are marked by CD141 and CD1c,
respectively.16 In mice IRF8 specifies DC lineage in cooperation
with Id2.17 IRF8 is also upregulated by E2-218 and required for
pDC development and function.19,20 In cDC1s it interacts with
BATF3 to maintain terminal differentiation.21 The Irf82/2mouse
lacks cDC1s and has reduced numbers of pDCs, whereas selective
loss of cDC1s is observed in the hypomorphic BXH2 mouse.
cDC2s are preserved in both IRF8-deficient strains through their
reciprocal dependence on IRF4.22

In B-cell development the balance between IRF8 and IRF4
mirrors that observed in specification of myeloid DCs subsets.
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IRF8 and IRF4 act redundantly to drive pre–B-cell development
but are required differentially to regulate marginal zone versus
follicular fate. IRF8 is important in the germinal center reaction
and class-switch recombination, whereas IRF4 is necessary for
plasma cell differentiation.23,24

IRF8 also directly influences the terminal differentiation of
natural killer (NK) and T cells. Defects in NK cell maturation and
function were reported recently in patients with IRF8 muta-
tions.25 Investigation of the Irf82/2 mouse has identified defects
in T-cell subset differentiation. IRF8 is required for TH1 polariza-
tion, CD81 effector memory T-cell differentiation,26,27 and gen-
eration of a TH1-associated subset of regulatory T (Treg)
cells,28 with conflicting reports of the influence of IRF8 on
TH17 polarization.29,30

Human primary immunodeficiencies resulting from single-
gene mutations offer unique opportunities to study the develop-
ment and regulation of immune cells in vivo. An infant with
impaired immunity to mycobacteria, viruses, and fungi because
of a homozygous K108E mutation of IRF8 was described previ-
ously.31,32 The human phenotype was broadly reminiscent of
Irf82/2 mice, except that cytopenia encompassed all DC and
monocyte subsets. Analysis was complicated by environmental
factors of disseminated BCG infection and cytoreductive therapy,
and wider cell-specific immune defects were not studied. Here we
describe 2 novel alleles of IRF8 in a compound heterozygous pa-
tient who was ambulatory between infective exacerbations. This
reveals a complex immunodeficiency syndrome comprising pro-
found hematologic defects with widespread immune
dysregulation.
METHODS

Study approval
The study was performed in accordance with the Declaration of Helsinki

and approved by the Newcastle and North Tyneside Research Ethics Com-

mittee. Written informed consent was obtained from participants before

recruitment.
Whole-exome sequencing
Details of whole-exome sequencing and analysis are described in the

Methods section in this article’s Online Repository at www.jacionline.org.
Serum autoantibody analysis across human protein

microarray
Sera from the patient and 2 age-matched control subjects were incubated on

HuProt human protein microarrays (CDI Laboratories, Baltimore, Md).

Details are available in theMethods section in this article’s Online Repository.
Luciferase reporter assays
Expression constructs encoding human PU.1, Spi-B transcription factor

(SPIB), BATF, and IRF1 have been described elsewhere.33,34 Human JUNB

and IRF8wild-type and mutated cDNA sequences preceded by a hemaggluti-

nin (HA) epitope tag were purchased from GenScript (Piscataway, NJ) and

cloned into pIRES2-EGFP expression vectors (Clontech, Mountain View,

Calif). Luciferase reporter constructs are described in the Methods section

in this article’s Online Repository. HeLa cells were seeded at

1 3 105 cells/well in 24-well plates with RPMI plus 10% FBS and

transfections were performed in triplicate with GeneJuice Transfection

Reagent (Novagen, Merck). Twenty nanograms of expression vector as

cotransfected with 150 ng of firefly luciferase vector and 1 ng of pRL-CMV
Renilla luciferase control. For each condition, the total amount of vector

transfected was normalized by inclusion of control pIRES2-EGFP empty vec-

tor. Luciferase activity was assayed 24 hours after transfection by using the

Promega luciferase dual assay system (Promega, Madison, Wis) and analyzed

on a Berthold Lumat LB Luminometer (Berthold Technologies, BadWildbad,

Germany). For each condition, luciferase activity was expressed relative to the

average reading from the empty vector transfections and normalized to 1.

Comparable expression of IRF8 wild-type and variant alleles by transected

cells was confirmed by means of immunoblotting for the HA epitope tag.
Electrophoretic mobility shift assays
Nuclear extracts were prepared from HeLa cells transfected with expres-

sion vectors for PU.1, SPIB, IRF1, BATF, JUNB, IRF8 WT, IRF8 R83C, or

IRF8 R291Q, as previously described.33 Double-stranded DNA probes end-

labeled with [g-32P] ATP using T4 polynucleotide kinase were incubated

with appropriate nuclear extract in the presence of poly(dI:dC; Amersham

Biosciences, Buckinghamshire, United Kingdom) for 30minutes at room tem-

perature. The probes are detailed in theMethods section in this article’s Online

Repository.
IRF8 protein analysis
HeLa cells were transfected with IRF8 constructs by using GeneJuice, as

described above. Twenty-four hours after transfection, whole-cell lysates were

prepared by using RIPA buffer (20 mmol/L Tris-HCl [pH 7.5], 150 mmol/L

NaCl, 1 mmol/L EDTA, 1% NP-40, and 1% sodium deoxycholate).

