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Abstract 

The kinetics of loop formation, i.e., the occurrence of contact between two atoms of a 

polypeptide, remains the focus of continuing interest. One of the reasons is that 

contact formation is the elementary event underlying processes such as folding and 

binding. More importantly, it is experimentally measurable and can be predicted 

theoretically for ideal polymers. Deviations from single exponential kinetics have 

sometimes been interpreted as a signature of rugged, protein-like, free energy 

landscapes. Here we present simulations, with different atomistic models, of short 

peptides with varied structural propensity, and of a structured protein. Results show 

exponential contact formation kinetics (or relaxation) at long times, and a power law 

relaxation at very short times. At intermediate times a deviation from either power law 

or simple exponential kinetics is observed that appears to be characteristic of 

polypeptides with either specific or non-specific attractive interactions, but disappears 

if attractive interactions are absent. Our results agree with recent experimental 

measurements on peptides and proteins and offer a comprehensive interpretation for 

them. 

 

Introduction 

The event of encounter for two atoms of a polypeptide chain is a necessary step for 

the formation of a persistent intramolecular interaction. It sets a lower limit for the 

time it takes for a protein to fold and more generally for molecular recognition to 

occur. The kinetics of formation of a contact between any two atoms of a polypeptide 

is also an important probe of its dynamics, which is relevant for function. This is true 

in general and particularly relevant for proteins whose function is not strictly related 

to their ability to populate a structurally well-defined state.1-3  
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Efforts to characterize the kinetics of formation of a contact between two atoms or 

group of atoms, and most frequently the two ends of a polypeptide chain, date back 

two decades to when time-resolved spectroscopy was used to monitor heme 

absorption following photodissociation of the carbon monoxide complex of denatured 

reduced cytochrome c.4 More recently, generally applicable methods for probing 

contact formation have been used to directly measure loop formation in unfolded 

polypeptide chains.5 One particularly promising experimental strategy exploits triplet-

triplet energy transfer; with a suitable synthetic triplet donor and acceptor the transfer 

of energy is a diffusion-limited process that occurs at contact. Triplet-triplet energy 

transfer has also been used between tryptophan and cysteine but the reaction is 

slow and rates cannot be recovered without referring to a largely uncertain model of 

the quenching kinetics.6 

The fraction of unreacted chains has been repeatedly reported to decay 

exponentially in time.7-8 More recently, Kiefhaber and coworkers used diffusion-

limited triplet-triplet energy transfer to probe contact formation over six orders of 

magnitude in time, ranging from picoseconds to microseconds.9 Their results 

revealed processes occurring on different time scales that indicate a hierarchy of 

different peptide motions on the free energy surface. Non-exponential decay of the 

population of open (contact not yet formed) states on the sub nanosecond time scale 

was interpreted as a signature of motions within local wells on the energy landscape. 

Within these wells peptides can form loops by undergoing local motions without 

having to traverse significant barriers. Exponential kinetics observed on longer, 

nanosecond time scales were attributed to chain diffusion and the exploration of a 

greater proportion of conformation space through larger-scale motions. Their results 

indicate similar properties, at least locally, for the free energy landscapes of native 

proteins and unfolded polypeptide chains. Local energy minima reduce the size of 

accessible conformation space and accelerate the conformational search for 

energetically favorable local intrachain contacts. 

While the methods mentioned above probe an equilibrium population of polypeptide 

chains, Volk and coworkers have exploited a technique where two residues of a 

polypeptide chain are chemically modified and joined together by a disulfide bond.10-

11 An aryl disulfide chromophore constrains the chain in a conformation away from 

equilibrium and can be rapidly photolysed (in less than 200 fs). The resulting thiyl 

radicals either undergo geminate recombination or diffuse apart as the polypeptide 

chain relaxes to equilibrium. The geminate pair is assumed to undergo diffusion-

controlled recombination, and the radical population has been observed to decay 
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with non-exponential kinetics over a time range from picoseconds to microseconds. 

The same result has been recently shown to hold for a protein, which was 

constrained in a non-native conformation before a disulfide bond between two 

residues was photolysed.12-13  

We were inspired by these experimental results that characterize the kinetics for loop 

formation, and intrigued to look at the relatedness of the two methods employed. 

Here we recapitulate existing theory and demonstrate the equivalence of these two 

experimental strategies, i.e., one where the time it takes for a loop to form is 

measured as an average for equilibrium conformations, and one where the loop 

formation time is measured selecting initial conformations where the loop is present. 

We also design, perform and analyze molecular dynamics simulations to interpret 

and reconcile the somewhat unexpected experimental results. 

Atomistic simulation has been valuably used in the past to address the kinetics of 

loop formation in peptides.14 One important use of computational models and 

simulation is to verify experimental assumptions and explore alternative ones.6, 15 At 

the same time, experiments that probe the formation of contacts on short timescales 

(tens of nanoseconds for short unstructured peptides) are directly accessible by 

simulation and are a valuable tool for validating a range of assumptions.6, 16 

Our simulations have been performed using a number of different models. A united-

atom, transferable model was used to simulate short unstructured peptides; a variant 

of this, where attractive interactions are switched off has also been used. Another 

model used here is coarse-grained and native-centric, representing a protein with a 

given native structure on a minimally frustrated, funneled landscape. The polypeptide 

models have been chosen so that the distribution of end-to-end contact formation 

can, in all cases, be sampled rigorously. For longer or structured peptides and 

proteins, however, brute-force, sufficiently long equilibrium simulations may be 

practically unfeasible; the distributions of times of contact formation between the two 

ends of the chain converges particularly slowly, since such events are rare and 

become exponentially less frequent with chain length. Advanced sampling 

approaches may be used, however, these should be carried out in such a manner 

that the kinetics are preserved.17 

Our results show, for all models considered, exponential kinetics of loop formation on 

long timescales. On short timescales our simulations replicate the remarkable 

deviation from simple exponential kinetics reported in advanced experimental 

studies. These “short” timescales can effectively extend for up to four orders of 
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magnitude in time, or longer depending on the system. Results are discussed in the 

