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Abstract—In prior-research the authors have demonstrated
that, for stencil-based numerical solvers for Partial Differential
Equations (PDEs), the parallel performance can be significantly
improved by selecting sub-domains that are not cubic in shape
(Saxena et. al., HPCS 2016, pp. 875-885). This is achieved through
accounting for cache utilization in both the message passing
and the computational kernel, where it is demonstrated that
the optimal domain decompositions not only depend on the
communication and load balance but also on the cache-misses,
amongst other factors. In this work we demonstrate that those
conclusions may also be extended to more advanced numerical
discretizations, based upon Adaptive Mesh Refinement (AMR).
In particular, we show that when basing our AMR strategy
on the local refinement of patches of the mesh, the optimal
patch shape is not typically cubic. We provide specific examples,
with accompanying explanation, to show that communication
minimizing strategies are not necessarily the best choice when
applying AMR in parallel. All numerical tests undertaken in this
work are based upon the open source BoxLib library.

Index Terms—Partial Differential Equations ; Adaptive Mesh
Refinement ; Finite Difference ; Domain Decomposition ; Cache-
misses

I. INTRODUCTION

Solving Partial Differential Equations (PDEs) forms a cen-

tral part of Scientific Computing. Since the analytical solution

is infeasible in most cases, they are discretized over a domain

and solved using direct or iterative methods on computer

systems. The discretized domain is most simply represented

using a single uniform grid. However, for increased accuracy

in particular regions, instead of refining the entire grid, those

particular regions may be further refined according to some

criteria. Adaptive Mesh Refinement (AMR) [1], [2], [3] is a

technique where the compute resources are directed towards

obtaining an increased precision in the solution in a particular

region of interest. The region of interest is dependent on

the particular application and can, for example, be a space-

region where the solution transitions rapidly. Thus, instead

of approximating the solution on a globally refined grid, the

solution can be obtained with less overall compute work by

refining in a certain local region. BoxLib [4] is a software

library which may be used for developing parallel block

structured Adaptive Mesh Refinement (AMR) applications in

two and three dimensions. BoxLib has been written with

a combination of C++ and Fortran90. In addition, a pure

Fortran90 version also exists. For simplicity and clarity the

current work will only use and refer to the pure Fortran90

version of BoxLib. However, alternative parallel AMR libraries

do exist, p4est [5] and Paramesh [6], for example.

II. MOTIVATION, FOCUS AND CONTRIBUTION

Our work in [7] showed that only minimizing

communication is not sufficient to obtain optimal domain

partitions for stencil codes on uniform 3-D grids. Thus,

contrary to the generally accepted practice of using

cubic sub-domains which only minimize the volume of

communication, using non-cubic partitions which optimize

cache-misses [7] can yield better performance. To this effect

we developed a high level cache-aware model by utilizing

only the cache-line length that analyzed and minimized the

sub-domain level cache-misses to optimize domain partitions

in Stencil-based codes. To model the cache-misses, we used a

7-pt stencil in 3-D, an unweighted Jacobi solver and assumed

sub-domains with a 1-element deep ghost/halo zone. The 7-pt

stencil used a weighted contribution from the six immediate

data neighbours to update the solution at a point. Though the

model was derived using a Finite Difference discretization and

a 7-pt stencil, it applies in general to a 19-pt/27-pt stencil and

Finite Element/Finite Volume discretizations with appropriate

qualitative and quantitative differences. Our experiments

demonstrated the efficacy of our model by simulating the

Laplace equation (second order Elliptic PDE) on a unit cube

with Dirichlet boundaries.