Alternatively, subcellular fractions were prepared with NE-PER Nuclear

and Cytoplasmic Extraction Reagents (Thermo Fisher Scientific, Waltham,

Mass), according to themanufacturer’s instructions.Whole-cell equivalents or

separated fractions were run on a 10% SDS-PAGE gel, transferred to

nitrocellulose, and probed with antibody to HA (Ab9110; Abcam, Cambridge,

United Kingdom), IRF8 (sc-13043; Santa Cruz Biotechnology, Dallas, Tex),

a-actin (clone AC-15; Sigma, St Louis, Mo), or a-tubulin (DMIA; Millipore,

Temecula, Calif) and subsequently detected by using horseradish peroxidase–

coupled secondary antibody and ECL reagent (Thermo Fisher Scientific).
Cell culture and functional assays
PBMCs were prepared by means of density gradient centrifugation, and

neutrophils were harvested from the red cell/granulocyte layer, according to

standard protocols. Skin from the patient and control subjects undergoing

mammoplasty surgery was processed, as previously described.35 Dihydro-

rhodamine oxidative burst was performed with Phagoburst (Glycotope

Biotechnology, Berlin, Germany). PHA responses were determined by means

of incorporation of tritiated thymidine after 6 days of culture. Whole-blood

cytokine assays were performed, as previously described.36

Cytokines and chemokines in serum and bronchoalveolar lavage (BAL)

fluid supernatants were measured with Luminex by using ProcartaPlex 34-

plex Immunoassay (eBioscience, San Diego, Calif) on Qiagen Liquichip 200

(Qiagen, Hilden, Germany) running Luminex 100 integrated system software

(version 2.3; Luminex, Austin, Tex). Standard curves were constructed to

interpolate analytes by using Procartaplex Analyst (version 1.0). The mean of

technical duplicates was recorded.

Intracellular cytokine measurement was performed on sorted T-cell

subsets. Fifty thousand cells in 200 mL of RPMI plus 10% FBS were

stimulated for 3 hours with 0.02 mg/mL phorbol 12-myristate 13-acetate

(Sigma-Aldrich) and 0.5 mg/mL ionomycin (Sigma-Aldrich) at 378C,
followed by 2 mg/mL brefeldin A (Sigma-Aldrich) for a further 3 hours.

Cells were washed and stained for intracellular cytokines after permeabiliza-

tion with FOXP3 staining buffer (eBioscience).
Flow cytometry and microscopy
PBMCs and skin mononuclear cell preparations or lymphoblastoid cell

lines were stained in aliquots of 1 to 33 106 cells in 50 mL of Dulbecco-PBS

with 2% FCS and 0.4% EDTA. Dead cells, usually less than 5%, were

http://www.jacionline.org
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D and E, Antibody reactivity in serum from the patient and 2 age-matched control subjects against a panel

of protein targets representing greater than 15,000 human genes (HuProt). Fig 1, D, Anti-immunoglobulin

heavy chain (IGH) or light chain (IGK and IGL) reactivity after quantile normalization across the 3 samples.

Fig 1, E, Nonimmunoglobulin antigen reactivity present discretely in the patient or control subjects.
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anti-CD15 to exclude abundant hypogranular neutrophils with high nonspecific antibody binding. The

Lineage (CD3, CD19, CD20, and CD56)2HLA-DR1 gate contains CD141 classical monocytes (gate 1),

CD142CD161 nonclassical monocytes (gate 2), CD1231 pDCs (gate 3), CD341 progenitors (gate 4),

CD1411 cDC1s (gate 5), and CD11c1CD1c1 cDC2s (gate 6). C, Flow cytometric profiling of blood, dermis,

and BAL fluid. Absolute counts (BD TruCount) in whole blood are shown. Lymphocytes were gated as

CD31 T cells, CD191 B cells, and CD32CD561 NK cells. Bars represent means 6 SDs of 18 control subjects.

