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ABSTRACT

We investigate the net effect of a multitude of thin magnetic tubes on the energy of ambient
acoustic p modes. A p mode, when incident on a thin magnetic flux tube, excites magneto-
hydrodynamic (MHD) tube waves. These tube waves propagate vertically along the flux tube
carrying away energy from the p-mode cavity resulting in the absorption of incident p-mode
energy. We calculate the absorption arising from the excitation of sausage MHD waves within
a collection of many non-interacting magnetic flux tubes with differing plasma properties. We
find that the shape and magnitude of the absorption, when compared with the observationally
measured absorption, favours a model with a maximum-flux boundary condition applied at the
photosphere and a narrow distribution of plasma $ in an ensemble with mean 8 value between

0.5and 1.
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1 INTRODUCTION

The solar f and p modes of oscillations are stochastically excited in
the solar interior and the measured relationship between their fre-
quencies and wavelengths may be used to infer information about
the structure and dynamics of the solar interior. It is well estab-
lished that these oscillations are influenced by the properties of
magnetic structures such as sunspots and plages. The studies by
Braun, Duvall & LaBonte (1987, 1988), Bogdan & Braun (1995)
and Braun & Birch (2008) suggest that both sunspots and plages
are prolific absorbers of p-mode power. Thus, the role of subsurface
field structures in modifying the properties of f and p modes has
been the focus of many theoretical investigations seeking to under-
stand the physical mechanism responsible for this absorption (e.g.
Spruit 1991; Bogdan & Cally 1995; Bogdan et al. 1996; Crouch
& Cally 2005; Jain et al. 2009). In particular, Jain et al. (2009,
hereafter referred to as JHBB) modelled a plage as a collection
of thin, untwisted, axisymmetric, vertical magnetic flux tubes and
attributed the absorption observed in plage to the excitation of mag-
netohydrodynamic (MHD) tube waves by the pummeling of the
flux tubes by the p-mode motions. They considered all the flux
tubes comprising the plage to be identical, with the same magnetic
flux ¢ and plasma S (the ratio of gas to magnetic pressure). They
found that, depending on the boundary condition applied at the
photosphere, absorption coefficients exceeding 50 per cent could
be achieved. However, in reality, the flux tubes within a plage are
not identical, and thus, in this paper, we consider a heterogeneous
collection of thin flux tubes with varying plasma 8. We then in-
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vestigate the net effect of such a collection on the absorption of
p modes.

2 THE EQUILIBRIUM

The thin magnetic flux tubes within the collection are all straight,
vertically aligned and axisymmetric. They are embedded within a
neutrally stable, polytropically stratified atmosphere. We thus model
the field-free medium as a plane-parallel atmosphere with constant
gravity, g = —gZ. The pressure, density and sound speed vary
with depth z as power laws with a polytropic index a. We truncate
the polytrope at z = —zp which represents the model photosphere
(see Bogdan et al. 1996 and Hindman & Jain 2008 for the details).
Above the truncation depth z > —zy we assume the existence of
a hot vacuum (pey — 0 with Ty, — 00). For each flux tube in
the collection, we assume that the tube is sufficiently thin that the
tube is in thermal equilibrium with its field-free environment. A
consequence of this assumption is that the plasma g is constant
with depth within the tube and the radial variation of the magnetic
field across the tube may be ignored (see Bogdan et al. 1996).
However, while the value of B is constant within a given tube,
is allowed to vary from tube to tube. In particular, we consider the
probability that any given tube has a given value of § is given by
the distribution function,

_®B ﬂo)z
P(p)=CBe 2, >0 )]

where S determines the peak of the distribution and o provides the
distribution’s width. Further, the normalization constant C is given

by
0 (p—pp)?

