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The complex interactions that give rise to heart rate variability (HRV) involve coupled

physiological oscillators operating over a wide range of different frequencies and length-

scales. Based on the premise that interactions are key to the functioning of complex

systems, the time-dependent deterministic coupling parameters underlying cardiac,

respiratory and vascular regulation have been investigated at both the central and

microvascular levels. Hypertension was considered as an example of a globally altered

state of the complex dynamics of the cardiovascular system. Its effects were established

through analysis of simultaneous recordings of the electrocardiogram (ECG), respiratory

effort, and microvascular blood flow [by laser Doppler flowmetry (LDF)]. The signals were

analyzed by methods developed to capture time-dependent dynamics, including the

wavelet transform, wavelet-based phase coherence, non-linear mode decomposition,

and dynamical Bayesian inference, all of which can encompass the inherent frequency

and coupling variability of living systems. Phases of oscillatory modes corresponding

to the cardiac (around 1.0Hz), respiratory (around 0.25 Hz), and vascular myogenic

activities (around 0.1 Hz) were extracted and combined into two coupled networks

describing the central and peripheral systems, respectively. The corresponding spectral

powers and coupling functions were computed. The same measurements and analyses

were performed for three groups of subjects: healthy young (Y group, 24.4 ± 3.4 y),

healthy aged (A group, 71.1± 6.6 y), and aged treated hypertensive patients (ATH group,

70.3 ± 6.7 y). It was established that the degree of coherence between low-frequency

oscillations near 0.1 Hz in blood flow and in HRV time series differs markedly

between the groups, declining with age and nearly disappearing in treated hypertension.

Comparing the two healthy groups it was found that the couplings to the cardiac

rhythm from both respiration and vascular myogenic activity decrease significantly in
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aging. Comparing the data from A and ATH groups it was found that the coupling from

the vascular myogenic activity is significantly weaker in treated hypertension subjects,

implying that the mechanisms of microcirculation are not completely restored by current

anti-hypertension medications.

Keywords: hypertension, cardiovascular regulation, aging, heart rate variability, microvascular blood flow

oscillations, non-linear oscillator, coherence analysis, coupling functions

1. INTRODUCTION

The complex variation in the human heart rate, well known as
heart rate variability (HRV), has been studied extensively over
the years (Billman, 2011). Although Hales (1733) had noted
that the heart rate varied with respiration, known today as
respiratory sinus arrhythmia (RSA), and Ludwig (1847) had
already recorded RSA more than one-and-a-half centuries ago,
the physiological origin of the processes involved in the frequency
modulation of the heart rate is still widely disputed. Based on
spectral analysis methods with linear frequency resolution, a
ratio between low frequencies (usually linked with the activity of
the sympathetic nervous system) and high frequencies (usually
linked with parasympathetic activity) was proposed as a measure
of health (Pagani et al., 1986; Malliani et al., 1991). This
concept was subsequently disputed as greatly oversimplifying
the complex non-linear interactions between the sympathetic
and parasympathetic divisions of the autonomic nervous system
(Eckberg, 1997) and it is now clear that the LF/HF ratio does
not accuratelymeasure cardiac sympatho-vagal balance (Billman,
2011).

Other approaches came from statistical physics and scaling
properties (Amaral et al., 1998; Bernaola-Galván et al., 2001),
multifractal properties (Ivanov et al., 1999), and 1/f spectra
(Kobayashi and Musha, 1982; Ivanov et al., 2001) which were all
proposed as ways of characterizingHRV. A reduction of variation
was associated with sudden cardiac death and the Research
Resource for Complex Physiologic Signals was created under
the auspices of the National Center for Research Resources of
the National Institutes of Health, intended to stimulate current
research and new investigations in the study of cardiovascular
and other complex biomedical signals (Goldberger et al., 2000).

Much of the HRV seems to be of deterministic origin,
arising through a complicated interaction between physiological
oscillations occurring on a wide range of different time scales
(Stefanovska, 2007; Bashan et al., 2012). A promising approach,
therefore, is to extract the deterministic features of the signals
as far as possible, paying close attention to the non-linear and
time-dependent dynamics of the parameters of cardiovascular
regulation and in particular to the coherence and coupling
functions between oscillatory components (Stefanovska and
Bračič, 1999; Stefanovska et al., 2000; Smelyanskiy et al.,
2005; Sheppard et al., 2012; Stankovski et al., 2012; Clemson
and Stefanovska, 2014; Clemson et al., 2016). Moreover, we
hypothesize that additional understanding might be gained by
investigating the oscillatory components of signals measured at
different sites of the cardiovascular system. In what follows we

apply these approaches to gain insight into two particular states of
the body that often co-exist in practice: aging and hypertension.

Because the functioning of the cardiovascular system is
closely related to its efficiency in adapting to a time-varying
environment, the couplings between its oscillating components
could reveal its overall health. One aspect of aging is the
progressive physiological weakening of the links that keep the
cardiovascular system reactive and functional. This is why
changes in the cardiovascular network with aging have been
extensively investigated (Kelly et al., 1995; Jensen-Urstad et al.,
1997; Agelink et al., 2001; Levy, 2001; Antelmi et al., 2004; Shiogai
et al., 2010). As well as compromising the tone (Kelly et al., 1995)
and elasticity (Levy, 2001) of the blood vessels, aging reduces
HRV (Agelink et al., 2001; Antelmi et al., 2004; Shiogai et al.,
2010) probably due to a weakening in couplings (Iatsenko et al.,
2013).

Established hypertension can arise at any time of life, but
predominantly occurs in the older age group, affecting about 40%
of those over 25 (World Health Organisation, 2013). It is usually
associated with an increase in the total peripheral resistance
to blood flow, which contributes to high pressure while the
cardiac output still remains normal.Manymechanisms have been
proposed to account for the raised peripheral resistance. They
include disturbances in renin-angiotensing system regulation,
abnormalities of the sympathetic nervous system (Guyenet, 2006;
McCurley et al., 2012), endothelial dysfunction (Taddei and
Bruno, 2016), presence of specific genes expressed within the
smooth muscle (Bai et al., 2013) and endothelial cells (Messaoudi
et al., 2015), and vascular inflammation (Harvey et al., 2015).
There is an associated loss of elasticity of the vessel walls
accompanied by a reduction in their radii (Feihl et al., 2006).
Hypertension is considered to be a major risk factor for heart
disease, stroke and kidney failure and leads to premature death
and disability (World Health Organisation, 2013). Currently
available treatments that successfully reduce blood pressure also
claim to revert the associated microvascular dysfunctions such as
rarefaction and loss of reactivity (Taddei et al., 2000; Sörös et al.,
2013).

Quite generally, the health and functionality of the human
cardiovascular system can be assessed through the analysis of its
associated signals, such as blood pressure and electrocardiogram
(ECG). Heart rate variability (HRV, derived from the ECG) and
blood pressure, analyzed in the time and frequency domains, have
both diagnostic and prognostic value for essential hypertension
(Verdecchia et al., 1994; Malik, 1996). The diagnostic and
prognostic potential of skin blood flow, measured by laser-
Doppler flowmetry (LDF), has taken longer to become generally
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FIGURE 1 | Schematic representation of the interactions between respiratory, cardiac and vascular activity, together with the corresponding recordings: respiratory

effort signal (RES), electrocardiogram (ECG), and laser Doppler flowmetry (LDF).

appreciated (Rossi et al., 2011; Virdis et al., 2014). Several
oscillatory components can be detected in LDF signals, of which
the three fastest ones are (Bernardi et al., 1997; Stefanovska
et al., 1999; Söderström et al., 2003; Stefanovska, 2007; Shiogai
et al., 2010; Bernjak et al., 2012): cardiac (0.6–2 Hz, usually
≈ 1 Hz); respiratory (0.145–0.6 Hz, usually ≈ 0.25 Hz), and
myogenic (0.052–0.145 Hz, usually ≈ 0.1 Hz). These oscillations
are similar to those observed in HRV (Lotrič et al., 2000)
and blood pressure (Stefanovska and Bračič, 1999). The 0.1 Hz
oscillation corresponds to so-called Mayer waves (Julien, 2006)
in blood pressure or so-called LF waves in HRV (Malik, 1996).