For the purpose of identifying and demarcating the sources

of cache-misses, each sub-domain was visualized to be made

up of three distinct parts : (i) The Independent Compute

(IC) kernel which does not require data from other processes

for its update. (ii) The Dependent Planes (DP) i.e. the

next-to-boundary layers that need data from other processes

for updating the mesh points. (iii) The ghost/halo zone

which acts as a buffer to store the incoming data from other

processes. The cache-misses then arise from updating the IC

and updating/packing/unpacking the DP. We concluded that

“close to 2-D” partitions for 3-D Stencil codes offered better

performance than the communication minimizing partitions

returned by the default MPI_Dims_create() Cartesian

topology of MPI. A Cartesian Topology in MPI [8] is a virtual



geometrical arrangement of processes. We advocated that a

balance be maintained between minimizing cache-misses and

the communication volume for obtaining optimal partitions

instead of minimizing only the communication volume.

Our aim in the current work is to evaluate the performance

and extendibility of our model when solving problems using

AMR software to produce locally refined meshes. We con-

tribute in the following ways :

• Implementation of a new layout simulating the MPI

Cartesian Process Topology [8] in BoxLib and its per-

formance evaluation (Section V and Section VII-A).

• Demonstrate that the hypothesis formulated in [7] also

holds for single grid codes in BoxLib despite the non-

overlap of communication and computation (Section

VII-A).

• An assessment of the performance impact of utilizing

non-cubic boxes in AMR techniques and to demonstrate

that a communication minimization scheme does not gen-

erally yield the optimal execution time (Section VII-B).

III. RELATED WORK

To the best of our knowledge, this is the first work to

consider the impact of patch shape on the parallel performance

of AMR-based solvers for Elliptic PDEs. Many software

libraries, such as Paramesh [9] for example implicitly

assume the use of cubic mesh patches in their parallel AMR

implementation. Others such as BoxLib do permit non-cubic

patches/boxes, however the box shape is determined purely

based upon accuracy considerations rather than parallel

performance. Indeed, the use of BoxLib library, by default

gets only limited ability to control the box shapes. In this

paper all of our numerical tests are undertaken with our own

Finite Difference codes written to comply with BoxLib data

structures.

Adaptive Mesh Refinement is a technique where a locally

refined portion of the grid/mesh is solved at a higher

resolution than the rest of the domain [1]. An application of

such methods could be simulating a small area of interest

with greater resolution as compared to the remaining region.

For e.g., a tornado in a storm or air flow near the fuselage of

an air plane can be areas of local interest in a global region

[10]. AMR is extremely useful for applications involving a

large gradient change, phase change, discontinuities, shocks

and is implemented by adding new cells/grid points and

deleting old cells/grid points [11]. The main goal of AMR is

to obtain a desired accuracy of solution with the least possible

mesh points, thus implying an optimal use of computational

resources.

AMR can be used for both structured (SAMR) and

unstructured meshes (UAMR) [1], [9]. SAMR uses logical

rectangular grids refined spatially and temporally. The main

advantage of SAMR is the ease with which the neighbours of

a mesh point can be decoded/located. Refinement generally

produces a hierarchy of grids at different resolutions. The

level of a grid can be defined as the number of grids below

it where the grid at level l1 > l2 is finer than the grid at l2.

Mostly the boundaries of finer grids coincide with the coarse

grid cells to simplify inter-level communication and numerical

approximations. In a true block SAMR approach, the entire

block is refined even if a single mesh point belonging to

the block is marked for refinement. Some notable software

packages for parallel Structured AMR (SAMR) are : Chombo

[12], BoxLib [4] (both from Lawrence Berkeley National

Laboratory), Paramesh [6] (NASA) and SAMRAI [13]

(Lawrence Livermore National Laboratory). A detailed survey

of block-structured AMR can be found in [9].