C*'z/ Be 22 dp. 2
0
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3 THE GOVERNING EQUATION

The incident p mode in the non-magnetic medium can be described
by a single partial differential equation for the displacement poten-
tial ®:

0’ L 3
¢ 8%
where ¢? is the square of the adiabatic sound speed. Writing
(@a+1) , aw’z V2
= , VT = , Ky, = [}
2 g 2k, 70

equation (3) can be transformed into an ordinary differential equa-
tion that supports plane wave solutions of the form

O(x,1) = Ae e 0,(2), )
where
0,(2) = (=2k,2) "W, L (=2k,2).

Here w is the temporal frequency and k,(w) the wavenumber eigen-
value; A is the complex wave amplitude and Q,(z) is the vertical
eigenfunction proportional to Whittaker’s W function (Abramowitz
& Stegun 1964). Assuming that the Lagrangian pressure perturba-
tion vanishes at the truncation depth, we calculate the eigenvalues
and eigenfunctions for the truncated polytrope.

In the framework of MHD, thin flux tubes support both longitu-
dinal (sausage) waves and transverse (kink) waves but in this paper
we only study the absorption of p modes due to the excitation of
the sausage waves [see Hindman & Jain (2008) for details of the
excitation of kink waves; see also Spruit (1984) for a derivation of
governing equations for tube waves]. When a thin flux tube is pum-
meled by a p-mode wave, the vertical fluid displacement of sausage
waves within the tube can be described by

? 229 gl+a)d],  (+ap+1) 30
vt H T m 0" T m o

(5)
where

H =2a+ B(1 +a).

Note that magnetic flux tubes, in general also allow torsional
Alfvén waves but we consider a neutrally stable atmosphere for
which acoustic-gravity waves are irrotational and cannot couple to
torsional waves. Furthermore, we do not consider the excitation
of tube waves by incident f modes because the absorption mea-
surements reported by Braun & Birch (2008) that we are trying
to model lack measurements for the f mode. The observationally
measured absorption by Braun & Birch (2008) are for p modes
with radial orders 1-4 and show a ‘bell-shaped’ frequency depen-
dence; absorption increases with frequency with a peak of roughly
20 per cent between 3 and 4 mHz followed by a decrease beyond
4 mHz. Azimuthal averaging in these observations results in the
measured absorption coefficients mostly being sensitive to axisym-
metric p modes (Aaron Birch, private communication). Hence we
are justified in only considering the excitation of sausage waves.

4 ABSORPTION COEFFICIENT FOR A SINGLE
MAGNETIC FLUX TUBE

The observationally measured absorption coefficient is traditionally
defined as the ratio of the difference between the ingoing and out-
going power to the ingoing power at the same frequency w, radial
order n and azimuthal order m. In the current work we assume that
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part of the ingoing p-mode energy goes into the excitation of the
magnetic tube waves and there is a deficit in the outgoing p-mode
energy as a result of this. We thus, theoretically compute the absorp-
tion coefficient, «, associated with this damping mechanism. The
absorption coefficient due to the excitation of sausage tube waves
is given by (see JHBB for the details of the derivation)

o, = Fu(B, ) ,

Ul Qkazo) ™' 1
22+yB)B+1) v,  Bozg
X (IQ+TP+IZIP - 19”7 +8),

Fu(B, w) =

°T B+l ©

where H,, is the energy flux for an outgoing p mode; By is the tube’s
photospheric magnetic field strength, ¢ is the flux tube’s magnetic
flux, and Py is the photospheric pressure in the field-free atmo-
sphere. Also, 7 is the interaction integral between the incident p
mode and the sausage tube wave (Z* is the complex conjugate of 7)
and €2 is a boundary condition parameter applied at the photosphere
(see Hindman & Jain 2008 for details). The S term is due to the
p-mode driver at the surface and is essentially the product of
the p-mode eigenfunction and the real part of the sausage tube
wave displacement.