While the origins and nature of the cardiac and respiratory
(known as HF in HRV) oscillations are generally agreed (Saul
et al., 1991; Eckberg, 2003), the attribution of the mechanism
underlying the 0.1 Hz oscillation differs, depending on whether it
is being observed in cardiac or vascular activity. Studies of HRV
and blood pressure variability emphasize the involvement of
sympathetic nerve activity in oscillations around 0.1 Hz (Malpas,
2002; Julien, 2006), which are currentlymainly attributed to time-
delays in the baroreflex feedback loop. Qualitatively, changes
in pressure are felt by baroreceptors that provide information
continuously to the spinal cord. In response, appropriate
sympathetic stimuli are generated and transmitted to all vascular
beds and to the heart, aimed at maintaining the pressure
within certain limits. Due to the finite response times, this
sympathetic “correction” arrives after a delay, resulting in self-
sustained oscillations. In contrast, studies of vascular dynamics
mostly attribute 0.1 Hz oscillations to spontaneous movements
of smooth muscle in the vessel wall, also known as myogenic
activity, or Bayliss effect, or vasomotion. While the mechanism
is not yet completely understood, it involves the opening and
closing of ion channels in the endothelial and smooth muscle
cells in the vessel walls (Aalkjaer and Nilsson, 2005) in response
to changes in blood pressure. These vascular dynamical processes
can be investigated through blood flow measurements.

Armed with the new method of time-localized wavelet
phase coherence analysis (Sheppard et al., 2012) we have
investigated the coherence between 0.1 Hz oscillations in
HRV and LDF blood flow (also referred to as skin blood
flow, or SBF) in order to establish how it changes with age
and in treated hypertension. Furthermore, based on 30-min
resting-state simultaneous recordings of the ECG, respiratory

effort signal (RES), and LDF blood flow signal, the couplings
between cardiac, respiratory, and microvascular activity were
investigated, as indicated in Figure 1.

Non-linear mode decomposition (NMD) (Iatsenko et al.,
2015) was used to extract the phases of the corresponding
physiological modes. The instantaneous phase (frequency) was
extracted individually around the subject’s own characteristic
rhythms, as found by wavelet transform. NMD was applied to
extract the modes from the signals shown in Figure 1, both
directly at source and from the LDF. Two networks of interacting
oscillators were analyzed:

• Central network: cardiac from ECG (φC), respiration from RES
(φR), and myogenic from LDF (φm);

• Peripheral network: cardiac (φc), respiration (φr), and
myogenic (φm) all from LDF.

The first network describes the phase dynamics between the
oscillations at their sources (indicated by subscript upper-case
letters). Hence, the oscillations have different spatial origin. The
second network describes how the couplings propagate into the
blood flow (subscript lower-case letters). All three oscillations are
detected in the same position in the microvasculature.

In this paper, we apply these advanced methods to provide
a comprehensive analysis of oscillatory interactions. It enables
us to investigate the effects of aging and treated hypertension
on cardiovascular dynamics, at both the central and peripheral
levels. First, however, as essential physiological background,
we provide a more detailed description of the oscillations
themselves.

1.1. Background: Cardiovascular
Oscillations
The vascular network, the system of arteries, arterioles,
capillaries, venules, and veins provides every cell of the human
body with oxygen and nutrients, and carries away the waste
metabolites. Cellular needs are dependent on the activity that
the individual is performing, on the environmental conditions,
on the health of the individual, and hence on time. Thus
the cardiovascular system must be able to respond to time-
dependent changes: centrally, the respiration and heart rates
change significantly accordingly to need (Saul et al., 1991),
and are coupled to each other (Figure 1). The modulation
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TABLE 1 | The oscillations analyzed.

Oscillation Characteristic Range (Hz)

frequency (Hz)

Cardiac 1 0.6–2.0

Respiratory 0.25 0.145–0.6

Myogenic 0.1 0.052–0.145

of heart rate by the frequency of respiration is known as
RSA (Clynes, 1960). This modulation is easy to observe by
simultaneous recordings of the ECG and respiratory effort and
has frequently been reported to change with age (see e.g., Iatsenko
et al., 2013) and cardiovascular diseases. However, as mentioned
above, the mechanisms of physiological coupling that enable this
modulation are not yet settled and remain a matter of intensive
investigation.

Oscillations spanning a wide frequency range have also been
observed in recordings from the microvasculature (Karstrup
et al., 1989; Johnson, 1991; Bertuglia et al., 1994; Stefanovska
et al., 1999). They occur at a number of characteristic frequencies,
of which the three relevant to the present work are summarized
in Table 1. We now consider them each individually.

1.1.1. Cardiac and Respiratory Oscillations
The heart rhythmically pumps blood into the vascular system,
and the corresponding oscillations propagate to the capillary bed,
where they can be detected in skin blood flow by LDF (Bernardi
et al., 1997; Rossi et al., 2006).

The respiratory (RES) activity of the lungs generates a wave of
pressure that is propagating in the vascular network and can be
detected even in the microvasculature using LDF (Hoffman et al.,
1990; Bollinger et al., 1991; Stefanovska and Hožič, 2000).

1.1.2. Vasomotion and Myogenic Oscillations
Vasomotion is the spontaneous oscillation in tone of blood
vessel walls, independent of heart beat, innervation or respiration
(Haddock and Hill, 2005). It consists of rhythmic oscillations
in vessel diameter and has been detected both in vitro and in
vivo (Aalkjaer et al., 2011). No specific frequency is currently
associated with vasomotion, and the range reported, mostly
based on visual inspection in the time domain, is quite wide
spanning between 0.01 and 0.5 Hz. There are several reasons. The
oscillations are not clock-like, but rather quasi-periodic. For the
frequency content to be resolved in detail one needs long resting-
state recordings (at least 30 min, or longer), and time-frequency
spectral characterisation methods. The frequency content also
varies from species to species, roughly scaling with heart rate
and vessel size (Colantuoni et al., 1984b,a; Bertuglia et al.,
1991; Stefanovska, 2007). The smooth muscle cells, endothelial
cells and the sympathetic nerves innervating the vessels, are all
involved in maintaining the vascular movement and each seems
to manifest itself at a different frequency (Kvandal et al., 2006).

The existence of 0.1 Hz oscillations in vessel radius
have frequently been reported in humans. These oscillations
correspondingly modify blood flow to produce quasi-periodic

TABLE 2 | Age and blood pressure data of the three groups.

Group N Age (y) Min/Max (y) SBP (mmHg)

Y 29 (14F) 24.4 ± 3.4 18/29 118.2 ± 16.2

A 22 (13F) 71.1 ± 6.6 61/90 123.7 ± 12.5

ATH 22 (10F) 70.3 ± 6.7 59/84 138.8 ± 16.4

fluctuations known as flowmotion (Schmidt et al., 1992). Using
the wavelet transform, 0.1 Hz oscillations have been detected in
signals measured by LDF (Kvernmo et al., 1998; Stefanovska et al.,
1999; Kvandal et al., 2003; Söderström et al., 2003; Stefanovska,
2007). There is still no general agreement about their origin,
despite extensive discussions in the literature. Some authors
attribute these oscillations to the sympathetic nervous system
(Stauss et al., 1998; Cevese et al., 2001) and have associated them
with baroreceptor activity that modulates the frequency of the
heart thereby controlling and stabilizing blood pressure. Others
have concluded that the 0.1 Hz oscillation is caused directly by
the spontaneous contractions of pressure-sensitive pacemaker
cells within the smooth muscles of the arterial walls (Johnson,
1991; Söderström et al., 2003), and thus that it does not originate
directly from the sympathetic system.