BoxLib is a parallel SAMR software for building

multiphysics multiscale codes that supports Hybrid

parallelism at a massive scale [4]. The low level MPI

communication calls are abstracted away from the user and

functions are provided for same-level grids and fine-coarse

grid interface data transfers. The major computational

intensity in BoxLib lies in two types of computations

: (i) Point-wise evaluation i.e. expressions of the form

φ̄i,j,k = φi,j,k + k(fxi,j,k + fyi,j,k + fzi,j,k) where

a single point (i, j, k) in different arrays is used in a

computation (ii) Stencil evaluations i.e. expressions of the

form φ̄i,j,k = kφi,j,k + m(φi±a,j,k + φi,j±a,k + φi,j,k±a)
where a is some scalar offset [14]. In a recent work with

Hybrid parallelism in BoxLib, the division of the entire index

range of the set of boxes owned by a process to the set of

threads (Tiling) notedly outperformed the strategy of dividing

each box among the set of threads (Striping) [14]. Tiling

exposes more parallelism and reduces the working set size

of threads [15]. BoxLib has been used for creating several

mature applications like MAESTRO (low Mach number code)

[16], CASTRO (compressible Astrophysics) [17] and LMC

(Combustion code) [18] which scale well but are limited by

the high communication-intensive linear solves. The library

can be downloaded for development at [19].

IV. BOXLIB

The most basic constituent element/abstraction in BoxLib

is the Fab (FArray Box) which represents a set of contiguous

data on a Box. A Box is a data structure for representing a

rectangular domain (in three dimensions, regular hexahedral)

on an index space. Thus, a grid (a rectangular region in an

index space) at any level is equivalent to a single Fab object

[15]. The collection of all the Fab objects at a particular level

is referred to as a MultiFab. There is no direct parent-child

relationship between grids at different levels. It is the Fab

objects that are distributed among cores and are acted upon

independently by them. In AMR when the number of levels

is greater than or equal to three, BoxLib requires and ensures

proper nesting i.e. level n + 1 grids must be fully contained

in level n grids (except at the physical boundaries).



Boxes can be split up into multiple small boxes to be given

to various cores according to a data distribution algorithm. Two

data distribution schemes, namely, the Knapsack to equalize

load distribution and Morton Space Filling curve to optimize

communication are part of the software. Each process contains

enough metadata to locate the index space region of each box

on every level so that it knows which processor core contains

which box. The scheme for numbering the Fabs is analogous

to the column-major order. The MPI ranks of the processes to

which these boxes must be given to create an MPI Cartesian

Topology should be in the row-major order. BoxLib internally

maintains a one dimensional integer array named the prc

array which maintains a mapping from the box numbers to the

ranks. As an example, if there are 16 boxes, the prc array

will have a length of 16 and if prc(7) = 10 then the 7th

box is given to the process having the MPI rank 10. Further,

each process maintains a copy of this array and there exists a

separate prc array for each level of AMR.

V. IMPLEMENTING A MPI CARTESIAN TOPOLOGY

To implement an MPI Cartesian Topology, we extend the

layout_set_mapping() subroutine of BoxLib to contain

the X, Y, and Z integer process dimensions in 3-D. The

process dimensions are then captured into integer variables

D_x, D_y, and D_z (see Listing 1). We use a rank array

(rank_array(1:no_of_processes)) to fill the 1-D

array prc(1:no_of_boxes) in column-major order that

gives the mapping of boxes to MPI ranks as mentioned in

the previous section. Listing 1 shows our relevant subroutine

for creating a MPI Cartesian Topology. A separate similar

subroutine to handle multiple boxes per core was also written

(not shown here). The MPI ranks are filled in the rank

array (rank_array) in the same order (row-major) as the

coordinates used in the MPI process decomposition. Since the

boxes are numbered in Fortran order, the order of the loops

in Listing 1 is important.

s u b r o u t i n e l a y o u t d d ( p r c )
i n t e g e r , i n t e n t ( o u t ) , d imens ion ( : ) : : p r c
i n t e g e r : : i , j , k , c t r

a l l o c a t e ( r a n k a r r a y ( D x , D y , D z ) )
! row−major o r d e r f o r MPI r a n k s

c t r =0
do i =1 ,D x

do j =1 ,D y
do k =1 , D z

r a n k a r r a y ( i , j , k ) = c t r
c t r = c t r + 1

end do
end do

end do

! F i l l p r c ( : ) − s t a r t bot tom l e f t −> up−>n e x t (
column−major o r d e r )