5 ABSORPTION COEFFICIENT FOR A
MODELLED PLAGE

Ignoring the excitation of acoustic jacket waves (Bogdan & Cally
1995) and the effects of multiple scattering, we model a plage as a
collection of many non-interacting flux tubes and estimate the total
absorption coefficient for the plage as follows. First, we calculate
the absorption due to each magnetic flux tube using the previous
expression. Next, the absorption coefficient «,(r, @) measured at
position r by local helioseismic techniques such as ridge-filtered
holography (Braun & Birch 2008) are related to the tubes through
a spatial weighting function or kernel K,,(r, ),

a(r, @)=Y Fu(Bi, ) ¢; Ku(ri =1, 0), )

where each flux tube in the plage is labelled by an index i, and r;,
¢; and B; are the position, magnetic flux and plasma 8 parameter,
respectively, for tube i.

If all the flux tubes were identical, the quantity F,(8;, @) could
be taken outside the summation sign and the remaining sum would
be simply the kernel-weighted magnetic flux, ®,(r, »), which is a
measurable quantity. This is exactly how the absorption coefficient
for a simulated plage was estimated in JHBB where all flux tubes
had the same B and ¢. Here, however, we will be considering a
particular distribution (see equations 1 and 2) of flux tubes. Thus,
we compute an ensemble average of the absorption coefficient,

(an(r, w)) = <Z Fu(Bi, 0)pi Ky (ri — 1, w)> . ()

Assuming that the locations r;, magnetic fluxes ¢; and plasma
parameters B; of the tubes are not correlated, we have

<an(r’ w)) = fn(w)(an(r’ a)), (9)

with

_ o0 B-p)*

Fulw) = C/ Fu(B,0)pe 222 dp, (10
0
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O,(r, ) = <Z ¢iK(ri —r, w>>

~ [dr' |B(r)| K,(r' —r,w).

1D

We show the results for stress-free and maximum-flux boundary
conditions (see Hindman & Jain 2008) satisfied by the sausage
waves at the photosphere. The stress-free boundary condition re-
quires the total stress to vanish at the photosphere, and thus, the
energy flux through the surface is zero. The maximum-flux bound-
ary condition, on the other hand, is obtained by maximizing the
energy flux that can pass upwards through the model photosphere.
Hence, the maximum-flux boundary condition is also a minimal
reflection condition where we have an upper limit on the amount of
sausage tube wave energy that can be transmitted into the regions

above the surface.

6 RESULTS AND DISCUSSION

We compute equation (9) for different distributions of g values
(differing B¢ and o). The magnetic flux ®,, and the kernel functions
K, are determined from observation and are identical to those used

by JHBB.

In Fig. 1, we plot the absorption coefficient for a modelled plage
as a function of frequency. We have shown the results for maximum-
flux (top panel) and stress-free (bottom panels) boundary condi-
tions. The symbols in this figure are for a modelled plage that is
composed of a host of magnetic flux tubes whose B values have
been drawn from a distribution defined by equations (1) and (2).
The three horizontal panels correspond to different 8, values in the
distribution, while the different symbols for the curves denote two
different distribution widths o (0.2 and 2). The solid and dashed
curves correspond to absorption by a plage comprised of a multi-
tude of identical flux tubes, all with the same value of B equal to
the mean of the distribution i.e. 8 = B (see Table 1). As expected,
when the distribution of 8 values is narrow, the absorption coeffi-
cient for the distribution of tubes is well matched by a collection
of identical tubes, all with 8 = B. When the distribution is broad,

maximum-—flux condition

2.5 T
B.=0.50

Frequency (mHz)

2.5

maximum-—flux condition

Table 1. Mean beta, B for the modelled
distribution function.

Bo 0.5 1.0 1.5

Bforoc =02 0.8 1 1.5
Bforo =2 2.73 2.98 3.25

substantial differences arise between the distribution of tubes and
the collection of identical tubes for stress-free case. This is because
the absorption for a single tube is nearly a linear function of B
for the maximum-flux boundary condition while for the stress-free
boundary condition, the absorption is a rapidly decreasing function
of B. This can be seen in Fig. 2 where we have plotted the absorp-
tion coefficient, «, for a single tube as a function of plasma 8. The
different line-style curves are for various radial order p modes. The
near-linear dependence of « on B is clear for the maximum-flux
boundary condition case.