Studies on skin-flaps and under local or general anæsthesia
have further elucidated the origin of these oscillations
(Söderström et al., 2003; Landsverk et al., 2006, 2007). In
these cases recordings have been made while sympathetic
nerves reaching the vascular myocytes were either not existing,
or temporarily blocked, and spontaneous myogenic (0.1 Hz)
oscillations could be distinguished from the slower purely
sympathetic oscillation (0.04 Hz). In what follows, we
will therefore refer to the oscillations at around 0.1 Hz as
myogenic.

Myogenic oscillations, whether spontaneously activated due
to the smooth muscle cell ionic conductances, or stimulated by
a sympathetic inflow, contribute to the regulation of vascular
stiffness, which is of crucial importance in hypertension. Hence,
their evaluation in vivo could help indicate the efficacy of
different treatments.

2. METHODS

2.1. Subjects
Three groups of subjects were investigated: 29 young healthy
subjects (group Y, aged 24.4±3.4 years); 22 aged healthy
subjects (group A, aged 71.1± 6.6 years); and 22 aged treated
hypertensives (group ATH, aged 70.3± 6.7 years).

General data for all three groups of subjects are summarized
in Table 2 including their systolic blood pressure (SBP). All
subjects except ATH had SBP <150 mmHg and diastolic BP <90
mmHg. All had body mass indices <30, and skin temperature
during recording >28.5◦C. Clinically relevant information about
the ATH group is given in Tables A1, A2 of the Appendix

I. Informed consent was provided by all participants. The
study was approved by the UK Northwest Research Ethics
Committee.

Frontiers in Physiology | www.frontiersin.org 4 October 2017 | Volume 8 | Article 749

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ticcinelli et al. Microvascular Impairments in Treated Hypertension

2.2. Signals and Preprocessing
Signals were recorded for 30 min, with subjects relaxed and
supine at room temperature 21 ± 1◦C. The ECG was obtained
from a bipolar precordial lead similar to the standard D2
lead. To maximize R-peak sharpness, electrodes were positioned
on the right shoulder and in the fifth intercostal space in
the left anterior axillary line. Respiratory effort was recorded
using a belt encircling the subject’s chest, fitted with a Biopac
TSD201 Respiratory Effort Transducer (Biopac Systems Inc.,
CA, USA). Skin blood flow was measured by LDF, using a
MoorLAB blood flow monitor with an MP1-V2 probe (Moor
Instruments, Axminster, UK), with a near-infrared laser diode
producing an output power of 1.0 mW at a wavelength of
780 nm. In the resting state, the concentration of red blood
cells can be considered constant, and so a Doppler shift in
the velocity signal provides a measure of microvascular flow.
In what follows we will use “blood flow” for skin blood flow
recorded in this way (also referred to as SBF). A flexible
probe holder with probe was attached to the skin on the
inside front of the right wrist (caput ulna) by a double-
sided adhesive disk. The time constant of the flow monitor
was set to 0.1 s. The signals were recorded simultaneously
(16-bit A/D converter, sampling frequency 400 Hz) using a
signal conditioning system (Cardiosignals, Institute Jožef Stefan,
Slovenia).

The LDF signals contained no more than 1% of artifacts;
the ECG recordings included fewer than 50 ectopic beats in
total; and the breathing rates of all subjects lay within the
normal physiological parameters for the respiratory frequency
band (0.145–0.6Hz).

The LDF signals were resampled to 40Hz, and examined
visually to check for movement artifacts, which were removed by
interpolation with cubic Hermite polynomials.

R-R interval time-series (i.e., of beat-to-beat intervals, the
reciprocal of HRV) were obtained from the R-peaks in the ECG
signal (marked events method, with linear interpolation).

2.3. Analysis
We conducted a comprehensive analysis of the cardiovascular
oscillations and their interactions. In doing so, we
first investigated the existence and strength of the
oscillations, then we decomposed and extracted the
oscillations, after which we quantified their coordination
and coherence so that, in the end, we were able to
reconstruct the coupling functions describing the interaction
mechanisms. The methods used are explained succinctly
below.

2.3.1. Existence and Strength of the Oscillations –

Use of the Wavelet Transform
The signals (examples in Figure 2) were first analyzed using
the continuous wavelet transform (WT), which copes with the
inherent non-stationarity and time-variability of physiological
signals (Stefanovska et al., 1999). The WT also provides
logarithmic frequency resolution (not achievable with a Fourier
transform), thus yielding an appropriate representation of the
low frequency spectral structure. Before applying the WT, signals

were detrended by subtracting a 200 s moving average, and
de-meaned. In this way, the frequency content was strongly
attenuated below 0.005 Hz.

The continuous wavelet transform (WT) of a signal s(t) was
used in the form

WT(ω, t) =

∫ ∞

0
ψ(ω(u− t))s(u)ωdu, (1)

where ω denotes angular frequency, t is time, and ψ(u) =

1
2π (e

i2π f0u − e
(2π f0)

2

2 )e
−u2
2 (with i the imaginary unit, a central

frequency of f0 = 1, and
∫

ψ(t)dt = 0) is the complex Morlet
wavelet.

The WT belongs to the family of time-frequency
representations and contains both the phase and amplitude
dynamics of the oscillatory components in the signal. With the
normalizations of (1), the value of |Ws(t, f )|2, often called the
normalized scalogram, can be regarded as the instantaneous
power spectral estimate at each time t. We therefore refer
to |Ws(t, f )|2 as the wavelet power, so that e.g., if one has
s(t) = A cos(2π t) it will, at all times, have a peak of height A2

located at f = 1Hz. The time-averaged wavelet power is quite
similar to the usual power spectrum (estimated from the Fourier
transform after smoothing in frequency or time). However,
in the latter case the smoothing is performed with a constant
window, leading to spectral resolution of the oscillations on
the basis of their frequency difference, i.e., linear frequency
resolution. Thus e.g., the spectral resolution between oscillations
with periods of 10 and 100 s (0.1 and 0.01 Hz) will be almost the
same as of that of oscillations with periods 10 and 5 s (0.1 and
0.2 Hz). In contrast, the WT has an adaptive window leading
to logarithmic frequency resolution, distinguishing frequency
components on the basis of the ratio of their frequencies (or
periods), and thus yielding good resolution of the low-frequency
spectrum.

Two typical windows of RES and ECG signals from a young
subject are shown at the top of Figure 2A. The WT of each
signal within the investigated frequency band is shown below
its time series: a ridge corresponding to the characteristic
frequencies of cardiac (left) and respiratory (right) activity clearly
emerges in the time-frequency plane. The central frequency
characterizing each subject’s cardiac and respiration rhythms
is then determined by the peak value of the time-averaged
spectral information, shown by the arrows on the side panels of
Figure 2A.

2.3.2. Decomposition and Extraction of Oscillations –

the Use of Non-Linear Mode Decomposition
The recently-introduced method of NMD (Iatsenko et al., 2015)
enables extraction of a time-variable oscillation by following the
sequence of corresponding ridges in the wavelet transform plane
(Iatsenko et al., 2016) and isolating the noise. Features of the
method and related procedures used here include:

• The possibility of focusing the investigation of each mode on
the appropriate section of the spectrum, i.e., on the subject-
dependent central frequency detected by the WT.

Frontiers in Physiology | www.frontiersin.org 5 October 2017 | Volume 8 | Article 749

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ticcinelli et al. Microvascular Impairments in Treated Hypertension

FIGURE 2 | Decomposition into oscillatory modes. (A) Typical time windows of the signals, their wavelet transforms, and their averaged power spectra. The central

frequency of each oscillation is shown for ECG (red) and respiration (orange). (B) A 250-s window of the LDF signal from the same subject is shown in the top panel.

The time-frequency evolutions of the modes extracted by NMD (second panel) are indicated by color with heart-rate red, respiration orange, and myogenic brown.

The time evolutions of the extracted modes are plotted below, with the same color-code.

• The use of ECG and RES time series as references for
extracting cardiac and respiration oscillations from the LDF
signals.

• The sequential subtraction of each decomposedmode from the
original signal, before extracting the next one. This procedure
excluded overlapping between the oscillations, thus enhancing
the dynamical Bayesian inference (see below).