! −> n e x t 2−D s l a b i n Z−d imens ion

c t r =1
do k =1 , D z

do j =1 ,D y
do i =D x,1 ,−1

p r c ( c t r ) = r a n k a r r a y ( i , j , k )
c t r = c t r + 1

1
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Fig. 1: 16 Fabs (or boxes) distributed on 4 processes decom-

posed as a 2x2 process topology. Each color shows a single

MPI process and numbers inside circles show the Fab number

end do
end do

end do
d e a l l o c a t e ( r a n k a r r a y )

end s u b r o u t i n e l a y o u t d d

Listing 1: 3-D MPI Cartesian Topology

As an example, if the MPI Cartesian Topology is 2x3x4

corresponding to 24 boxes, then box 1 is allocated to rank

12, box 2 is given to rank 0, box 3 is given to rank 16 and so

on.

A. Multiple boxes on a single core

It is possible to have multiple boxes per-core i.e. each sub-

domain consists of multiple boxes. Assume a 2-D domain for

which n cells = 16 i.e. the domain is 16x16, the number of

processes is 4 and decomposed as Dx × Dy = 2 × 2, with

the box size being 4x4. Thus, there are 16

4
× 16

4
boxes in all

(boxes in X, Y direction are denoted by Nx = 4 and Ny = 4,

respectively). The number of boxes for each process is given

by Nx

Dx

×
Ny

Dy

i.e. 4

2
× 4

2
= 2× 2 = 4. This is shown in Figure

1. Then according to Fab numbering in BoxLib, boxes 3, 4,

7, 8 are assigned to rank 0, boxes 11, 12, 15, 16 are assigned

to rank 1, boxes 1, 2, 5, 6 are assigned to rank 2 and boxes

9, 10, 13, 14 are assigned to rank 3, respectively. This is in

accordance with the MPI process numbering in 2-D (or 3-D

when appropriate).

B. Varying shape of box within sub-domain

When there is a single box per core, the sub-domain is

the same as that box. Here the shape of the box (or sub-

domain) is completely defined by the domain decomposition/-

partition. When there are multiple boxes per core, the domain

decomposition only determines the sub-domain shape (which

in turn consists of multiple boxes). In the example shown in

Figure 2a, the sub-domains have boxes of size 4x4 but it is

possible to have boxes of size 2x8 or 8x2 etc. In BoxLib it

is not possible to first divide the domain into sub-domains

and then divide the sub-domain into boxes. Thus, we initially

need to specify a box-size and then construct the sub-domain

from these boxes. The process can be thought of as specifying

the box-size first, then specifying the domain decomposition

to create sub-domains of a specific box size i.e. implying a

bottom-up approach as opposed to a top-down scheme. Figure
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(a) box size=4x4

Y
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(b) box size=2x8

Fig. 2: Varying box sizes with Domain=16x16, 4 processes

(2x2), and 4 boxes per sub-domain

2a shows a 16x16 domain divided among 4 cores arranged as

2x2 and each sub-domain having 4 boxes each of size 4x4.

Figure 2b shows the same domain of 16x16 divided equally

among 4 cores arranged as 2x2 but with each sub-domain

having 4 boxes each having a size of 2x8.

VI. TEST PLATFORM AND TEST PROBLEMS

Our test platform is the ARC3 facility at the University

of Leeds having 4056 cores of Intel Xeon Broadwell 2.2

GHz E5-2650v4 (12 cores per CPU or socket and each node

consisting of 2 two such sockets) and 22 Tb of RAM in total.