Dermis bars represent means6 ranges of 3 healthy control subjects. BAL bars represent means6 ranges of

4 healthy control subjects. Gran, Granulocytes; Lymph, lymphocytes; Mac, macrophages. D, Enumeration

of LCs by means of immunofluorescence microscopy of an epidermal sheet from the patient stained with

anti-CD1a, anti–Ki-67, and 49-6-diamidino-2-phenylindole dihydrochloride (DAPI). Numbers of LCs and

Ki-671 proportions derived from the mean of 6 fields of view (at 320 or 340 magnification) for the patient

and 13 or 3 healthy control subjects, respectively. Bars represent means 6 SDs.
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FIG 4. Dysregulated granulopoiesis. A, Flow cytometric analysis of CD341 progenitors in PBMCs from a

control subject and patient (83C/291Q). Lineage2CD341 cells contain CD381CD101 BNK precursors (gate

1), CD102CD45RA2 common myeloid progenitor/megakaryocyte-erythroid progenitor (CMP/MEP; gate 2),

and CD45RA1 granulocyte-macrophage progenitor (GMP; gate 3). CD382 cells contain CD45RA1

lymphoid-primed multipotent progenitors (LMPP; gate 4), CD45RA2CD902 multipotent progenitors (MPP;

gate 5), and CD901 hematopoietic stem cells (HSC; gate 6). Numbers represent the percentage of cells in

the upstream gate or the percentage of CD341 cells. B, Serum cytokine analysis with Luminex in a patient

with the 83C/291Q mutation (black) compared with 10 control subjects (gray). The graph shows cytokines

outside the reference range (z score >_ 2). 1, Cytokine genes with an IRF8 binding site within 20 kb of the

transcription start site. C, Cathepsin G (CTSG) expression in neutrophils from a patient with the 83C/291Q

mutation and 3 control subjects analyzed by using the NanoString Human Immunology V2 panel (control

subjects are in gray and the patient with the 83C/291Q mutation is in black). D, Dihydrorhodamine oxidative

burst response of whole-blood neutrophils to PBS, Escherichia coli, and phorbol 12-myristate 13-acetate

(PMA). The patient with the 83C/291Q mutation is shown in black. Gray bars indicate means 6 SDs of 45
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excluded by using 49-6-diamidino-2-phenylindole dihydrochloride (Partec,

G€orlitz, Germany). Intracellular IRF8 staining was performed after fixation

and permeabilization, according to the manufacturer’s instructions (eBio-

science). Analysis was performed with an LSRFortessa X-20 and sorting

with a FACSAria III (BD Biosciences, San Jose, Calif). Data were processed

with FlowJo software (Tree Star, Ashland, Ore). Absolute cell counts were ob-

tained with TruCount tubes (BD Biosciences) with 200 mL of whole blood

with 900 mL of lysis buffer. Fluorescence microscopy of epidermal sheets

and cytospin and Giemsa staining of PBMCs was performed, as previously

described,36 with an Axioplan 2 microscope (Carl Zeiss, Oberkochen,

Germany) with an EC Plan-Neofluar340 NA 0.75 lens. Antibodies are listed

in Table E1 in this article’s Online Repository at www.jacionline.org.

Deep sequencing of the B-cell IgH complementarity-

determining region 3
Peripheral blood B cells (>60,000) from patients with the 83C/291Q and

K108E mutations and 3 age-matched controls were sorted by means of

fluorescence-activated cell sorting to greater than 95% purity, and genomic

DNAwas extracted by using standard methods. High-throughput sequencing

of the B-cell receptor heavy chain (IgH) complementarity-determining region

3 (CDR3) was undertaken by using the Adaptive Biotechnologies immuno-

SEQ Assay (www.adaptivebiotech.com). Further details are available in the

Methods section in this article’s Online Repository.

Statistical analysis
Graphs were plotted with Prism software (version 5; GraphPad Software,

La Jolla, Calif) and means, SDs, z scores, and Student t test results were

calculated within this software. For gene ontology analysis and B-cell receptor

IgH gene use, R version 3.3.0 was used, together with the bimaRt, GOstats,

and ggplot2 packages.
RESULTS

Immunodeficiency
Awhite male subject born to nonconsanguineous parents had an

early history of recurrent severe viral respiratory tract infection with
influenza H1N1, rhinovirus, and mycoplasma, often requiring
hospitalization and ventilatory support (Fig 1, A, and see the
Methods section in this article’s Online Repository for clinical de-
tails). Developmental delay had been noted, andmultifocal bilateral
calcification was present at age 3 years (Fig 1, B). Total CD41 cell,
CD81 T-cell, B-cells, and NK cell counts were normal, and T-cell
PHA responses were intact (see Table E2 and Fig E4, B, in this
article’s Online Repository at www.jacionline.org). IgA deficiency
was noted during infancy (see Table E3 in this article’s Online
Repository at www.jacionline.org). Whole-blood cytokine assay
revealed absent IL-12 production with reduced IFN-g, IL-6,
IL-10, and TNF-a levels in response to BCG, LPS, or LPS and
IFN-g (Fig 1,C). No antinuclear antibodieswere identified in serum
by using BioPlex 2200 screening, but analysis across a human pro-
tein microarray (HuProt), representing more than 15,000 genes (see
Table E4 in this article’s Online Repository at www.jacionline.org),
revealed a striking reactivity against immunoglobulin heavy and
kappa and lambda light chains compared with 2 age-matched con-
trol subjects (Fig 1,D). A number of discrete non–immunoglobulin-
control subjects. MFI, Mean fluorescence intensity.