Figure 2B shows the results of NMD applied to the LDF
signal from the same young subject as in part Figure 2A.
The LDF time series is shown on the top in Figure 2B,
and the corresponding WT is shown below it in gray-scale.
The frequency evolution in time of the extracted modes is
superimposed in color on the WT: red is used for cardiac,
orange for respiration and brown for myogenic. Note that
the colored lines follow the trend of the gray ridges and
are centered around the frequencies determined in Figure 2A.
The time series corresponding to the modes are illustrated
in the three panels below the WT in Figure 2B, following
the same color code as before. Both frequency and amplitude
modulation, consistent with the WT ridges, are evident in this
representation.

2.3.3. Coordination of Oscillations – The Use of

Wavelet Phase Coherence
Frequency-resolved phase coherence is a useful technique for
studying the phase relations and coordination of the oscillations
(Mormann et al., 2000; Bandrivskyy et al., 2004; Sheppard et al.,
2012; Xie et al., 2017). The phase coherence between the two
signals s1,2(t) is determined through their WTs as

WPC(f ) =
√

〈sin(1φ(f ))〉2 + 〈cos(1φ(f ))〉2, (2)

with 1φ(f ) equal to the difference of the WT angles of s1(t)
and s2(t) at the frequency f and all times. It reflects the extent
to which the phases (and thus the underlying activities) of
these signals at frequency f are correlated. Unlike the usual
coherence measures, wavelet phase coherence takes no account
of the amplitude dynamics of the signals. This is appropriate
because the relationships between the amplitudes of common
physiological oscillations in different signals can be complicated
and non-linear, but in all cases the relationship between their
phases remains the same (up to the constant phase shift).
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Time-localized coherence. To reveal the evolution of
coherence in time, one can calculate it in a sliding window, in
which case it is called time-localized coherence (Sheppard et al.,
2012). To establish the appropriate amount of information for
a reliable coherence measure at each frequency, we use adaptive
windows of time length nc/f , which thus contain the chosen
number of nc cycles at each frequency. We use nc = 50 for the
time-localized coherence presented in Figure 5C.

2.3.4. Interaction Mechanisms – Coupling Functions

Through the Use of Bayesian Inference
Modeling the data with coupled phase oscillators (Kuramoto,
1984), we apply dynamical Bayesian inference (DBI) to extract
the optimal set of parameters describing the model. The method
is capable of isolating the noise, and following the time-
varying behavior typical of living systems (Duggento et al.,
2008; Stankovski et al., 2012; Wilting and Lehnertz, 2015). By
decomposing the system into a set of interacting phase oscillators,
it is possible to isolate the specific influence of each oscillator
on the others, in order to generate the observed behavior of
the system, i.e., the effective coupling (Kralemann et al., 2013;
Stankovski et al., 2014a).

The dynamical mechanism of interaction between a pair
of oscillators can be described visually by the form of the
corresponding coupling function (Kralemann et al., 2011;
Stankovski et al., 2012, 2015, 2017a). To facilitate comparisons
between coupling functions, two quantities have been calculated:
(i) the coupling strength (σ ) (7), based on the Euclidean norm
of the coupling coefficients (Kralemann et al., 2013; Stankovski
et al., 2015); and (ii) themaximal polar similarity (ρ) (Stankovski
et al., 2017b) (9). The latter index, introduced here, is based on
bi-dimensional correlation, and can thus capture specific features
of the coupling functions by quantifying their morphological
similarities (Kralemann et al., 2013; Stankovski et al., 2015) and
phase shift.

Numerous methods exist for the inference of interactions
between oscillators (Rosenblum and Pikovsky, 2001; Varela et al.,
2001; Paluš and Stefanovska, 2003; Bahraminasab et al., 2008;
Jamšek et al., 2010; Jirsa and Müller, 2013). Among them,
dynamical Bayesian inference (DBI) (Smelyanskiy et al., 2005;
von Toussaint, 2011; Stankovski et al., 2012) has the power
to provide information, not only about the presence of an
interaction, but also about its underlying mechanisms. In this
mathematical context, mechanism is defined by the functional
form which specifies the rule and process through which the
input values are translated into output values, i.e., for a particular
system it prescribes how the input influence from a second
system gets translated into consequences in the output of the first
system.

To tackle the inverse problem of determining coupling
connections from a measured signal, the system is modeled
as a network of N coupled phase oscillators (Kuramoto, 1984;
Pikovsky et al., 2001). The system of N stochastic differential
equations subject to noise has time-varying parameters, and it is
defined as:

φ̇i(t) = ωi(t)+ qi(φi,φj,φk, . . . ,φN , t)+ ξi(t) (3)

with i = 1, . . . ,N, where the instantaneous frequency φ̇i of
each oscillator is determined by the combination of its natural
frequency ωi and a function qi of all the N oscillators’ phases
φ1,...,N representing the coupling configuration. The stochastic
part is modeled by the Gaussian white noise ξi. The deterministic
periodic part of (3) can be Fourier-decomposed into a sum
of base functions 8k = exp[ı(k1φ1 + k2φ2 + . . . + kNφN)]
(Kralemann et al., 2011; Duggento et al., 2012), characterized by

the time-varying bank of parameters c(i)
k
:

φ̇i(t) =
K

∑

k=−K

c
(i)
k
8k(φ1,φ2, . . . ,φn)+ ξi(t), (4)

where K is the order of the Fourier expansion. In this study
it was set K = 2. Starting from the phase dynamics extracted
from the time-series, the aim is to compute the set of parameters

M = {c
(i)
k
,Dr,s} which completely describes the couplings (c(i)

k
)

and the noise (Dr,s).
Bayes’ theorem (Bayes, 1763) allows one to obtain the posterior

density pX (M|X ) of the unknownmatrix of parametersM from
X , given a prior density pprior(M) (based on observations and
representing previous knowledge of the unknown parameters),
by building a likelihood function ℓ(X |M):

pX (M|X ) =
ℓ(X |M) pprior(M)

∫

ℓ(X |M) pprior(M)dM
.

The likelihood function is computed through the stochastic
integral of the noise term over time, leading to the minus log-
likelihood function S = − ln ℓ(X |M) expressed as:

S =
L

2
ln |D| +

h

2

L−1
∑

l = 0

(

ck
∂8k(φ·,l)

∂φ
+

+ [φ̇l − ck8k(φ
∗
·,l)]

T(D−1)[φ̇l − ck8k(φ
∗
·,l)]

)

,

(5)

where summation over the repeated indices k is implicit, and the
dot index in φ· is substituted with the relevant index.

Assuming that the prior probability of parameters M is a
multivariate normal distribution, and taking into account the
quadratic form of the log-likelihood (5), the posterior probability
will also be a multivariate normal distribution. This particular
distribution for the parameters c, with mean c̄, and covariance
matrix 6prior ≡ 4−1

prior, can be used to calculate recursively the
stationary point of S only with the following four equations:

D =
h

L

(

φ̇l − ck8k(φ
∗
·,l)

)T (

φ̇l − ck8k(φ
∗
·,l)

)

,

rw = (4prior)kw cw + h8k(φ
∗
·,l) (D

−1) φ̇l+

−
h

2

∂8k(φ·,l)

∂φ
,

4kw = (4prior)kw + h8k(φ
∗
·,l) (D

−1)8w(φ
∗
·,l),

ck = (4−1)kw rw,

(6)

where the summations over l = 1, . . . , L, and over the repeated
indices k and w, is implicit. This inference technique is applied
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to the information provided by a stream of sequential blocks
coming from the time-series and a special procedure is used for
inferring time-varying dynamics. A tutorial about the practical
implementation of dynamical Bayesian inference, including
programming and software codes, is available (Stankovski et al.,
2014b; NBP-Lancaster, 2016).
Coupling strength: The strength σi,j of the coupling from the
oscillator i to j is defined as the Euclidean norm of the inferred
parameters from the phase dynamics:

σi,j =

√

√

√

√

K
∑

k=−K

(c
(i:j)
k

)2, (7)

where the parameters are defined as in Equation (4). It gives an
overall estimate of the amount of influence that the phase of the
oscillator i exerts on the frequency of the oscillator j.
Polar similarity: By calculating the correlation between coupling
functions, one can quantify their similarity (Kralemann et al.,
2013). Here we extend this concept, by computing the correlation
of a coupling function q with a bank of numerically generated
forms Q having specific shape features, in order to determine
which of those features is predominant in q. The similarity
modulus is defined as

|ρq| =
〈q̃ Q̃θ 〉

|q̃| |Q̃θ |
× 100, (8)

where the angular brackets denote averaging over the 2π ×

2π phase grid and the tilde ~ denotes the deviation from the
mean. Values of |ρ| range from 0 to 100 and are expressed as
percentages. We generate coupling functions numerically with
a shape which results from a unidirectional direct coupling of
the slower oscillator to the faster, phase-shifted by an angle θ
along the φ1 axis. Thus, the numerical form Qθ generating the
highest |ρ| carries dual information: the extent of the similarity
(described by |ρ| itself) and the corresponding phase-shift angle
θ generating it, denoted by 〈ρ〉. A natural way to represent this
information is by indicating it on the complex plane by the
maximal polar similarity index, defined as:

ρq = |ρq|e
i〈ρq〉, (9)

where i is the imaginary unit.
The meaning of this parameter is illustrated by the two examples
in Figure 3, where the gray forms have been selected for
generating very high and very low similarity indices, respectively.
The superimposed red grid shows the most similar numerical
form detected by the method. The arrows in the polar plots
correspond to the polar similarity indices: the moduli of the
arrows quantify the degree of overlap, while the angle indicates
the phase of the positive maximum in the numerically generated
function.

2.4. Statistical Analysis and Surrogates
An unpaired two-sided Wilcoxon rank sum test was used for
comparisons between groups, and statistical significance was set
at p < 0.05.

Because the phase coherence will generally be non-zero,
even for completely unrelated oscillations, one needs to fix a
threshold (significance level) above which coherence can be
regarded as indicating genuine interdependence. For standard
spectral coherence it is often set to 0.5, but such a threshold
does not take into account the possibility of bias. We
use the more reliable and accurate approach of applying a
surrogate test. At each frequency we estimate the coherence
threshold as being 95% of the highest value of the 300
coherences calculated between R-R intervals and skin blood flow
taken from different subjects. Such signals are by definition
completely independent, thus providing reliable estimates that
take account of possible computational or methodological
bias. Generally one is interested only in coherence above the
threshold, so we consider an effective coherence defined as the
actual coherence minus the calculated coherence significance
level.

Inter-subject surrogate analysis (Toledo et al., 2002; Iatsenko
et al., 2013) was also used to validate the results for coupling
functions. The same central and peripheral networks were
built for 200 combinations of randomly chosen inter-group
subjects (i.e., cardiac from subject A, respiration from subject B,
myogenic from subject C). Each such combination is therefore
composed of mutually independent signals, but preserves
the statistical characteristics of the original networks. This
technique allows us to identify the significance of the results
by comparison with the randomly created outputs, excluding
from consideration as irrelevant any result that is lower than
would be given by chance or which might arise through
bias.

3. RESULTS

3.1. Spectral Power
3.1.1. Spectral Power in RR Fluctuations
Fluctuations in R-R intervals at all frequencies decline markedly
with age (not shown), in agreement with earlier work (Agelink
et al., 2001; Antelmi et al., 2004; Shiogai et al., 2010). No
statistically significant difference between the A and ATH groups
was noticed, although the spectral power below 0.1 Hz tended to
be lower for ATH.

3.1.2. Spectral Power in Blood Flow
Very slow (<0.02 Hz), respiratory and cardiac oscillations in
blood flow increase significantly with age (Figure 4A). While
there is almost no difference in blood flow spectral power below
0.5 Hz between the A and ATH groups, there is a striking
difference between them in the cardiac frequency range, showing
that cardiac pulses in the ATH group are weaker than in the A
group.

The box-plots in Figure 4B compare the power spectral
content within the bands investigated for different groups:
Y group is represented in gold, A in brown, and ATH
in red. Group A was found to have strikingly stronger
LDF cardiac oscillations than either the Y or ATH groups
(p < 0.001). These oscillations carry most of the total power.
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FIGURE 3 | Examples of the similarity index for (A) high and (B) low similarity. The form obtained numerically from a unidirectionally coupled system, shown with a red

grid, is shifted along the coupling function obtained from measured data, shown in gray, to detect the highest similarity modulus ¯|ρ|. The arrow in the polar plot has a

modulus equal to ¯|ρ| and a phase 〈ρ̄〉 corresponding to the phase-shift of the red grid.

FIGURE 4 | Wavelet power: (A) Time-averaged wavelet power of blood flow, means over groups. Brown shading indicates significance between A and Y, red shading

between ATH and A, and yellow shading between Y and ATH. (B) Box-plots showing the cardiac, respiration and myogenic oscillations and the total power in the LDF

signal within these three intervals. The Y group is represented in gold, A in brown, and ATH in red.

For the respiration band, values of the power are less widely-
separated, yet are significantly lower in the Y group (p < 0.05).
A similar pattern was found within the myogenic band,
with statistically significant differences only for the Y-ATH
comparison.

3.2. Coherence between Fluctuations in
R-R Variability and Blood Flow
The results plotted in Figure 5B show that there is significant
coherence (i.e., above the significance threshold) between skin
blood flow and RR intervals in both the respiratory andmyogenic
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FIGURE 5 | Phase coherence: (A) Typical SBF and R-R interval (RRI) signals from each group of subjects. PU – perfusion units; (B) Wavelet phase coherence (minus

surrogate thresholds) between R-R intervals and SBF, mean over groups, where gold shading indicates significant difference between the Y and A groups and brown

shading – between the A and ATH groups; (C) Time-localized wavelet phase coherence for individuals typical of the three subject groups. Note how the coherence

within the myogenic interval is diminished almost to vanishing point in the ATH group.

intervals. However, only within the myogenic interval does
the coherence differ between the groups, declining with age
and nearly disappearing in treated hypertension. Figure 5C

presents typical examples of time-localized coherence between
R-R intervals and blood flow (Sheppard et al., 2012). It
not only shows that the coherence can be stable in time,
but also illustrates the decrease of coherence with age and
its virtual disappearance in the ATH group. In particular,
28/29 Y and 18/22 A subjects, but only 11/22 ATH subjects,
had significant coherence in myogenic interval. There were
no significant gender differences in the effective coherence
within each group (not shown). Time evolution of the average
wavelet coherence for each of the three groups is shown in

the Appendix II, Figures A3C,D. The coherence between R-
R interval time series and the finger pulse plethismography
(PPG) signal is also discussed in Appendix II and shown in
Figures A3A,B. The (PPG) signal provides a measure of changes
in arterial volume proportional to changes in arterial blood
pressure.

3.3. Coupling Functions
Figures 6, 7 show the group-averaged forms of coupling for the
Y (Figures 6A,E, 7A,E), A (Figures 6B,F, 7B,F), ATH subjects
(Figures 6C,G, 7C,G), and surrogates (Figures 6D,H, 7D,H). In
each case, the first row shows the coupling detected from the
centrally extractedmodes, while the second row shows the results
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FIGURE 6 | Group-averaged coupling functions in the central network (top row) compared with equivalent results from the peripheral network (bottom row). In each

case the color coding is: Y (gold), A (brown), ATH (red), and surrogates (gray). (A–C) Show the coupling functions qR,C
C

between the phases of centrally measured

respiratory φR and cardiac φC oscillations, and (E–G) Show the equivalent quantity qr,cc between the phase of respiratory φr and cardiac φc oscillations in the

peripheral network. (D,H) show the surrogate coupling functions computed to check the validity of the results presented in each row. The polar plot in the top-right

corner of each figure indicates the similarity index ρ for the average form (colored arrow) and for the individual subjects (gray arrows). Note how, with aging, the forms

lose amplitude in the central network and resemble the variability of surrogates in the peripheral network.

from the peripheral network. The polar graph in the top-right
corner of each plot indicates the polar similarity index ρ for each
subject (thin arrows in gray) and ρ̄ for the inter-subject average
(thick colored arrow). Values of the median similarity modulus
¯|ρ| and strength σ for each group are listed in Figure 8A.
The group distribution of similarity ¯|ρ| is shown by the box-

plots in Figures 8B–E. The lines over the boxes indicate the
statistically significant comparisons between each pair of groups
(p < 0.05 in dark red and p < 0.001 in bright red).