context of the experimental finding that non-exponential kinetics persist to the 

millisecond timescale as recently reported by Volk and collaborators from non-

equilibrium measurements13 and the non-exponential kinetics observed by Kiefhaber 

and coworkers on timescales of 10 ns or less from equilibrium measurements.9 We 

conclude that both sets of measurements probe effectively the free energy landscape 

of the polypeptide, and are likely not artifacts related to the finite speed of the 

chemical changes being probed or the fact that the quenching rate may be 

dependent on the distance between the two reacting groups.6 We also conclude that 

the non-exponential kinetics observed can be related to the existence of a hierarchy 

of states due to the presence of attractive intramolecular interactions. The 

interactions are not necessarily native-like, and thus are not the signature of a 

funneled, protein-like free energy landscape. We also show that if long-range and 

attractive interactions are absent, the kinetics of loop formation expected for an ideal 

polymer is recovered; thus non-native interactions provide, at least in part, an 

alternative explanation for the non-exponential power law kinetics observed over a 

broad range of times.  

 

Theory and methods 

If �	is the distance between the first and the last atom of a polypeptide chain, the two 

ends are in contact if � < �∃ , where �∃  is the reaction radius. Experimentally �∃ 

depends on the technique used, and it is generally assumed to correspond to van 

der Waals contact between the reactive groups engineered at the two ends of the 

polypeptide chain (the results below also hold if the reactive groups are anywhere in 

the polypeptide chain). We define �&∋ �  as the number of molecules, initially at 

equilibrium, for which the two ends have not been in contact after a time � and were 

initially not in contact at � = 0. Likewise, 	�+,−. �  is the number of molecules for 

which the two ends have not been in contact after a time � but were in contact at � =

0, i.e., the initial conformation is a ring. 

For both “equilibrium” and “ring” quantities the surviving fraction of unreacted 

molecules, � � = �(�)/�(0)  is their normalized counterpart. The following 

remarkable relation (see supplementary information for both a rigorous derivation 

and a schematic illustration based on simulation analyses) holds between �&∋ �  and 

�+,−. � : 
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A time-dependent rate constant, �+,−. � , can be defined for the decay in the survival 

of extended polymer populations.18 The definition of �+,−. � 	is based on the rate 

equation 
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The average end-to-end contact formation time for an equilibrium ensemble of initial 

conditions is: 

 

	�&∋ = ��	�&∋ �
3

4

 

 

If �&∋ � = exp	(−��), then �+,−. � = � and � = 1/�. 

In Table 1 are reported expressions for �+,−. �  for different functional forms for 

�&∋ � . In the supplementary information we report the same quantities for a broader 

set of functions, which have been previously used to fit the kinetics of loop formation. 

	

 ��� �  ����� �  ����� �  

Single exponential �ΚΛΜ �ΚΛΜ � 

Power law 1 − ��Λ ���ΛΚΠ 1 − �

�
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Stretched exponential �Κ(ΛΜ)
Θ
 ��Κ(ΛΜ)

Θ
(��)∃

�
 ��(��)∃ΚΠ −

� − 1

�
 

Table	1.	Instantaneous	rate	of	ring	formation	����� � 	for	different	forms	of	the	survival	
probability	of	the	open	conformation	��� � .	

 

Molecular dynamics simulations of short polypeptides have been performed with two 

different molecular models. The most “chemically accurate” model considered here is 

based on the united atom CHARMM19 model19 together with a continuum model for 

the solvent.20 In this model, polar hydrogen atoms (e.g. in N–H groups) are treated 

explicitly whereas the non-polar hydrogen atoms (e.g. in methylene or methyl 

groups) are grouped together as a single entity with the attached heavy atom. 

Langevin dynamics has been used with a collision frequency of 3 ps-1, corresponding 

to a friction coefficient about one order of magnitude lower than water but still in a 

high friction regime, i.e., such that timescales depend linearly on friction and 

mechanisms are not affected.21 Simulations were performed at a temperature of 300 

K, with a timestep of 2 fs and were all at least 32 µs long. The second model, a soft-

sphere (SS) model,22 was also used. This model lacks electrostatics and solvation 

contributions, and the Lennard-Jones interactions are smoothly switched off 

continuously using a third order spline between 3 and 3.5 Å (resulting in an 

annihilation of all attractive interactions at atom-to-atom distances beyond this 

length). All the other parameters of the simulation were the same as for the united 

atom model. 

In a third, structure-based model, each residue in the protein Sac7d is simplified to a 

single ‘bead’ located at the site of the alpha carbons. The pairwise attractive 

interactions are determined based on the type of amino acid present and their all-

atom conformation in the native structure.23 The reference native structure for the 

structure-based model of Sac7d was determined by solution-state NMR 

spectroscopy, and is deposited in the PDB with the code 1SAP.24 Simulations for the 

structure-based model were also performed using Langevin dynamics. A timestep of 

15 fs was used and simulations were 300 µs long. Simulations were performed over 

a broad range of temperatures between 230 K and 370 K.  

Simulation trajectories were analyzed from an “equilibrium” perspective as this yields 

much larger datasets compared to a “ring” perspective analysis. End-to-end 

distances (distance between N-terminal N and C-terminal C) were calculated at each 

step. Contact events are enumerated and annotated as per the illustration in 
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Supplementary Fig. S1A–C. Each step in the trajectory where the ends are not in 

contact (i.e., at a distance larger than the cut-off �∃) is a potential equilibrium start 

position. The contact formation time, or equilibrium-to-ring first passage time (FPT), 

was determined for each start position, and a frequency distribution of FPTs 

generated. Integration and normalization led to �&∋ �  (see Supplementary Fig. S1E, 

G, I, K). 

For the united-atom models �∃ was set to 5 Å. For the coarse-grained model, where 

only distances between residues are defined, a �∃  value of 8 Å was used. The 

average end-to-end contact formation time varies moderately (as expected longer 

times for smaller �∃  values) but for values around those chosen, the onset of the 

different kinetic regimes remains unchanged (see Supplementary Figure S2). 