DR2CD45lowCD1231 cells. Absolute count (BD TruC

means6 SDs of 18 control subjects. F, Heat map showi

from control mean and z score of 2 or greater between

subjects (n 5 3). Open circles, Genes differentially regu

IRF8. Pie charts show gene ontology (GO) terms signific

of differentially regulated transcripts by using the nC

universe.
targeted antibodies were identified in the patient, and a smaller
number were identified in control subjects (Fig 1, E).
Compound heterozygous IRF8 mutations: R83C and

R291Q
Whole-exome sequencing of the patient and both parents

identified 2 novel missense mutations in coding regions of
IRF8: c.247C>T; p.Arg83Cys and c.872G>A; p.Arg291Gln
(Fig 2, A). Four genes with biallelic variants were identified. Of
these, IRF8 had the highest combined annotation-dependent
depletion scores and was most biologically plausible (see Table
E5 in this article’s Online Repository at www.jacionline.org).
Both IRF8 mutations were absent from ExAC, dbSNP147,
EVS, the NHLBI GO Exome sequencing project, and gnomAD
databases and 116 locally sequenced samples. Mutated residues
were highly conserved between IRF family members and IRF8
orthologs (Fig 2, B).

In luciferase reporter assays neither R83C nor R291Q activated
a derivative of the PSMB8 promoter EICE in the presence of PU.1
or SPIB, and both were unable to repress IRF1-mediated expres-
sion through the TAPASIN promoter ISRE (Fig 2, C). However, a
difference was observed in reporter constructs containing the
IL10 AICE activated by BATF/JUNB. This element is repressed
by wild-type IRF8. Here the R83C variant was inactive, but
R291Q was comparable with wild-type IRF8. These results
were consistent with binding patterns seen in electrophoretic
mobility shift assays (EMSAs), where only wild-type IRF8 bound
to DNA in the presence of the appropriate cofactor, except for the
AICE probe, which retained R291Q binding in the presence of
BATF/JUNB (Fig 2, D). Total IRF8 protein expression was
normal in patients’ lymphoblastoid cell lines and whole-cell
lysates of transfected HeLa cells (Fig 2, E and F), but in cellular
fractionation experiments R83C was unable to translocate to the
nucleus (Fig 2, G). R291Q showed a nuclear-cytoplasmic
distribution similar to wild-type protein.
Monocyte and DC deficiency with preserved tissue

macrophages
Accurate monocyte and DC profiling was possible only after

exclusion of abundant CD151 granulocytes in the PBMC fraction
(Fig 3, A). This revealed a profound depletion of CD141 classical
monocytes, CD161 nonclassical monocytes, CD1231 pDCs,
CD1411 cDC1s, and CD1c1 cDC2s (Fig 3, A-C, and see Fig
E1 in this article’s Online Repository at www.jacionline.org).
As recently reported, there was a relative excess of CD56bright

immature NK cells and depletion of CD56dim mature NK cells
(see Fig E1, D). In the dermis CD141 monocytes-macrophages,
CD1411 cDC1s, and CD1c1 cDC2s were similarly decreased,
whereas lymphocytes and autofluorescent dermal resident
macrophages were preserved. Elective BAL fluid was also
depleted of DCs and CD141 and CD161monocyte-derived cells,
E, Basophils (Baso) identified as Lineage2HLA-

ount) in whole blood is shown. Bars represent

ng differential gene expression of 1.5 log2 or greater

the patient with the 83C/291Q mutation and control

lated by interferon; solid squares, genes bound by

antly (P < .01) enriched after hypergeometric testing

ounter Human Immunology V2 panel as the gene
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but side-scatter (SSC)hiCD45hiCD2061 alveolar macrophages
and SSClowHLA-DR2 lymphocytes remained in normal
numbers. BAL fluid CD151 granulocytes were approximately
10-fold more abundant than in control subjects (Fig 3, C). Prolif-
erating epidermal Langerhans cells were also intact (Fig 3, D).
BAL fluid cytokine levels were also grossly disturbed (see Fig
E2, A, in this article’s Online Repository at www.jacionline.org).
Dysregulation of granulopoiesis
Myeloproliferation consisted of abundant hypogranular

neutrophils with reduced density, low light SSC properties, and
reduced mRNA expression of a number of primary and secondary
granule components (Fig 3, A, and see Fig E2, B). CD341

progenitors, including CD38loCD45RA2CD901 hematopoietic
stem cells, were consistently mobilized into the peripheral blood
(Fig 4, A). Myelopoietins were increased in serum, including the
products of several IRF8-bound genes (IL1RA, PDGFB, CCL4,
CCL5, IL1B, and IL10), and expression of cathepsin G (CTSG)
was increased (Fig 4, B and C). The neutrophil oxidative
respiratory burst, tested in the absence of corticosteroid therapy,
was reduced in frequency in response to Escherichia coli and
reduced in intensity (mean fluorescence intensity) in response
to both E coli and phorbol 12-myristate 13-acetate (Fig 4, D).
The patient was also basopenic (Fig 4, E). Many transcripts
expressed in neutrophils were differentially regulated compared
with those in healthy control subjects, including a number of
interferon-regulated and IRF8-bound genes (Fig 4, F, and
see Tables E5 and E6 in this article’s Online Repository at
www.jacionline.org).