3.3.1. Respiration-to-Cardiac Coupling Functions
The coupling from respiration to the cardiac rhythm, considered
to be responsible for respiratory sinus arrhythmia (RSA), has
been investigated both centrally and when propagated in the
blood flow.
Central network: For Y subjects, the coupling function is roughly
sinusoidal. The golden arrow ρ̄R,C in the polar plot has close-
to-100% modulus and its phase is approximately π/2: it can be
seen from analysis of the distribution of the gray arrows that
the whole group exhibits similarly shifted forms of coupling.
For A and ATH subjects, the shapes and phases of the average
forms shown in Figures 6B,C are similar: they resemble what
has been discussed for Y subjects, but with smaller |ρ̄R,C| and a
larger number of phase-outliers. Figure 6D shows the results for
surrogates. It can be seen that the amplitude of the coupling for

surrogates is negligible when compared to the real cases, and that
the phases of surrogates 〈ρR,C〉 are scattered around the 2π plane
with very variable |ρR,C|, resulting in a significantly smaller |ρ̄R,C|.

The median values of σR,C are given in Figure 8A. In the
case of the central network, the strength of the direct coupling
exerted on the cardiac component by the respiratory mode differs
significantly from that of the corresponding surrogates, for all
groups (p < 10−8). For Y subjects, σR,C differs significantly
from that of the other groups (p < 10−6), while the A
and ATH subjects show overlapping medians (p > 0.6). The
same significance pattern appears in the similarity box-plots of
Figure 8B: only the comparison between A and ATH groups is
not significant. For the similarity, the distribution of surrogates
is spread along the 0-100% axes of |ρR,C|, with a median value
around 70%, while the distributions computed for all three Y,
A, ATH groups, are all narrowly grouped around median values
lying above 95%.
Peripheral network: Figure 6E shows that the form of coupling
discussed for qR,CC is still detectable in qr,cc for the Y group
even if with considerably smaller amplitude. The forms of
coupling for the A group (Figure 6F) and ATH (Figure 6G)
subjects are similar to that obtained from the surrogate data
(Figure 6H). The polar plots of Figures 6F,G show that the A
group and ATH subjects are characterized by lower moduli of
similarity |ρr,c|, with phase shifts 〈ρr,c〉 scattered all around 2π .
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FIGURE 7 | As in Figure 6 except that (A–C) represent the coupling functions qm,C
C

between the phase of myogenic φm and cardiac φC oscillations in the central

network and (E–G) show q
m,c
c between the phases of myogenic φm and cardiac φc oscillations in the peripheral network. Plots (D,H) are from the corresponding

surrogates. Again, the forms lose amplitude with aging in the central network, and with hypertension, resemble the variability of surrogates in the peripheral network.

The similarity boxplots in Figure 8C show that |ρr,c| for the Y
subjects is significantly higher (p < 0.05) than that for the three
other groups (including the “surrogate group”), and that there
are no significant differences between those three groups. The
coupling strength σr,c for the A and ATH groups does not differ
significantly from that obtained from surrogate data. The only
significance found was between Y group and surrogate data (see
Figure 8A).

3.3.2. Myogenic-to-Cardiac Coupling Functions
The coupling between myogenic and cardiac oscillations was also
investigated both centrally and when propagated in the blood
flow. The phase of the myogenic oscillations extracted from LDF
was used in both cases, while the phase of the cardiac oscillations
was extracted from ECG or LDF respectively.
Central network: The forms of coupling function in the first
row of Figure 7 follow the same trend as the cardio-respiratory
ones: in each group—except for the surrogates—a sinusoidal
wave clearly propagates along the φC axes. The amplitude of
the averaged forms decreases from Figures 7A,B), and from
Figures 7B,C. The polar plots show that the number of subjects
with smaller |ρm,C| and scattered 〈ρm,C〉 increases with age and
especially with hypertension. The values of |ρ̄m,C| obtained from
surrogate data shown in Figure 7D are comparatively small,
and 〈ρm,C〉 is randomly 2π-scattered. The values of σm,C in
Figure 8A, for both the A and ATH subjects are indistinguishable
from those for surrogate data. However, σm,C for the Y group
it is significantly higher than that for each of the other three

groups (p <0.05). In contrast, the similarity of forms |ρm,C| clearly
distinguishes between the ATH and A groups. Again, the box-
plots shown in Figure 8D summarize the results: it is evident
that the values for Y and A subjects do not differ, while values
for ATH subjects do not differ significantly from those obtained
from surrogate data.
Peripheral network: Figure 7E is qualitatively very similar to
Figure 7A, but with a small relative phase-shift between 〈ρ̄m,C〉

and 〈ρ̄m,c〉. The statistical analysis for σm,c and for |ρm,c|

follows the same trend detected from the central network. The
polar plot in the Figure 7F shows that the phases 〈ρm,c〉 are
clustered around a 〈ρ̄m,c〉 very close to 〈ρ̄m,C〉: from this plot
and from the golden boxes in Figure 8E, it can be seen that
most of the subjects from the A group preserve a considerable
|ρm,c| that is not statistically different from the Y group’s
distribution. For hypertension (Figure 7G), the average form of
the coupling shown in Figure 7F is more ragged. The phases
〈ρm,c〉 are scattered in the 2π plane, and the coupling between
φm and φc generates forms with small |ρm,c|. The boxes of
Figure 8E summarize the results, indicating no difference in
|ρm,c| between Y and A groups, while values for the ATH group
are indistinguishable from those obtained from surrogate data.

4. DISCUSSION

By analysis of phase coherence and coupling functions we
have been able to study how cardiovascular and microvascular
dynamical processes change with aging and hypertension using
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FIGURE 8 | Statistics for coupling parameters. (A) Table showing the median values for the coupling strength σ and modulus of similarity |ρ| for groups of Y, A, ATH

subjects, and surrogates, with median values not significantly different from surrogates are shown in gray. Box-plots picturing the distributions of the similarity modulus

|ρ| within each group, using the same color map as Figure 4. The relation between respiration and cardiac for the (B) central and (C) peripheral networks and of

myogenic and cardiac for the (D) central and (E) peripheral networks.

only resting-state recordings, without any need to stimulate or
perturb the system.

The significant increase in very slow (≤ 0.02 Hz), respiratory
and cardiac oscillations in blood flow with age (Figure 4) could
be explained by results obtained in earlier studies which showed
that small arterioles are dilated in the elderly (Kelly et al., 1995)
and that the diameter of the larger arteries increases together
with a decrease in elasticity (Levy, 2001). Hence, the increased
vessel radii and decreased vessel elasticity may have resulted
in larger oscillations. The striking difference between the A
and ATH groups time-averaged wavelet power in the cardiac
frequency range shows that cardiac pulses in the ATH group are
not restored to age matched normal. This suggests an increased
stiffness of arterioles in ATH patients, a defect that persists
despite antihypertensive therapy.

The reduction in 0.1 Hz interval coherence seen in the
ATH group (Figure 5) indicates an additional cardiovascular
system abnormality that is not restored by antihypertensive
treatment to age matched normal. The results appear to imply a
progressive impairment with age of the underlying mechanisms
of coordination between cardiac and vascular activity, and with
even greater impairment in hypertension.