 

Results 

We first considered a number of short (up to 12 residues) homopolypeptides. In 

Figure 1A is shown the probability of survival of the open state (the two end groups 

not in contact) for three peptides: a glycine 6mer (G6), an alanine 12mer (A12) and a 

serine 6mer (S6). These have been plotted in two different ways: the log-linear plot 

(inset) of	�&∋ �  shows that the decay is well approximated by a single exponential at 

longer timescales. An exponential decay of �&∋ �  has been widely reported.5, 8 

The log-log plot of 1 − �&∋ � , however, shows a remarkable deviation from 

exponential decay at short times. A power law behavior at short times is a well-

known consequence of non-Markovian dynamics due to chain connectivity25, but in 

the case of the peptides above the kinetics of loop formation appears to be, perhaps 

unsurprisingly, more complex than for ideal polymers. 

To investigate the origin of this complex kinetics a model identical to the implicit 

solvent model used above, but without electrostatic and attractive interactions (soft-

sphere or SS model) can provide useful insight. The survival probability using the SS 

model is plotted, as 1 − �&∋ � , in Figure 1B for the same three homopolypeptides. At 

short times, i.e., at times shorter than the relaxation time � = 1/�, �&∋ �  decays as 

1 − ��Σ, as expected for an ideal polymer such as the Rouse model.26-28 The Rouse 

model consists essentially of non-interacting beads connected through springs. For 

the Rouse model �&∋ �  can be obtained numerically14 (and in some cases 

analytically28) from first principles. For the three homopolypeptides G6, S6, and A12 

the power law behavior of 1 − �&∋(�)  is observed over about three orders of 
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magnitude in time (least square fits shown in Figure 1A and 1B), with the exponent � 

estimated between 0.86 and 0.90.  

The non-exponential kinetics, which extends to timescales considerably larger than 

those at which a power law is observed, appears to depend on the presence of 

attractive interactions, but only moderately on the sequence and on the length of the 

peptide. The timescale at which kinetics becomes exponential and the amplitude of 

the non-exponential component depends instead on the sequence and length of the 

peptide. 

Before investigating further the complex kinetics observed at short times we consider 

the end-to-end loop formation in a structure-based coarse-grained protein model 

where only alpha carbon atoms are explicitly represented. We chose such a model 

because properties can be thoroughly sampled at equilibrium with available 

computational resources. We also chose a small, fast folding protein to obtain fully 

converged distributions of end-to-end contact times. Sac7d is a a-b DNA-binding 

protein and within the model we used folds reversibly, in a two-state manner, over a 

broad temperature range.  

In Figure 2 is reported 1 − �&∋ �  for the protein Sac7d at three different 

temperatures, below and above the melting temperature of about 282 K (the 

temperature at which the protein is 50% folded). At all temperatures a single 

exponential fits �&∋ �  for times longer than ~10–50 ns, and a unique power law, with 

an exponent independent of the temperature (� = 0.81)	fits at times between 5 and 

1000 ps. The range where the decay of �&∋ �  is neither power law nor exponential is 

larger at the lower temperature, 275 K, where the protein is in the folded state about 

60% of the time, and smaller at 305 K, where the protein is 94% in an unfolded state. 

We then analyzed more closely the kinetics, fitting the computed curves with specific, 

functional forms for the survival probability. In Figure 3, �&∋ �  is compared for the 

three different models, focusing on a single case for each model. In Figures 3A and 

3B �&∋ �  of A12 is shown for the implicit solvent and the soft-sphere model, 

respectively. As previously noted these differ substantially. For the soft-sphere model 

1 − �&∋ � 	can be fitted with a power law at short times and a single exponential at 

long times (with time constant of ~0.93 ns).  

For the united-atom model, for times longer than 1 ns, �&∋ �  decays exponentially, 

with a time constant of 14.7 ns compared to an average end-to-end formation time of 

14.5 ns. The sum of two exponentials, with a second time constant of ~24 ps, fits the 
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curve considerably better up to about 30 ps. Using a sum of one exponential and one 

stretched exponential one can fit �&∋ �  accurately up to 1 ps, and between 10 fs and 

1 ps �&∋ � 	is instead well approximated by a power law. 

This result is consistent with what Fierz et al.9 observed for a number of short, 

unstructured peptides. The short time behavior of the survival probability �&∋ �  of the 

state where the triplet state is excited could be fitted either by a series of 

exponentials, or at least two exponentials and a stretched exponential. The stretch 

exponents � we obtained (0.69 for A12 and 0.58 for S6) are close to those reported 

by Fierz at al.9 for Xan–Ser2–NAla (0.72) and Xan–Ser6–NAla (0.70), suggesting that 

experiment and simulation probe the same end-to-end dynamics of the polypeptide. 

The time constants of the two exponentials estimated from simulation for S6 are 50 

ps and 700 ps while those determined experimentally for Xan–Ser6–NAla (260 ps 

and 20 ns): the timescales of the simulations are expected to be roughly one order of 

magnitude faster given that they are performed in a medium with a friction about one 

order of magnitude lower than water. On the other hand, the amplitude of the non-

exponential decay is considerably smaller than that reported by Fierz at al.,9 which is 

about 1% for A12 and about 5% for S6. 

In Figure 3C is shown 1 − �&∋ � 	for the structure-based model of the protein Sac7d 

at 275 K. Here the single exponential approximation, with time constant ~132 ns, 

breaks down at times shorter than ~30 ns; at times below 1 ns a power law with 

exponent 0.82 fits 1 − �&∋ � .  

At times between 1 and 30 ns neither a power law nor a single exponential describe 

the kinetics of contact formation. Whether physically meaningful or not, an excellent 

fit can be obtained if the single exponential is replaced by the sum of four 

exponentials (blue line in Figure 3C) or by the sum of an exponential (with time 

constant 5 ns) and a second exponential with an exponent � = 0.78. 