Dysregulation of lymphoid gene expression
A total of 125 transcripts were differentially regulated in sorted

lymphoid cells (73 upregulated and 54 downregulated; see Fig
E3, A, in this article’s Online Repository at www.jacionline.
org). A core set of 11 genes varied in expression in all lineages.
These included upregulation of the antibacterial protein lactofer-
rin, NFIL3, and CCR1 and downregulation of TNFAIP3, CCL3,
CCL4, HLA-DRA, CXCR4, IRF1, CDKN1A, and DUSP4. More
than half of all differentially expressed genes showed
interferon-dependent transcription, and approximately a third
(45/125) were IRF8 bound according to homology mapping of
ChIP-seq data in the mouse.4 Within the NanoString code set, a
number of pathways were significantly differentially regulated
(see Fig E3, B, and Table E6). The NanoString panel contained
82 of the DEGs identified by RNA sequencing in the patient
with the K108E mutation. Of these, 36 were differentially ex-
pressed by both patients, and 15 were IRF8 bound (see Table E7).
Impairment of CD81 memory differentiation and

TH1/TH17 polarization
T-cell numbers (CD41, CD81, and Treg cells) and PHA

responses were normal (see Fig E4, A and B, in this article’s
Online Repository at www.jacionline.org). CD4 memory
differentiation was normal (see Fig E4, C), but
CD81CD45RA2CD27- effector memory cells were reduced in
number in blood and BAL fluid (Fig 5, A and B,37 and see
Fig E4, D).38 TH1 and TH17 differentiation was impaired and
TH2 differentiation was increased by cytokine secretion and
intracellular staining (Fig 5, C and D). Production of GM-CSF
by CD41 and CD81 T cells was increased (Fig 5, C), but
CD81 T cells also produced significantly less IFN-g (Fig 5, D).
T-bet and signal transducer and activator of transcription 1
(STAT1) expression were also decreased in bulk sorted T cells
(Fig 5, D). CXCR3 was virtually undetectable (<2% expression)
on CD41 T cells, CD81 T cells, and Treg cells isolated from
the blood and BAL fluid of the patient (Fig 5, E, and see
Fig E4, E).
Impaired B-cell maturation and B-cell receptor

diversification
Although numbers of CD381CD272 transitional B cells and

CD38hiCD271 plasmablasts were normal, numbers of both
IgD1CD271 and IgD2CD271 memory cells were reduced
(Fig 6, A and B).39 Total IgG, IgM, and IgE levels were normal,
but IgA and IgG2 levels were reduced (Fig 6, C). Although the
patient mounted normal specific IgG responses to childhood
vaccines, antibodies to HiB and Pneumococcus species were
not durable and decreased to nonprotective levels by the age of
3 years (see Table E3). Deep sequencing of the immunoglobulin
heavy chain (IgH) CDR3 was performed on B-cell DNA isolated
from both patients with the R83C/R291Q and those with the
K108E/K108E mutations. Clonality and successful template
rearrangement were normal (see Fig E5, A and B, in this article’s
Online Repository at www.jacionline.org), but CDR3 length was
shorter in both productive and nonproductive templates of the
patients (Fig 6, D, and see Fig E5, C and D), which is consistent
with reduced numbers of nontemplated N1 and N2 nucleotide
insertions (Fig 6, E). Both patients had proportionally fewer
productive templates that had undergone somatic hypermutation
(Fig 6, F) and a truncated distribution of somatic hypermutation
counts with fewer mutated bases per template (Fig 6, G).
A survey of VH gene expression identified restricted gene use
compared with age-matched control subjects (Fig 6, H).
DISCUSSION
This report describes the hematologic defects and immune

dysregulation caused by compound heterozygosity of 2 new
defective IRF8 alleles, R83C and R291Q, the latter orthologous
to R294C, a hypomorphic mutation responsible for the BXH2
mouse phenotype. Similar to the previously reported child carrying
IRF8K108E/K108E, the patient, who was studied in the absence of
active infection, had granuloproliferation with profound DC and
monocyte deficiency. Further analysis revealed dysregulation of
B, NK, and T cells. Although it cannot be proved that lymphoid
defects are due to intrinsic loss of IRF8, a number of findings are
in accordance with known direct effects of IRF8. These observa-
tions shed new light on the mechanisms of immunodeficiency in
patients with biallelic IRF8 mutations, which now include
maturation and functional deficits of NK cells; deficiency of
TH1, TH17, and CD8 effector memory responses; and blunted
somatic hypermutation, class-switching, and memory B-cell
formation.