The lack of significant 0.1 Hz interval coherence between R-
R and SBF in the ATH group suggests local changes of the skin
microvasculature, an inference that is supported by an additional
finding: a loss of significant 0.1 Hz interval coherence between
blood flow measured on different sites (not shown). This may
perhaps be an indication of impaired myogenic activity observed
via the blood flow signal. This explanation is consistent with the
reported increase of stiffness and basic myogenic tone in the
arteries of hypertensive patients (Feihl et al., 2006; Yannoutsos
et al., 2014), whichmay also explain the decrease in the amplitude
of cardiac oscillations in the blood flow of the ATH group
(Figure 4). This abnormality is not restored to aged matched
normal by treatment.

Coupling functions provide additional insight into the
changes that occur with aging and hypertension. For the central
network, the mechanism of RSA is captured by the coupling

functions. The sinusoidally-shaped wave propagating along the
respiration phase axes φR in Figure 6A indicates that the
coupling between φR and φC with the cardiac rhythm depends
on the phase φR: namely, the heart rate accelerates on the second
part of the respiratory cycle i.e., after inhaling (qR,CC <0), and
decelerates during the initial part of the cycle, i.e., after exhaling
(qR,CC >0). These results are consistent with earlier work (Iatsenko
et al., 2013; Kralemann et al., 2013). Furthermore, the polar plots
give additional insight into the group dynamics. The comparison
between groups in Figures 6A–C suggests that RSA weakens
but is nonetheless preserved in aged subjects. Treatment for
hypertension does not seem to influence this phenomenon.

For the peripheral network, the difference in coupling between
respiratory and cardiac waves between the groups of young and
aged subjects becomes more evident. Within this network, the
phase shift displayed by the form of coupling for young subjects
(Figures 6A,E) reflects the time-delay that the respiration wave
undergoes during its propagation to the peripheral vascular
network, Because the distribution of |ρr,c| for the aged groups
is not significantly different from that of the surrogates, we
conclude that the interaction between the phases φr and φc in
the vascular bed weakens with aging. This result is not dependent
on the propagation of the waves themselves: the investigation
of spectral power shown in Figure 4 revealed that both the
respiratory and cardiac oscillations are stronger in healthy aged
subjects than in the young group (p <0.05). Aging-related loss of
tone in the walls of big vessels is thought to play a role by offering
less resistance to blood-flow and therefore easing the propagation
of centrally-generated waves (Levy, 2001).

The most interesting outcomes of the study are related
to the myogenic oscillation. The reduced coherence of the
myogenic interval seen in the ATH group (Figures 5B,C)
indicates a cardiovascular system abnormality that is not restored
by antihypertensive treatment. The results appear to imply a
progressive impairment with age of the underlying mechanisms
of coordination between cardiac and vascular activity, and
with even more impairment in hypertension. Antihypertensive
treatment is evidently unable to correct this defect; we found
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no evidence to suggest that the medications listed in Table A1

differ in efficacy in this respect. The treatments were diverse,
however, and the number of subjects under exactly the same
treatment regimens were too small to allow for a reliable
statistical comparison.

To get deeper insight into this “asynchrony,” myogenic-to-
cardiac couplings were analyzed and studied here for the first
time. For young subjects, the coupling strength σm,C of the
central network is significantly higher than that for the other
groups. This result indicates that the myogenic activity of the
skin microvessels shares functional properties with those of
the cardiac muscle, and it confirms that the coupling between
myogenic activity detected in microvasculature and cardiac
activity fades with aging. Box-plots in Figure 8D show how both
Y and A, but not the ATH group, have a similarity modulus
significantly higher than surrogates.

Analysis of the peripheral network for the myogenic-cardiac
interaction generated similar results. There was an even clearer
difference between the moduli of similarity obtained from A
and ATH subjects. Box-plots for the similarity of the forms
in Figure 8E cluster the subjects into two statistically distinct
groups: Y with A, and ATH with surrogates.

It had already been shown that antihypertensive medication
does not necessarily improve endothelial function (Ghiadoni
et al., 2003). Moreover an impaired efficiency of myogenic
activity within the hypertensive vascular system was also
suggested by an earlier study, which did not improve with
anti-hypertensive treatment (Rossi et al., 2006). Results for the
similarity modulus |ρ| demonstrate that myogenic and cardiac
oscillations are less strongly coupled in hypertensive than in
healthy aged subjects, despite the treatment. This highlights how
the comparative similarity of forms can reveal characteristics
of the coupling mechanism that would remain undetected
by investigations just based on coupling strength. Counter-
intuitively, the myogenic spectral power (box-plots in Figure 4)
was found to be significantly higher in hypertensive than in
young subjects. Similarly to what was discussed for the case
of respiration, this outcome supports the theory that what is
affected is not the magnitude of the oscillation, but its capacity
to adjust to the dynamical interactions to which it is being
subjected.

One can expand the analyses presented here, and the phases
of the three oscillatory components can also be extracted from
other signals, if simultaneously recorded. One such candidate
is a signal providing information proportional to the blood
pressure, rather than to blood flow as used in this study. For
example, the signal of finger pulse photoplethysmography (PPG,
see e.g., Allen, 2007) was simultaneously recorded in all our
subjects and is therefore available together with the other signals.
The changes in finger volume result from the involvement
of arterioles, as well as the microvasculature, and hence the
myogenic contribution comes on average from larger vessels
than those recorded by the LDF. To verify whether the observed
difference in coherence between the R-R intervals and the blood
flow at the myogenic interval between A and ATH groups
also exists when larger vessels are included, the same analysis
as that presented in Figure 5B was performed, but using the

PPG signal. No statistically significant differences were observed
between the two groups (see Appendix II), which can be taken
to indicate that the blood pressure control mechanisms related
to smooth muscle cells are probably restored by the current
antihypertensive treatment. This further demonstrates that it is
the endothelial involvement (Furchgott and Zawadzki, 1980) that
is still impaired, as this is dominant in the microvasculature.
These results are in agreement with an earlier study (Ebert
et al., 1992) where, based on recordings of muscle sympathetic
nerve activity (MSNA), it was shown that, although the
parasympathetic component of the arterial baroreflex becomes
impaired with advancing age, the sympathetic component can
be well maintained in healthy individuals even into the seventh
decade. The methodology presented here can thus be further
used to investigate coherences and couplings from any signals
recorded simultaneously from the cardiovascular system. Note,
however, that special care is needed: a minimum length of
recording is required; and the phase of the oscillations should
be extracted with sufficient precision for the calculations to be
meaningful.

A difficulty in doing research on treated hypertensive patients
is the large range of different drugs, each with its own separate
mode of action, that one may encounter. Indeed, as shown
in Table A2, a wide variety of drugs was used to treat the
subjects included in our study: their inclusion was based on
the fact that their hypertensive treatment has been individually
optimized for maximal success. So our study does not make
it possible to find out which of the drugs are less, or more,
effective. Nonetheless, in a cohort of patients with optimally
treated hypertension, according to the current doctrines, we have
shown that there is still residual microvascular impairment. The
same methodology can clearly be used to evaluate the effect of
individual drugs, or for a longer-term follow up of a treatment
for hypertension, and may help in the development of new
medications.

In conclusion, by investigating the deterministic properties
of the HRV signal together with simultaneously recorded
respiration and microvascular blood flow signals, and by
extracting time-dependent parameters, we have gained
insights that are clinically relevant to studies of aging
and hypertension. While cardiorespiratory couplings and
interactions in general have been studied previously, here
we have investigated for the first time phase coherence
and coupling between myogenic activity and cardiac and
respiratory oscillations. The significant impairment of coherence
within the myogenic interval of the ATH group as recorded
in the microvasculature seems to imply that some of the
current treatments for essential hypertension fail to restore
microvascular regulation. Similarly, treated hypertensive
subjects differ from the healthy control group of the same
age in terms of the coupling between cardiac and myogenic
oscillations within the peripheral network. Thus hypertension
affects the myogenic microvascular structure by uncoupling
the system of oscillators of which it is composed. It is clear
that current anti-hypertensive treatments, while successfully
controlling blood pressure, do not restore microvascular
function.
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APPENDIX I – PARAMETERS FOR
PATIENTS AND HEALTHY SUBJECTS

TABLE A1 | Summary of the hypertension-related parameters and of the

medication being taken by the ATH group.