Figure 3 also shows �+,−.(�) as defined by Hochstrasser, Volk and collaborators in 

Refs10, 13, 18 (see Eq. 2). Experimentally �+,−.(�) was measured as the logarithmic 

derivative of the concentration of chains yet to recombine and form a ring at a time � 

after the disulfide bond keeping the two ends in contact was broken. The rate 

constant �+,−. can be seen as a generalized rate of reformation of the end-to-end 

contact starting from a conformation where the two ends are in contact, and it is 

simply the inverse contact formation time in the case of single exponential relaxation 

(and in the case of single exponential kinetics it is irrelevant whether initial 

conformations are extracted from an equilibrium ensemble or from an ensemble 
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where the two ends are in contact, see Supplementary Information). In Figures 3D, 

3E and 3F the time-dependence of �+,−.(�)	is shown for the fits of �&∋ �  in Figures 

3A, 3B and 3C, respectively. As shown in Table 1, when �&∋ �  decays exponentially 

(red curves), �+,−.  is simply a constant (i.e., if �&∋ � 	~�
ΚΛΜ	then �+,−. = �). When 

�&∋ �  decays as a power law (green curves), �+,−.  is exactly proportional to the 

inverse of time (i.e., if �&∋ � 	~	1 − ��Λ then �+,−. = (1 − �) �). 

Our result compares interestingly with that reported by Volk and coworkers for a 

helical peptide18 and more recently for the 174-amino acid protein N-PGK (N-terminal 

domain of phosphoglycerate kinase from Geobacillus steareothermophylus).13 From 

a direct measurement at different times they reported �+,−.	~	�
Κ(4.ΞΨ±4.4[)  and this 

was valid over a broad time range from ps to ms. Our results show that �+,−.	~	�
Σ, 

with � = −1  at very short times and � = 0  (i.e.,  �+,−.~1 � = �������� ) for long 

times. At intermediate timescales, for the protein model considered here, �+,−. has a 

complex dependence on time that extends over four orders of magnitude in time. 

This is in line with the remarkable result recently reported by Milanesi et al.,13 in 

which the time dependence of the rate extends up to milliseconds. 

Analysis of the simulation of the structure-based model of the protein Sac7d allows 

direct analysis of the folding kinetics. The time required for �+,−. to reach a constant 

value is comparable to, or larger than, the unfolding time. This is unsurprising since 

the two ends, or the two intrachain residues probed experimentally, cannot form a 

contact while the protein is in its native state. The time dependence encompasses 

the time it takes the protein to equilibrate from the initial unfolded conformation, and 

the time to possibly fold and necessarily unfold so that contact between the two ends 

can be reformed. The fact that N-PGK has a large folding and unfolding time29 could 

then also explain the surprising time dependence of �+,−.  up to the millisecond 

timescale.  

For completeness, plots of the potential of mean force (PMF) for the different 

systems considered above are shown in Figure 4. The PMF is the negative logarithm 

of the probability distribution of the end-to-end distance. For the more realistic model 

(atomistic with implicit solvent) we observe a number of local minima depending on 

the sequence (Figure 4A), and for all peptides a local minimum exists corresponding 

to when the two ends are in van der Waals contact (at about 4 Å). For A12 the PMF 

presents a minimum at around 17.5 Å corresponding to a populated helical state 

(~1.5 Å/residue). G6 and S6, instead appear to be disordered, in the sense that no 
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significantly populated states can be identified. For the short peptides, in the absence 

of attractive interactions (Figure 4B) the PMF is polymer-like, i.e., rather flat, except 

at short and large distances. In all cases �&∋ �  reveals complex kinetics at short 

times regardless of the different thermodynamic properties. Comparison with what 

we observed for the more realistic model, suggests that complex kinetics can be 

attributed to non-specific attractive interactions, and not necessarily to the presence 

of significantly populated conformational states, i.e., local minima on the free energy 

surface. 

In the case of the structure based coarse-grained model of the protein Sac7d, the 

PMF (Figure 4C) is polymer-like at temperatures well above the mid-point 

temperature. At lower temperatures it has minima corresponding to the native state 

(26 Å) and a native-like intermediate (30 Å). There is no minimum when the two ends 

are in contact because this is not a native contact and thus is set to be repulsive in 

the model. 

 

Discussion 

Simulations covering all relevant timescales using different models of polypeptides 

provide insight into the kinetics of loop formation. A number of recent experimental 

studies have shown intriguing deviations from exponential kinetics that these 

simulations reproduce and provide an explanation for.  

Two recent experimental observations of anomalous kinetics of loop formation in 

structured and unstructured peptides and proteins have motivated this work.9, 13 Both 

experimental setups can explore a broad range of timescales. Experimental 

measurements are substantially different, in that one probes loop formation for an 

ensemble of molecules at equilibrium while the other probes loop reformation in an 

ensemble of molecules where two residues are in contact at time zero (in a very 

rarely occupied conformation in the absence of a constraint). Also, interpretation of 

measurements obtained with either experimental technique relies on the assumption 

that the reaction between the two reacting groups is diffusion-limited. This is an 

important assumption since Makarov and co-workers have recently shown that if the 

quenching rate of two reactive groups depends even mildly on their distance it 

cannot be assumed that the reaction is diffusion-controlled,30 i.e. there is no such 

thing as a “diffusion-controlled limit”.  

In this study we have assumed an idealized situation, where collision between the 

reactive groups, in this case the polymer ends, takes place when their distance falls 
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below a certain radius as in previous simulation studies.14, 31-32 We addressed both 

types of experiment by performing long equilibrium simulations, and calculating times 

of loop formation either from an ensemble of initial configurations that represent 

equilibrium, or one that satisfies the condition that the two ends are in contact at time 

zero. We showed that both measurements probe the same kinetics and that the 

probability that a contact has not occurred after time �, � � , is exactly related in the 

two cases.  

Both sets of experimental measurements9, 13 showed “anomalous kinetics” that have 

been explained using properties of the free-energy surface, which are key for both 

the folding and the function of proteins. In the case of the measurements of 

Kiefhaber and coworkers9, anomalous kinetics consist of a relaxation of �&∋ �  that 

could only be fitted with a stretched exponential or with multiple exponentials at short 

times. While the proposed functional forms were not specifically justified, the 

observed separation of time scales in the dynamics of loop formation was explained 

as originating from motions on different hierarchical levels of the free energy 

landscape. For structured proteins such a hierarchy of levels has been demonstrated 

using temperature jump experiments that have shown similarly complex kinetics on 

the microsecond time scale.33 However, it is remarkable that largely unstructured 

peptides where no populated structured states are present also show analogous 

kinetics. Here we showed that multiple exponentials or a stretched exponential fit 

relatively well to �&∋ �  calculated for either disordered peptides with a realistic force-

field or a structured protein with a structure-based force field. 