At the phenotypic level, analysis of this compound
heterozygous patient suggests that susceptibility to viral
infection, myeloproliferation, and developmental delay associ-
ated with cerebral calcification are consistent features of biallelic
IRF8 mutation because they were seen similarly in the patient
with homozygous K108E mutation.31 The previous case also
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stimulation. Bars represent means 6 95% CIs. D, Intracellular cytokine production by purified CD41 and
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FIG 6. Reducedmemory B-cell counts with impaired somatic hypermutation. A, Flow cytometric analysis of

B-cell phenotype in the patient with 83C/291Q mutations compared with an age-matched control subject.

The left column shows populations defined by IgD and CD27: naive (gate 1), nonswitched memory (gate

2), switched memory (gate 3), and CD27 memory (gate4). The right column shows populations defined

by CD38 and CD27 to identify transitional (gate 5), naive mature (gate 6), mature activated (gate 7), memory

(gate 8), and plasmablastic (gate 9) cells. B, PB B-cell subsets defined by CD27 and IgD expression as a pro-

portion of total B cells from the patient with 83C/291Q mutations (gray outlined dots) and 3 local age-

matched control subjects (gray triangles) plotted against an age-specific (18 months to 4 years) normal

range.39 Bars represent means and ranges. C, Serum immunoglobulin isotype levels (IgG, IgA, IgM, and

IgE) over time. Horizontal lines represent upper and lower limits of normal. The right plot shows serum

levels of IgG subtypes at age 6 months. Gray bars show the reference range. D-H, B-cell receptor (BCR)

IgH CDR3 region sequencing of genomic DNA from purified PB B cells (Adaptive Biotechnologies’ Immuno-

SEQ Assay) from the patient with the 83C/291Qmutations (red), the patient with the K108Emutations (blue),

and 3 age-matched control subjects (gray). Fig 6, D, Summary of template generation showing the percent-

age of productive (Prod), out-of-frame (OoF), or stop templates generated. Mean CDR3 length (nucleotides;

Fig 6, E) and mean number of inserted untemplated nucleotides (N1 and N2; Fig 6, F) in out-of-frame and in-

frame rearrangements. Fig 6,G, Percentage of templates with 1 or more mutated bases. Fig 6, H, Frequency

of mutated bases per in-frame template expressed as the percentage of total mutations. Bars represent

means and SDs (Fig 6, E-H). Statistics were calculated by using t tests as follows: *P < .05 and **P < .01.
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indicates high susceptibility to mycobacterial infection. Although
the compound heterozygous patient was less critically ill, having
not been exposed to BCG vaccine in infancy, immunodeficiency
was severe enough to warrant hematopoietic stem cell transplan-
tation at age 4 years.

The novel IRF8 variants, affecting conserved residues, were
functionally defective in vitro. R83, which is in the DNA-
binding domain of the protein, forms hydrogen bonds with the
guanine of the GAAA core.40,41 R83 belongs to one of the 2 basic
residue clusters that form the bipartite nuclear localization signal
of IRF8,42 explaining the defective nuclear translocation of
R83C in cellular localization assays, a feature shared with
K108Emutant protein.32 R291 is one of only 12 invariant residues
in the IADs of IRFs. Crystal structures of IRF3 and IRF5 show that
this residue, lying between helix 2 and helix 3, directly interacts
with Ets factor and IRF partners in the formation of DNA-
binding dimers.43 Mutation of the orthologous murine residue
294 in the BXH2 mouse blocks the function of IRF8 in comple-
mentation assays and affects the ability of IRF8 to interact with
other TFs through the IAD.44 Luciferase reporter assays and
EMSAs showed that both variants were unable to activate EICE
with PU.1 or SPIB and were unable to compete with IRF1 at the
ISRE. R83C was unable to bind to BATF/JUN at the AICE but
R291Q maintained activity. Although this suggests that R291Q
might function effectively as a partner of BATF to facilitate the ter-
minal stages of cDC1 development,21 this cannot be interrogated
because the failure to coactivate SPI1/PU.1-directed genes blocks
DC andmonocyte development at an earlier stage. Taken together,
the molecular characteristics of the mutations and the phenotypic
similarities with the patient carrying null K108E mutations sug-
gest that compound heterozygous R83C and R291Q mutations
result in IRF8 activity of less than the threshold for function.
Because IRF8 contains a superenhancer region, gene dose is likely
to be critical for normal function.

The mechanism of granuloproliferation in patients with IRF8
deficiency might be multifactorial, with increased production and
mobilization but reduced apoptosis of progenitors and neutro-
phils. First, through cooperation with PU.1 and inhibition of
CEBPA at the molecular level, IRF8 is responsible for the
balanced generation of myeloid cells in the granulocyte-
monocyte progenitor compartment.45 Spontaneous granuloprolif-
eration caused by the unopposed action of CEBPA is a consistent
finding in both patients with the biallelic IRF8 mutations, and
BXH2 and Irf82/2 mouse models.