Parameter Mean ± SD Medications Number

taken of subjects

Age (years) 70.3 ± 6.7 Beta-blockers 10

Systolic pressure (mmHg) 138.8 ± 16.4 ACE inhibitors 10

Ankle brachial pressure

index

1.08 ± 0.09 Angiotensin receptor

blockers

4

Total cholesterol (mmol/l) 4.26 ± 1.22 Calcium channel

blockers

9

HDL cholesterol (mmol/l) 1.36 ± 0.38 Diuretics 8

LDL cholesterol (mmol/l) 2.32 ± 0.99 Statins 16

Triglycerides (mmol/l) 1.31 ± 0.53 Aspirin 12

hs-CRP (mg/l) 2.62 ± 2.03

Capillary refill time (s) 2.5 ± 0.6

Height (m) 1.68 ± 0.10

Weight (kg) 77.6 ± 16.5

Body mass index (kg/m2) 27.2 ± 3.9

Time since diagnosis

(years)

10.0 ± 6.2

TABLE A2 | Individual characteristics of the ATH group: Y, Yes; N, No; NA, Not available. The Yes boxes are shaded for easier visual appraisal.

Age Sex Blood

Pressure

(mmHg)

Years

since

diagnosis

RR-PPG

myogenic

coherence

RR-LDF

myogenic

coherence

Beta-

blockers

ACE

inhibitors

Angiotensin

receptor

blockers

Calcium

channel

blockers

Diuretics Statins Aspirin

70 F NA 16 Y Y Y N N N N Y N

69 M NA 7 Y Y N Y N N N Y Y

71 M 162 10 Y N Y Y N N Y Y Y

66 F 150 12 Y Y N Y N N Y Y Y

60 F 171∗ 9 Y Y N N N N N N Y

75 F 145 6 Y N Y N N Y Y Y Y

70 M 131 7 Y N Y N N Y N Y Y

79 M 120 13 Y N N Y N N N N N

74 F 145 14 Y N N Y N N Y Y Y

80 F 138 NA Y N Y N Y Y N Y Y

68 M 115 2 Y N N Y N N N Y Y

64 M 155 8 Y Y Y Y N N N Y N

68 M 125 6 Y N Y N Y N N Y N

84 F 145 28 Y N Y N N Y N Y N

59 M 125 6 Y N N N Y N N Y N

69 F 128 8 Y N N Y N N N N N

83 M 140 17 Y Y N N N Y Y Y Y

72 M 128 12 Y Y Y N N Y Y Y Y

65 M 120 2 Y Y N Y N Y N Y Y

70 F 120 NA Y Y Y Y N Y Y N N

65 M 155 14 Y Y N N Y N Y N N

65 F 160 2 Y Y N N N Y N N N

∗A typical “white coat hypertensive,” her readings ranged from 171 mmHg (on the day of measurements), through 150 mmHg with a doctor, down to 129 mmHg with a nurse.

APPENDIX II – EFFECT OF
HYPERTENSION ON PPG DYNAMICS

To further investigate the signatures of aging and treated
hypertension in cardio-vascular regulation, we describe in
this Appendix results obtained by phase-coherence analysis of
pulse plethysmography (PPG) time series. The analyses and
comparisons between groups were performed in the same way
as for the laser Doppler flowmetry (LDF) time series discussed in
the main text.

Figure A1 illustrates schematically how both the LDF and
the PPG data reflect the oscillations of the circulatory activity
associated with different vascular levels, i.e., those of the capillary
bed for LDF and those of the bigger vessels for PPG. The PPG
was measured by a Finapress device (Omboni et al., 1993).

The different nature of the two signals is evident in Figure A2,
where LDF, RR-interval and PPG time series are shown for a
typical subject from each group: young (Y) in gold, aged (A) in
brown, aged treated hypertensive (ATH) in red.

The coherence analyses are compared in Figure A3, with RR-
PPG in panels (A,B) and RR-LDF in (C,D). The results plotted
in Figures A3B,D show that for all groups there is significant
coherence (i.e., above the significance threshold) in the coherence
of both PPG and LDF and the RR intervals in the respiratory and
myogenic intervals.
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For the PPG-RR coherence shown in Figure A3B, there
is a significant difference between the Y and A (gold
shading) and the Y and ATH groups (gray shading), but
no significant difference between A and ATH. The similarity
between A and ATH coherence, when compared to the Y
pattern, also emerges from the time-localized group average in
Figure A3A.

In contrast, the coherence between LDF and RR appears to
decline with age, and it nearly disappears in treated hypertension,
as illustrated in Figure A3D. Moreover, the comparison between

A and ATH, which cannot be distinguished by the PPG-RR
coherence, exhibits significant differences within the myogenic
interval, as discussed in the main text. Figure A3C presents the
group-averaged time-localized coherence between RR intervals
and blood flow.

These findings suggest that the LDF dynamics, which is a
measure of the oscillatory patterns of capillary flow, is more
sensitive to the effect of treated hypertension than PPG dynamics,
probably because the latter reflects oscillations within bigger
vessels.

FIGURE A1 | Schematic representation of the interactions between respiratory, cardiac and vascular activity, together with the corresponding recordings: respiratory

effort signal (RES), electrocardiogram (ECG), laser Doppler flowmetry (LDF) and pulse plethysmography (PPG). In the resting state, the concentration of red blood cells

can be considered constant, and so a Doppler shift in the velocity signal provides a measure of microvascular flow. In contrast, the finger PPG provides a measure of

changes in arterial volume proportional to changes in arterial blood pressure.

FIGURE A2 | Typical time series: (A) Skin blood flow measured by the LDF (also referred to as SBF); (B) RR interval (RRI); and (C) PPG signals from each group of

subjects. PU stands for perfusion units, and AU for arbitrary units.
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FIGURE A3 | Comparison of RR-PPG, (A,B) with the corresponding RR-LDF, (C,D) phase coherences. Panels (A,C) show time-localized phase coherence obtained

as a average for each group. Panels (B,D) show the time-averaged wavelet phase coherence (minus surrogate thresholds), and then averaged over groups; gold

shading indicates significant difference between the Y and A groups, gray shading between Y and ATH, and brown shading between the A and ATH groups. Note

how the coherence within the myogenic interval is higher in the Y than in the A and ATH groups in (B) and that it is diminished almost to vanishing point in the ATH

group in (D).

Frontiers in Physiology | www.frontiersin.org 20 October 2017 | Volume 8 | Article 749

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	Coherence and Coupling Functions Reveal Microvascular Impairment in Treated Hypertension
	1. Introduction
	1.1. Background: Cardiovascular Oscillations
	1.1.1. Cardiac and Respiratory Oscillations
	1.1.2. Vasomotion and Myogenic Oscillations


	2. Methods
	2.1. Subjects
	2.2. Signals and Preprocessing
	2.3. Analysis
	2.3.1. Existence and Strength of the Oscillations – Use of the Wavelet Transform
	2.3.2. Decomposition and Extraction of Oscillations – the Use of Non-Linear Mode Decomposition
	2.3.3. Coordination of Oscillations – The Use of Wavelet Phase Coherence
	2.3.4. Interaction Mechanisms – Coupling Functions Through the Use of Bayesian Inference

	2.4. Statistical Analysis and Surrogates

	3. Results
	3.1. Spectral Power
	3.1.1. Spectral Power in RR Fluctuations
	3.1.2. Spectral Power in Blood Flow

	3.2. Coherence between Fluctuations in R-R Variability and Blood Flow
	3.3. Coupling Functions
	3.3.1. Respiration-to-Cardiac Coupling Functions
	3.3.2. Myogenic-to-Cardiac Coupling Functions


	4. Discussion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix I – PARAMETERS FOR PATIENTS AND HEALTHY SUBJECTS
	Appendix II – EFFECT OF HYPERTENSION ON PPG DYNAMICS