The network is a Mellanox FDR Infiniband interconnect with

56 Gbits/sec transfer rate and 2:1 blocking. The total flops

delivered by the system is 152 Tflops/sec (35.2 Gflops/sec

per core). The total memory per node is 128 GB arranged

as 8 modules of 16 GB each (≈ 5.3 GB per core). The Last

Level Cache (LLC) memory is 30 MB shared between 12

cores (2.5 MB/core). Each core possesses an L1i/L1d cache

of 32 KB and a unified L2 cache of 256 KB. The cache-line

size is 64 bytes for all the caches. The associativity is 8

for L1i/L1d/L2 and 20 for the L3 cache. We use the Intel

Compiler 17.0.1 and two implementations of MPI, namely,

Intel MPI 2017.1.132 and OpenMPI 2.0.2.

We implement a cell-centered, Finite Difference discretiza-

tion to solve the Laplace equation ∇2φ = 0 on a unit cube

with Dirichlet boundaries on uniform structured grids. The

unweighted Jacobi iterative method with a 7-pt stencil is

used to update the solution at mesh points. For AMR, we

implement an Elliptic PDE −∇2u = f on a unit cube with

Dirichlet boundaries where f is chosen so that the solution

u = tanh(k(x − 0.5)). As before, the discretization uses

the Finite Difference method with a cell-centered scheme.

Since the Dirichlet boundaries do not coincide with the actual

boundaries in the cell-centered scheme, they are updated as

the average of the ghost cell representing the boundary and

the next-to-boundary internal cell values after each iteration.

Further, we use a 1-element deep ghost zone for both the

problems. The refinement criterion for the first level in the

AMR problem is that the y-coordinate should lie between 0.35
and 0.65 i.e. 0.35 < y < 0.65. Whenever any cell is tagged

Fig. 3: Solution on a unit cube and two AMR levels for the

AMR test problem with colors representing solution values

from -1 (blue) to +1 (red) through 0 (green)

for refinement in a block, the entire block is refined (block-

structured AMR). The refinement criterion for the second level

changes the range of the y-coordinate to 0.455 < y < 0.545.

Any box (or region) that is refined is marked as an inactive

box. Any box that is not refined remains an active box and

the solution must be updated at the mesh points constituting

it. Figure 3 shows the nature of the solution and levels of the

AMR problem described above when 2 levels (1 refined and

1 unrefined) are considered.

VII. EXPERIMENTAL RESULTS

Our experiments for both single grids and AMR compare

cubic partitions with non-cubic partitions to test the

expandability of our hypothesis [7] that minimizing only the

communication volume is insufficient for optimality. Thus,

we generate several MPI Cartesian Topologies for single grids

using our subroutine shown in Listing 1 and compare them

against the default mpi_dims_create() (MDC) topology

of MPI - a topology which minimizes the communication

volume by producing cubic (or closest to cubic) sub-domain

dimensions. For AMR, since the total boxes after refinement

must remain equal for different sub-domain shapes to carry

out a fair comparison, the sub-domain permutations are much

more restrictive. Further, we ensure that all comparisons

for all possible sub-domain shapes in an experiment are

carried out on the same set of cores to remove ambiguities in

execution timings due to process placement.

A. Single Uniform Grid

Table I compares the execution times per iteration of the

topology which minimizes the communication volume, i.e.

the topology returned by the default mpi_dims_create()

(henceforth referred to as MDC) subroutine of MPI, and the

best topology from 24 to 1536 MPI processes (running one

process per core). It is also appropriate to compare the best

timings with those from a partition using the reverse of the

mpi_dims_create() output (referred to as Rev. MDC

or Rev), as the code is written in Fortran, where the first

dimension is the contiguous dimension. It can be seen from

Table I that the Rev. MDC outperforms the MDC for all the

domain sizes except for 7683 for 24 cores. Further, in no



TABLE I: mpi_dims_create() (MDC) topology execu-

tion times per iteration as compared to best topology times

and reverse MDC (Rev). Parenthesis indicate the number of

topologies performing better than MDC and Rev, respectively.