Second, it was observed that myeloid progenitors, including
hematopoietic stem cells, were mobilized into the blood.
CXCL12/CXCR4-mediated retention in the bone marrow might
have been attenuated because of increased expression of
cathepsin G, which degrades CXCL12, and reduced expression
of CXCR4, an IRF8 target gene.46,47 Levels of growth factors
known tomobilize progenitors, including stem cell factor,48 hepa-
tocyte growth factor,49 and vascular endothelial growth factor,50

were also increased.
Finally, Irf82/2 progenitors are hyperresponsive to granulocyte

colony-stimulating factor51 and defective in their inability to
upregulate BAX and Fas ligand2mediated apoptosis during
termination of emergency myelopoiesis.52,53 In keeping with
this, apoptosis-related genes were downregulated in the patient’s
neutrophils.

The expanded neutrophil population was comprised of cells
reminiscent of those seen in myelodysplasia; hypogranular with
low-light SSC properties,54 defects in primary and secondary
granules,55 and defective respiratory burst responses.56 Excessive
granulopoiesis appeared to contribute to respiratory
complications. At rest, the BAL fluid contained high numbers
of granulocytes associated with increased inflammatory cytokine
and chemokine levels, including TNF-a, IL-8, CCL2, CCL3,
CXCL12, IL-6 and IL-1b. During respiratory tract infection,
treatment with glucocorticoids exacerbated the neutrophil
response, often leading to a clinical deterioration, whereas
treatment with DNAse was effective, which is consistent with
lysis of excessive extracellular neutrophil DNA.57 In contrast to
the neutrophils, basophils were reduced, which is in keeping
with a known function of IRF8.58

A much broader cytopenia encompassing all monocytes and
DCs was seen in both biallelic human subjects compared with
the full Irf8 knockout mouse, which still retains somemonocytes
and pDCs and has intact cDC2s.20 The homozygous R294C
BXH2 mouse and heterozygous Irf8 knockout mouse are only
deficient in cDC1s, which require IRF8 for terminal
differentiation.20 Such selective defects have not yet been
observed in human subjects. However, other alleles of IRF8
have been described that do not impair DC and monocyte
development to the same degree. Notably, the heterozygous
T80A mutation, although described as dominant negative in re-
porter assays, had a very modest effect on DC development with
apparent loss of cDC2s.31 This pattern is unexpected based on
mouse models in which cDC2s are always preserved, but the
appearance of atypical CD11c1CD1c2 cells in the human
subject suggests that T80A disturbs hematopoiesis by an
allele-specific mechanism that has not yet been elucidated.
Additional IRF8 variants recently described by Mace et al25

also showed more subtle deficiency in monocytes and DCs but
pronounced effects on NK cell development. These variants
were localized to the IAD (P224L and A201V). Neither allele
was compromised in reporter assays by using the EICE with
PU.1 or SPIB or the ISRE with IRF1, suggesting that the
loss of protein-protein interactions was responsible for
lineage-restricted functional deficits. It is highly likely that other
IRF8 variants will come to light with allele-specific effects on
hematopoiesis and immunity. Precise interspecies mapping
might not always be possible because of the complexity of
interactions between IRF8, IRF4, and other TFs.

Preservation of Langerhans cells and macrophages in states of
severe monocytopenia, such as GATA-2 and IRF8 deficiency,
remains a key demonstration of the ability of human tissue
macrophages to survive without continual replenishment by
monocytes.31,59 These observations were extended to the alveolar
space, which contained large numbers of macrophages. At least
partial preservation of macrophages and Langerhans cells is
seen in the BXH2 and Irf82/2 mouse models,60,61 although func-
tional deficits are apparent.4,12,62 The contribution of macrophage
dysfunction to the human phenotype of IRF8 deficiency remains
to be determined, in particular whether the developmental delay
and intracerebral calcification seen in patients bearing
IRF8K108E/K108E and IRF8R83C/R291Q are related to the reported
role of Irf8 in murine microglial development and function.63,64

There was no evidence for disordered calcium metabolism, but
we cannot exclude infectious complications or dysregulated
interferon signaling as contributors to this phenotype.

Lymphocyte development and function in the setting of IRF8
deficiency can be altered through both direct cell-intrinsic effects
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and indirect effects because of defective hematopoiesis and
external influences, such as infection. Analysis of the lymphoid
compartment showed transcriptomic dysregulation with
phenotypic and functional defects in NK, T, and B cells.

Transcriptomic analysis of purified lymphocyte populations
revealed enrichment within upregulated genes for response to the
pathogen pathways (LTF, CXCL1, CD27, and TNFRSF) and
immune response (NFIL3 and CCR1), with downregulated genes
involved in cytokine signaling (including IFN-g), cytokine
production (CCL3 and CCL4), Toll-like receptor (TLR) signaling
(including TLR3, TLR4, and TLR5), cell activation (HLA-DR),
and regulation of cell cycle and apoptosis (DUSP4 and
CDKN1A). Aberrations in TNF signaling were apparent with
upregulation of both TNF and TNF receptor superfamily
members but universal downregulation of IRF8-bound
TNF-induced TNFAIP3, a negative regulator of cytokine-
mediated immune and inflammatory responses. IRF1 expression
was also reduced, further contributing to loss of gene expression
governed by the IRF8/IRF1 regulome.4