Volk and coworkers13 showed instead that the time derivative of �+,−. � , which they 

refer to as “instantaneous rate”, was not a constant as expected from single 

exponential decay, but a power law with an unusual exponent, -0.94. While a power 

law with exponent -1 is expected for any polymer at very short times, and is observed 

in the simulations (between 1 ps to 1 ns depending on the model), Milanesi et al.13 

observed a power law behavior over nine orders of magnitude in time, from 10 ps to 

1 ms, when systems as different as a fast folding short helix and a slow folding 

protein are considered simultaneously. The results presented here show that the 

instantaneous rate, or �+,−. � , has typical polymer behavior at very short times 

(�+,−.	~	�
ΚΠ), and is a constant at long times (�+,−.	~	�

4). At intermediate times it may 

locally be fitted with a power law �+,−.	~	�
Σ with 0 ≤ � ≤ 1 but no consistent power 

law behavior is observed; this is the same time regime where �&∋ �  can be fitted with 

a stretched exponential as proposed by Fierz et al.9 Interestingly, such anomalous 
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kinetics can extend to long timescales, depending on the features of the free energy 

landscape of the system considered; this was the main finding reported by Milanesi 

et al.13 The unusual exponent -0.94 has been explained as arising from subdiffusion 

of the polypeptide chain13, 34 due to “inhomogeneous trapping due to the multitude of 

local interactions which give rise to the rugged potential energy landscape with its 

hierarchy of well depths”.13 Milanesi et al.13 showed that an approximate power law 

behavior for �+,−. �  can be obtained by modeling a random walk on a landscape 

where well depths are distributed exponentially, even neglecting chain connectivity. 

Indeed, the dynamics of the end-to-end distance of a polypeptide chain is 

subdiffusive, although this may not be an attribute of protein dynamics but only of its 

projection on a reaction coordinate that is a single interatomic distance.35 The 

consequence of projection-dependent subdiffusion have been shown to be 

observable over 13 decades in time;36-37 self-similar, non-equilibrium behavior has 

been observed in the autocorrelation of a distance in atomistic simulations beyond 

the microsecond timescale.38 

Here we have also provided some physical insight on the origin the anomalous 

kinetics, showing that is related to attractive non-specific interactions. If only steric 

interactions are present, the kinetics become polymer-like, with a power law behavior 

at times shorter than the Rouse time. Simulations provide information on such short 

timescales that have not, so far, been probed experimentally (<1 ns), where 

dynamics is non-Markovian and relaxation follows a power law as predicted for ideal 

polymers. We observe a universal power law for all models studied (1 − �&∋ � 	~	�
) 

with � ∼ 0.8–0.9. Yeung and Friedman27 report that for very long Rouse chains with 

equilibrium initial conditions 
εφγη Μ

εΜ
~	�ΚΠ/Ψ, thus � − 1 = −1/4, i.e., � = 0.75, close to 

the value we found. Indeed, in this regime �+,−.	~	�
ΚΠ for any � close to unity, such 

as �+,−.~�
Κ(4.ΞΨ±4.4[) as has been reported by Milanesi et al.13  

 

Conclusion 

The results presented here reconcile a number of experimental measurements of 

end-to-end contact formation in apparent contradiction. For those experiments that 

predict purely exponential relaxation: we show that indeed the amplitude of the non-

exponential phase is negligible if experiments probe a population of molecules at 

equilibrium. For those experiments that show non-exponential relaxation, either only 

for short times, or on all timescales explored (up to millisecond timescales): we show 
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that indeed the non-exponential kinetics can be observed on relatively long 

timescales, which depend on the system; for proteins this is related to the folding and 

unfolding timescales.  

We also show that the different empirical models used to fit the non-exponential 

kinetics (stretched exponential for �&∋ �  and unusual power law for the time-

dependent “instantaneous rate constant” or �+,−. � ) give similar results, and overlap 

to a large extent with our simulation results.  

Measurements using the approach of Milanesi et al.13 on disordered peptides of 

various lengths and fast folding proteins should show that �+,−.  has a time 

dependence on a broad range of timescales but eventually converges to a constant 

at long timescales, i.e., at times on the order of the inverse of this constant.  

More than 10 years ago Eaton et al.39 stated that a motivation for developing fast 

kinetic methods was “to provide a much-needed reality check on computer 

simulations, which are flooding the protein-folding literature”. In this paper we show 

that simulation can also provide a reality check on the way experimental data are 

interpreted, and a consistency check on experimental results that are either not 

obviously related, or even which appear contradictory. 

  

Supporting Information Available 

In supporting information a derivation of the relationship between equilibrium and ring 

survival probabilities is provided, as well as the analytical relation between 

equilibrium and ring survival probabilities and rates for special functional forms. The 

effect of the contact radius �∃ on �&∋  is shown in Figure S2. 
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Figures 

 

Figure 1. (A) Surviving fraction starting from the open conformation ��� �  for three 

homopolypeptides simulated using a united-atom model with implicit solvent. At short 

times the ��� �  is not exponential and complex kinetics are observed; at times on 

the order of tens of ps ��� �  decays as � − ��. Dashed lines indicate power law fits 

at these times, the resulting value of � is indicated in the legend. At intermediate 

times neither the power law nor the single exponential description fit ��� � ; this is 

particularly evident for polyalanine. The log-linear plot of ��� �  in the inset shows 

that at long times the distribution of survival times of the open conformation decays 

exponentially. Solid lines in the figure and inset are exponential fits over these longer 

times; the � value in the legend is the fitted decay time. (B) Same as A but for the 

soft-sphere variant of the atomistic model. The ��� �  behavior for all peptides can be 

well approximated at short times by � − ��� � 	~	�
�  and on long timescales by a 

single exponential fit, without an intermediate phase. 
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Figure 2. Surviving fraction starting from the open conformation ��� �  for the 

structure-based model of the Sac7d protein. Values are shown at three different 

temperatures. Inset: fraction folded as a function of the temperature. The � values in 

the legend indicate the exponents of the power law (� − ��� � 	~	�
�) fitted at short 

times (dashed blue lines). The � value in the legend is the fitted decay time for 

exponential fits over longer times (solid blue lines).  