No Loop blocking/Tiling was used, Intel 17.0.1, OpenMPI

2.0.2:

Domain Best MDC (sec) Best (sec) Rev (sec)

Cores=24 MDC=4x3x2 Rev=2x3x4

48
3 1x12x2 3.98E-5 (18) 2.63E-5 3.25E-5 (7)

96
3 1x12x2 1.50E-4 (17) 9.14E-5 1.08E-4 (6)

192
3 2x6x2 1.95E-3 (11) 1.78E-3 1.80E-3 (1)

384
3 1x6x4 1.54E-2 (14) 1.38E-2 1.39E-2 (2)

768
3 3x8x1 1.18E-1 (8) 1.08E-1 1.45E-1 (17)

Cores=48 MDC=4x4x3 Rev=3x4x4

96
3 1x24x2 1.70E-4 (13) 8.77E-5 2.09E-4 (26)

192
3 2x12x2 7.07E-4 (1) 6.99E-4 8.46E-4 (12)

384
3 1x8x6 7.69E-3 (7) 7.22E-3 7.85E-3 (11)

768
3 2x12x2 5.73E-2 (6) 5.41E-2 6.00E-2 (13)

1536
3 3x16x1 6.25E-1 (23) 4.51E-1 6.25E-1 (23)

Cores=96 MDC=6x4x4 Rev=4x4x6

192
3 2x24x2 9.10E-4 (42) 2.80E-4 8.10E-4 (28)

384
3 4x6x4 4.98E-3 (22) 4.05E-3 4.86E-3 (18)

768
3 2x12x4 3.20E-2 (18) 2.78E-2 3.19E-2 (7)

1536
3 6x16x1 3.06E-1 (28) 2.23E-1 3.25E-1 (43)

Cores=192 MDC=8x6x4 Rev=4x6x8

384
3 4x12x4 2.96E-3 (12) 2.42E-3 2.68E-3 (8)

768
3 4x12x4 1.77E-2 (23) 1.49E-2 1.59E-2 (2)

1536
3 4x16x3 1.34E-1 (25) 1.14E-1 1.47E-1 (34)

Cores=384 MDC=8x8x6 Rev=6x8x8

768
3 4x24x4 1.01E-2 (15) 8.1E-3 1.01E-2 (15)

1536
3 4x24x4 6.20E-2 (12) 5.60E-2 6.31E-2 (12)

Cores=768 MDC=12x8x8 Rev=8x8x12

1536
3 4x48x4 3.45E-2 (17) 3.06E-2 3.51E-2 (17)

Cores=1536 MDC=16x12x8 Rev=8x12x16

3072
3 8x32x6 1.35E-1 (21) 1.20E-1 1.61E-1 (43)

case is the MDC the best topology. The number of topologies

performing better than the communication minimizing

topology (indicated in parenthesis) i.e. MDC or Rev. MDC is

significant for most of the domain sizes and core counts. In

BoxLib, by default, the communication is not overlapped with

computation, yet the communication minimizing topology

returned by the mpi_dims_create() is outperformed by

several topologies.

We denote the MPI Cartesian topology process

dimensions of the best topologies by Dbx, Dby, Dbz and

that of the default/standard/communication minimizing

mpi_dims_create()topology by Dsx, Dsy, Dsz . It can

be seen from Table I that DbxDby ≥ DsxDsy holds with

only two exceptions (Cores=24, Domain=3843 and Cores=48,

Domain=3843. This implies that the three planes of the

Compute kernel to be brought into the cache for updating

a single plane of data for the best topologies are less in

size than the ones which are brought into the cache with

the communication minimizing topology (MDC). For all the
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Fig. 5: L1 and L2 data cache-misses for domains 963 and 3843

in the Compute (C), Communication (Comm) and Boundary

update (Bndry) subroutines.

best performing topologies, Dby ≥ Dbz - a criterion that

is in agreement with our discussion on optimal sub-domain

dimensions in [20]. Further, for non-cubic sub-domains

DsxDsy > DrxDry , where Drx and Dry denote the

Cartesian topology dimensions of reverse MDC (or Rev). At

all processor cores and domain sizes, we were able to find

topologies which performed better than the MDC or the Rev.