Defects in NK cell maturation and function were reported
recently as an example of more widespread immune
dysregulation caused by IRF8 mutation by using data from the
IRF8K108E/K108E and IRF8R83C/R291Q patients. Both show an
increased proportion of immature CD56bright NK cells, suggesting
impaired NK maturation. Defective NK cell–mediated
cytotoxicity was also reported in a patient with mutations in the
IAD region (201V/224L) who had severe EBV infection without
significant DC or monocyte deficiency.25

In the T-cell lineage profound defects in TH1, TH17, and CD8
effector memory development were observed, together with
almost complete absence of CXCR3, the chemokine receptor
for CXCL9, CXCL10, and CXCL11, which plays a vital role in
the positioning of activated T cells in tissues.65 IRF8 is
upregulated during T-cell activation,28 and experiments with
Irf82/2 antigen-specific T cells indicate a number of
cell-intrinsic regulatory roles for IRF8, including integration of
g-chain cytokine and T-cell receptor signaling pathways,
secretion of IFN-g and cytotoxicity.26 IRF8 also regulates
STAT1 through mutual promoter binding66,67 and represses the
GM-CSF gene in T cells.68 In Itgax (CD11c) conditional Irf8
knockouts, T-cell dysfunction was proposed to be largely
extrinsic through the loss of cDC1, although recombination was
also observed in lymphoid cells, which express CD11c when
activated.69 Evidence for an intrinsic role of IRF8 in TH17
differentiation is conflicting.69 It is likely that the strength of
T-cell receptor signaling is compromised significantly both by
the lack of DCs and intrinsic defects including attenuated
STAT1-mediated signaling, especially critical for IFN-g–driven
TH1 differentiation. Both contribute potentially to the failure of
TH1, TH17, and CD8 effector memory differentiation and lack
of CXCR3 expression, leading to compromised peripheral tissue
T-cell homeostasis. Transcriptomic analysis of purified T cells
showed global downregulation of pathways involved in cell
signaling, cytokine production, and cell activation, which is
consistent with gene expression analysis of whole PBMCs by
RNA sequencing in the IRF8K108E/108E patient.32

In B cells lineage-specific knockout in mice indicates that IRF8
is required at several stages of B-cell development, including
maintenance of central tolerance in the bone marrow,
differentiation of follicular B cells, germinal center formation,
antibody affinity maturation, and memory cell formation.7,23

Correlates of these intrinsic effects were observed in humans. In
both IRF8R83C/R291Q and IRF8K108E/K108E patients, the extent and
complexity of somatic hypermutation was reduced, a factor
directly associated with serious respiratory infection in patients
with commonvariable immunodeficiency.70 Analysis of CDR3 se-
quences in both patients compared to age-matched control subjects
showed shorter lengths with fewerN1 andN2 insertions. Although
terminal deoxynucleotidyl transferase, which is responsible for N
insertions, is not known to be a direct target of IRF8, impairment is
seen in other conditionswith perturbedhematopoiesis and aberrant
B-cell development.71 The restricted VH gene repertoire might
also reflect abnormal V(D)J recombination within the bone
marrow72 or represent defective secondary receptor editing.73

Although shorter in-frame CDR3 regions were appropriately
selected for compared with out-of-frame sequences, suggesting
intact central B-cell tolerance,74 the presence of widespread
anti-immunoglobulin reactivity across a human proteome
microarray was striking in the serum of the patient carrying
IRF8R83C/R291Q compared with age-matched control subjects.
The clinical significance of autoreactive antibodies in this age
group is uncertain, but in the absence of autoimmune clinical
symptoms, the anti-immunoglobulin activity might represent an
appropriate response to recurrent infections.75Recent data indicate
that IgA deficiency might be explained by a lack of DC–B-cell
interaction in Peyer patches.76

In summary, this report defines 2 new variants of IRF8
associated with defective function in a compound heterozygous
patient. Profound cytopenia of DCs and monocytes in the context
of granuloproliferation was confirmed as a consistent feature of
immunodeficiency compounded by intrinsic and extrinsic
dysregulation of lymphoid cell development, maturation, and
responses. These observations are broadly consistent with the
notion that IRF8 controls a set of multilineage functions that
hone protective immunity to viral infection and intracellular
pathogens. These range from governing the hematopoietic
development of cross-presenting cDC1s, interferon-producing
pDCs, and monocytes, to the fine-tuning of NK maturation, TH1
and TH17 cell polarization, effector memory development, and
durable production of high-affinity class-switched antibody.
This is achieved through multilevel and multilineage control of
gene expression, the failure of which is mirrored by a complex
syndrome of immunodeficiency.
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Key messages

d Compound heterozygous IRF8 mutations R83C/R291Q
are described in a patient with frequent viral respiratory
tract infections.

d Immunodeficiency is due to DC deficiency and monocyto-
penia with myeloproliferation and widespread immune
dysregulation.
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