  

10
1

10
2

10
3

10
4

10
5

10
6

t (ps)

270 280 290 300 310 320 330
T (K)

0

0.2

0.4

0.6

fr
ac

ti
o

n
 n

at
iv

e

1
 –

 S
eq

(t
)

10
-3

10
-2

10
-1

10
0 275 K (a=0.81; Ʋ=128 ns)

285 K (a=0.81; Ʋ=50 ns)

305 K (a=0.81; Ʋ=8.13 ns)



	 19	

 

Figure 3. Comparison of the short time kinetics of loop closure for A12 with the 

united-atom model with implicit solvent (A and D), its soft-sphere variant (B and E) 

and for the structure-based model of the Sac7d protein at 275 K (C and F). In the first 

row (A, B and C) is shown the survival times of the open conformation � − ��� � . 

The thick orange (A, B) or black (C) curve is the result from the simulation; the red 

curve is a single exponential fit, the green curve is a power law fit; the blue lines are 

empirical fit of the region that is neither power law nor single exponential, a stretched 

exponential fit for the peptide A12 and a sum of four exponential for the Sac7d 

protein. In the second row (D, E and F) is shown ����� (the various fits are show with 

the same color code). 
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Figure 4. Potential of mean force associated with the end-to-end distance. (A) 

United-atom model (red curves are A12, green S6, black, G6). (B) Soft-sphere model 

(red curves are A12, green S6, black, G6). (C) Structure-based model of the protein 

Sac7d. The vertical lines at 5 Å and 8 Å show the contact radii used when analyzing 

the atomistic and coarse-grained model, respectively. 
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Relationship	between	equilibrium	and	ring	survival	probabilities	

	
Here	we	prove	the	relation	
	
	 �+,−.	(�)	

�+,−. � ��
3

4

= −	
��&∋(�)	

��
	 (1)	

	
A	notable	related	equation	has	been	has	been	proved	by	Yeung	and	Friedman1	
	
	

�+,−. � 	∝ −	
��&∋(�)	

��
	 (2)	

	
We	start	by	providing	an	intuitive	demonstration	of	relation	(2).	To	this	end	we	
use	a	toy	dataset	obtained	from	a	short	stretch	of	simulation	of	the	A12	peptide.	
The	end-to-end	distance	�	is	shown	over	a	4000	fs	window.	The	contact	radius	�∃ 	
has	been	set	 in	 this	example	at	5	Å	(Figure	S1-A).	When	� < �∃ 	we	consider	the	
two	ends	to	be	in	contact	forming	a	“ring”	conformation	(Figure	S1-B).	Time	is	a	
discreet	variable	(i.e.,	the	integration	timestep,	1	fs	in	this	example).	
	
We	define	a	ring-to-ring	first	passage	time	(FPT)	as	the	time	the	peptides	spend	
in	 an	 open	 conformation	 without	 the	 end-to-end	 distance	 falling	 below	�∃ .	 The	
first	passage	is	therefore	bordered	by	two	ring	conformations	one	upon	entering	
the	open	state	(time	entered)	and	one	upon	exiting	the	open	state	(time	exited).	
An	example	ring-to-ring	first	passage	is	illustrated	in	Figure	S1-D.	In	the	example	
we	 enumerate	N	 =	 12	 contact	 events	 (to	 each	 of	 which	 is	 assigned	 a	 different	
color).	
	
The	frequency	distribution	for	the	ring-to-ring	FPTs	is	
	
	

�+,−.(�) = �Μθ,Μ

ρ

,σΠ

	 (3)	

	
i	=	1͒where	�,,τ 	is	 the	Kronecker	delta	 function,	and	plotted	in	Figure	S1-F.	For	
convenience	we	take	�	to	be	a	continuum	variable	in	the	following,	
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�+,−.(�) = �(�, − �)

ρ

,σΠ

��	 (4)	

	
where	�(�)	is	 the	Dirac	delta	 function	with	dimension	of	 reciprocal	 time	 	 (thus	
�+,−.(�)	is	 dimensionless).͒The	 frequency	 distribution	 of	 equilibrium	 open-to-
ring	FPTs	(Figure	S1-E)	
	
	

�&∋(�) = �(�, − �)

ρ

,σΠ

	 (5)	

	
where	�(�)	is	the	Heaviside	step	function,	as	shown	in	Figure	S1-G.	
	
Thus,	 using	 the	 relationship	 between	 Dirac	 delta	 and	 Heaviside	 function	

� �′ ��ξ = � � ,
ψ

Κ3
	the	following	equation	holds	between	equilibrium	and	ring	

frequency	distributions:		
	
	

�&∋ � ∝ �+,−. �
ξ

Μ

Κ3

��′	 	

or	equivalently,	
	
	 ��&∋(�)

��
∝ −�+,−.(�)	 (6)	

	
Note	 that	 proportionality	 in	 equation	 (6)	 differs	 from	 the	 equality	 in	 the	
equation	 relating	 the	 Dirac	 delta	 function	 to	 the	 Heaviside	 function.	 This	 is	 to	
account	 for	 the	 definition	 of	�+,−.	in	 equation	 (4).	 Thus	 the	 proportionality	
constant	Δ	has	units	of	time	
	

�&∋ � = �+,−. �
ξ

Μ

Κ3

��′ ∙ ΔΚΠ	 	

	
	 ��&∋(�)

��
= −�+,−.(�) ∙ Δ

ΚΠ	

	
The	unnormalized	distribution	of	survival	times	of	the	open	state,	i.e. �&∋ � 	and	
�+,−. � ,	are	related	to	the	respective	distributions	of	FPTs,	�&∋ � 	and		�+,−. � ,	
i.e.	 the	 distribution	 of	 loop	 formation	 times	 required	 by	 the	 polypeptides	 to	
sample	conformations	up	to	the	point	where	�(�) = �∃ .	This	relationship	can	be	
expressed	as	
	