Note that for a wide distribution of tubes (o = 2.0), the absorp-
tion coefficient for maximum-flux boundary condition is greater
than 1 for the pl and p2 modes.This is clearly not desirable and
is a consequence of the weak absorption approximation used in
our formalism. We assume that each individual flux tube absorbs
energy from the incident p mode independently of other flux tubes
around it. However, in reality when there are many tubes present
and their net absorption is significant, the ingoing p-mode energy
sampled by an individual tube is far less than that of the incident
p mode. So, the assumption of weak absorption considered here
overestimates the absorption. Also, the absorption coefficient is
sensitive to the upper boundary condition. The stress-free bound-
ary condition (complete reflection) produces weak absorption for
high-8 tubes and maximum-flux boundary condition (minimum re-
flection) yields very high absorption for high-8 tubes. The two
boundary conditions considered here represent lower and upper
bounds on the wave reflection at the surface but in reality the ac-
tual reflection at the solar surface lies between these two extreme
cases.

maximum-—flux condition

£,=1.00

T 25 T T
B.=1.50

Frequency (mHz) Frequency (mHz)

Figure 1. Absorption coefficient as a function of frequency for an ensemble of many thin, magnetic flux tubes with plasma g varying between 0 and co. The
top and bottom panels are for maximum flux and stress-free boundary conditions, respectively, at the photosphere. We chose the distribution function given in
equation (1), characterized by the parameters Bp and o. The filled circles and squares are for o = 0.2 and 2.0, respectively. The solid and dashed lines represent
the corresponding absorption coefficients for a collection of identical tubes in which the 8 value for each tube was selected to be the same as the mean value
of the distributions defined by equations (1) and (2). Each mode order is denoted by a different colour (online): black (p1), red (p2), green (p3), blue(p4). Note

that absorption decreases with increasing radial order.
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Figure 2. Absorption coefficient for a single tube as a function of plasma § for a given frequency. Each mode order is denoted by a different linestyle: dashed

(p1), dot—dashed (p2), dash—dot—dotted (p3) etc. Note different scale on y-axis.

7 CONCLUSIONS

We compute absorption coefficients for a modelled plage assum-
ing that the plage is comprised of a collection of non-interacting,
vertical, axisymmetric, thin, magnetic-flux tubes. We have shown
that reflection of sausage waves at the solar surface and the plasma
properties of the magnetic flux tubes in an ensemble are some of
the factors that strongly affect the energy loss of p modes in a
magnetic structure. In particular, we have shown that as long as
the plasma parameter 8 has a narrow range of variation with B¢
< 1, the macroscopic absorption coefficient of the collection ef-
fectively depends only on the mean value of 8 for different beta
flux tubes. For a stress-free boundary, the width of the distribu-
tion plays an important but lesser role due to the non-linear de-
pendence of « on B. In conclusion, the shape and magnitude of
the absorption, when compared with the observationally measured
absorption, favours a model with maximum-flux boundary condi-
tion and a narrow distribution of plasma g in an ensemble with
mean g value between 0.5 and 1. Such conditions produce a collec-
tive absorption coefficient with significant amplitude (>0.1) that
reaches a maximum between 3 and 4 mHz. Wide distributions
(o > 1.0) or distributions with Sy > 1 produce absorption coef-
ficients that are too large in magnitude. This finding is consistent
with photospheric observations of the spatial distribution of mag-
netic field within plage. A range of § values between 0.5 and 1.0
corresponds to a range of photospheric field strengths between 1.2
and 1.4 kG. Direct observations of the field strength distribution
within plages typically peak around 1.3 kG with a width of 0.3 kG
(Rabin 1992; Martinez Pillet, Lites & Skumanich 1997; Lagg et al.
2010).
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