	

� � = � �ξ ��′
Μ

Κ3

	 (7)	

	
for	 both	 the	 ring	 and	 equilibrium	 cases	 (shown	 in	 Figure	 S1-H	 and	 S1-I,	
respectively).	 Thus͒ 	 equation	 (2)	 can	be	obtained	by	 integrating	both	 sides	 of	
equation	(6)		
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�+,−.(�) ∝ −

��&∋(�)

��
	 	

	
or	with	the	dimensionally	correct	equality:	
	
	

�+,−. � = −
��&∋(�)

��
∙ �	 (8)	

	
The	 normalized	 counterparts	 of	�+,−. 	and	�&∋ 	are	 the	 surviving	 fraction	
functions.	Assuming	the	system	is	ergodic,	the	surviving	fraction	is	equal	to	the	
probability	that	a	polypeptide	has	not	yet	undergone	loop	formation	
		
	

� � =
� �

� 0
=

�(�′)
Μ

Κ3
��′

�(�′)
Μ

Κ3
��′

= 	Pr �∃ > � 	 (9)	

	
Specifically,	
	
	

�+,−. � =
�+,−.(�)

�+,−.(0)
	 	

	
and	
	
	

�&∋(�) 	= 	
�&∋(�)	

�&∋(0)
	

	

(10)	

	
Substituting	equations	(9)	and	(10)	into	equation	(8)	results	in	
	
	

�+,−. � = −
�&∋(0)

�+,−.(0)

��&∋(�)

��
�	

	

(11)	

Thus	
	
	 ��&∋(�)

��
	∝ 	−�+,−.(�)	

	
(12)	

	
The	 proportionality	 constant	 can	 be	 shown	 to	 be	 equal	 to	 ���+,−.(�)

3

4
,	 by	

considering	the	equation	for	the	total	number	of	ring-to-ring	FPTs	
	
	

�+,−. 0 = �+,−. � ��
4

Κ3

	 (13)	

	
And	 the	 total	 number	 of	 equilibrium-to-ring	 FPTs	 that	 occur,	 which	 from	
equation	(7)	and	(8)	can	be	calculated	as:	
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�&∋ 0 =

��′

�
�+,−. � ��

Μσ4

Κ3

=	
Μξ

Κ3

1

�
�	�+,−. � ��

4

Κ3

	

	

(14)	

	
Therefore	
	
	 �&∋(0)

�+,−.(0)
=
1

�

�	�+,−. � ��
4

Κ3

�+,−. � ��
4

Κ3

=
�+,−.

�
=

�+,−. � ��
4

Κ3
	

�
	

	

(15)	

Where	τ����is	the	ring-to-ring	mean	first	passage	time	and	is	equal	to	the	integral	

of	the	respective	survival	function,	 i.e.	� = � � ��
4

Κ3
.	Thus	when	equation	(15)	

is	substituted	into	equation	(11)	we	obtain	the	sought	relation	given	in	equation	
(1).	
	
	

�+,−. � = − �+,−. � ��
3

Κ3

��&∋(�)

��
	

or	
�+,−. �

�+,−. � ��
3

4

= −
��&∋(�)

��
	

	

(16)	

	
We	also	define	
	
	

�+,−. � = −
� ln �+,−. �

��
= −

�

��
ln −

��&∋

��
,	

	
(17)	

	
which	 is	 identical	 to	 the	 instantaneous	 first-order	 rate	 constant	�+&∃ 	or	�,−�Μ	
measured	by	Volk	and	collaborators.2-3	And	
	
	

�&∋ � = −
� ln �&∋ �

��
	

	
(18)	
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Relations	between	equilibrium	and	ring	survival	probabilities	and	rates	for	
special	functional	forms	

	

Single	exponential	

If	
�&∋(�) = �ΚΜ	

	
then	

�+,−.(�) = �ΚΜ	
	
and	

�+,−. = �&∋ = �	
	

Two	exponentials	

If	
�&∋(�) = ((1 − �)�ΚΜ + ��Κ�Μ)	

	
then	

�+,−.(�) =
�(1 − �)(�ΚΜ) + ���Κ�Μ

�(1 − �) + ��
	

and	

�+,−. = −
��(1 − �)(−�ΚΜ) − ����Κ�Μ

�(1 − �)�ΚΜ + ���Κ�Μ
	

�&∋ = −
�(1 − �)(−�ΚΜ) − ���Κ�Μ

(1 − �)�ΚΜ + ��Κ�Μ
	

	

One	exponential	and	one	stretched	exponential	

If		

�&∋(�) = (1 − �)�Κ(Μ)
�
+ ��Κ�Μ	

then		

�+,−.(�; � ≠ 0) =
��(1 − �)(�Κ(Μ)

�
)(��)�ΚΠ + ���Κ�Μ

��(1 − �) + ��
	

and		

�+,−.

= −
−����(1 − �)�Κ(Μ)

�
(��)��Κ� + ��(� − 1)�(1 − �)�Κ(Μ)

�
(��)�Κ� − ����Κ�Μ

��(1 − �)�Κ(Μ)
�
(��)�ΚΠ + ��Κ�Μ

	

�&∋ = −
��(1 − �)(−�Κ(Μ)

�
)(��)�ΚΠ − ���Κ�Μ

(1 − �)�Κ(Μ)
�
+ ��Κ�Μ
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Fit	used	by	Fierz	et	al.4		(two	exponential	and	a	stretched	exponential).	

If		

�&∋(�) = (1 − � − �)�Κ(Μ)
�
+ ��Κ�Μ + ��Κ�Μ	

then		

�+,−.(�; � ≠ 0) =
��(1 − � − �)(�Κ(Μ)

�
)(��)�ΚΠ + ���Κ�Μ + ���Κ�Μ

��(1 − � − �) + �� + ��
	

and		

�+,−. = −
Κ���(ΠΚ�Κ�)&�(��)

�
(Μ)������(�ΚΠ)�(ΠΚ�Κ�)&�(��)

�
(Μ)���Κ���&���Κ���&���

�(ΠΚ�Κ�)&�(��)
�
(Μ)������&������&���

	 	

	

Power	law	

If	
�&∋(�) = 1 − �� 	

then		

�+,−.(�; � ≠ 0) = ���ΚΠ	

and		

�+,−. =
1 − �

�
	

	

�&∋ =
���ΚΠ

1 − ��
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Figure	S2:	Graphical	illustration	of	the	relationship	between	equilibrium	and	ring	
survival	probabilities.	(A)	End-to-end	distance	of	a	polypeptide	chain	during	a	 short	
trajectory.	The	contact	distance	�∃ 	is	shown	as	a	dashed	line;	above	this	line	the	peptide	
is	in	its	open	conformation,	below	in	its	closed	or	ring	conformation.	(B)	The	state	of	the	
peptide	during	the	simulation:	a	total	of	12	ring-to-ring	events	can	be	enumerated.	(C)	
By	keeping	track	of	the	time	points	at	which	�	becomes	smaller	than	�∃ 	the	ring-to-ring	
FPT	durations	can	be	calculated.	These	are	the	set:	[3,	34,	17,	1342,	9,	2,	35,	17,	4,	9,	6,	
203].	For	the	 illustration	of	how	equilibrium-to-ring	FPTs	can	be	calculated	from	ring-
to-ring	FPTs	and	the	relationship	between	�(�),	�(�)	and	� � 	these	have	been	assigned	
colors	depending	on		their	value.	(D)	End-to-end	distance	with	the	extended	ring-to-ring	
FPTs	 indicated.	 12	 such	 events	 are	 shown	 each	 beginning	 with	 a	 ring	 conformation	
� � < �∃ .	(E)	Equilibrium-to-ring	FPTs	can	be	enumerated	from	the	individual	ring-to-
ring	FPTs.	For	example	the	first	ring-to-ring	FPT	has	duration	of	3	time	units	(in	grey	in	
D)	 this	 results	 in	 three	 equilibrium-to-ring	 FPTs	 with	 durations	 3,	 2	 and	 1	 time-units	
(shown	 in	 grey	 in	 (E)).	 (F)	 Frequency	 distribution	 of	 extended	 ring-to-ring	 FPTs,	
�+,−. � .	 The	 total	 integral	 is	 equal	 to	 the	 number	 of	 ring	 FPT	 events.	 (G)	 Frequency	

distribution	of	 extended	equilibrium-to-ring	FPTs,	�&∋ � .	Here	 the	 coloring	 shows	 the	

originating	 ring-to-ring	 FPTs	 used	 to	 generate	 the	 equilibrium-to-ring	 FPTs.	 For	
example	 the	 three	 “grey”	 FPTs	 described	 in	 above	 are	 indicated	 to	 contribute	 to	 the	
frequency	bars	for	�&∋ 1 ,	�&∋ 2 	and	�&∋ 3 .	(H)	�+,−. � 	is	the	population	of	surviving	

extended	polypeptide	conformations,	that	have	yet	to	undergo	loop	closure	after	a	time	
t.	�+,−. � 	is	 calculated	 from	 the	�+,−. � 	using	 an	 integral	 relationship	�+,−. � =

�+,−. �ξ ��′
3

Μ
.	This	 is	also	clear	from	the	coloring	of	the	distribution,	 for	example	the	

two	ring-to-ring	FPT	with	duration	17	(blue)	signifies	two	conformation	that	“survive”	
up	 to	 17	 time	 units,	 and	 thus	 contributes	 to	 the	�+,−. � 	for	 every	� < 17	time	 units.	

However	at	�+,−. 17 	there	is	a	drop	consistent	with	–
ερ�θ�� Π€

εΜ
= �+,−. 17 = −2.	The	

form	 of	�+,−. � 	and	�&∋ � 	are	 the	 same,	 except	 when	 calculated	 from	 the	 raw	

equilibrium-to-ring	 FPTs	 the	 �&∋ � 	 is	 discrete	 and	 �+,−. � 	 is	 continuous.	 (I)	

Unnormalized	 survival	 function	 of	 the	 equilibrium-to-ring	 FPTs,	�&∋ � .	 This	 is	

calculated	as	�+,−. � ,	except	that	�&∋ � 	is	used	as	the	input	FPT	event	density	function.	

Thus	 the	 corresponding	 relationship	 holds,	−
εργη

εΜ
∝ �&∋ 	and	 because	 �&∋ � 	 and	

�+,−. � 	are	 equivalent	 (see	 G	 and	 H)	 we	 see	 that	−
εργη

εΜ
∝ �+,−..	 (J)	 Normalized	

survival	 functions,	�+,−. � ,	 i.e.	 the	 probability	 that	 a	 polypeptide	 initially	 in	 the	 ring	

conformation	 has	 not	 yet	 re-entered	 the	 ring	 state	 at	 time	 t.	 (K)	 Normalized	 survival	
functions,	�&∋ � ,	i.e.	the	probability	that	a	polypeptide	initially	in	a	random	equilibrium	

conformation	will	not	yet	have	re-entered	the	ring	state	at	time	�	calculated	as	�&∋ � =

	
ργη(Μ)

ργη(4)
	and	related	to	�+,−. � 	by	the	relationship	−

εφγη

εΜ
∝ �+,−.	in	the	same	manner	that	

−
εργη

εΜ
∝ �+,−.	as	described	in	(I).		
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Figure	 S3.	 Effect	 of	 the	 contact	 radius	 rc	 on	 Seq	and	 fitting	 parameters	 for	 the	 A12	
peptide	with	the	original	force	field.	The	parameter	‘a’	is	the	exponent	of	the	power	law	
used	to	fit			1	–	Seq	for	t	<	0.3	ps	and	t	is	the	time	constant	for	the	single	exponential	fit	of	
Seq	for	t	>	2000	ps.	The	exponent	a	does	not	significantly	depend	on	rc	while	t	depends	
weakly	in	an	expected	manner,	i.e.,	decreases	with	increasing	rc..	
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