MDC. Interestingly, even at a domain size of 30723, or 28

billion degrees of freedom, there exist 21 topologies which

outperform the MDC and 43 topologies which performed

better than the Rev. MDC. The percentage gains of the best

topologies over the MDC and Rev. MDC for 24, 48, 96 and

192 cores is shown in Figures 4a, 4b, 4c and 4d, respectively.

The percentage gain of the best topology over MDC ranged

approximately from 1-70% and 1-66% for Rev. MDC at

these core counts. The percentage gain of the best topology

over the MDC for 384 cores at a domain of size 7683 was

19.8%, and 9.67% at a domain size of 15363. For 768 cores

the gain was 11.30%, with a similar improvement of 11.11%

for a core count of 1536. Figure 5a and 5b show that the

packing/unpacking cache-misses can be significant at smaller

domain sizes. Figures 5c and 5d show that for large domains

the compute cache-misses become more significant. In both

the cases, however, the MDC topology has a higher number

of cache-misses in packing/unpacking/communication due to

a larger X-plane that has non-contiguous data.

B. Adaptive Mesh Refinement

We evaluate the behaviour of non-cubic blocks on domains

of sizes 2563 (see Figure 6a) and 5123 (see Figure 6b) for



483 963 1923 3843 7683

0

10

20

30

40

Domain Size

P
er

ce
n
ta

g
e

G
ai

n
(%

)
MDC

Rev. MDC

(a) 24 cores

963 1923 3843 7683 15363

0

20

40

60

Domain Size

P
er

ce
n
ta

g
e

G
ai

n
(%

)

MDC

Rev. MDC

(b) 48 cores

1923 3843 7683 15363

20

40

60

Domain Size

P
er

ce
n
ta

g
e

G
ai

n
(%

)

MDC

Rev. MDC

(c) 96 cores

3843 7683 15363
5

10

15

20

Domain Size

P
er

ce
n
ta

g
e

G
ai

n
(%

)

MDC

Rev. MDC

(d) 192 cores

Fig. 4: Percentage gain of the best topology over MDC and Rev. MDC for varying domain sizes and cores

TABLE II: Gain percentage for the best performing topology over MDC for various core counts, MDC=Solve time/iteration

in seconds, Best=Best solve time/iteration

Domain=2563, 2-levs, OpenMPI 2.0.2

Cores 24 48 96 192 288 320

MDC (sec) 1.10E-01 7.83E-02 5.29E-02 3.86E-02 3.60E-02 3.43E-02
Best (sec) 1.06E-01 7.41E-02 4.44E-02 3.51E-02 3.51E-02 3.43E-02
Gain (%) 3.10 5.36 16.07 9.07 2.50 0.00

Domain=5123, 2-levs, OpenMPI 2.0.2

MDC (sec) 7.80E-01 5.10E-01 3.30E-01 2.20E-01 1.90E-01 2.00E-01
Best (sec) 7.50E-01 5.10E-01 2.90E-01 1.90E-01 1.90E-01 2.00E-01
Gain (%) 3.85 0.00 12.12 13.63 0.00 0.00

Domain=5123, 3-levs, OpenMPI 2.0.2

Cores 48 96 192 384 768 1176

MDC (sec) 1.73E+00 9.99E-01 7.38E-01 5.53E-01 4.28E-01 4.72E-01
Best (sec) 1.70E+00 9.99E-01 6.73E-01 5.28E-01 4.25E-01 4.36E-01
Gain (%) 1.99 0.00 8.75 4.61 0.58 7.53

Domain=5123, 3-levs, Intel MPI 17.1.132

MDC (sec) 1.73E+00 9.76E-01 5.90E-01 5.24E-01 3.40E-01 3.91E-01
Best (sec) 1.71E+00 9.76E-01 5.90E-01 4.70E-01 3.34E-01 3.91E-01
Gain (%) 1.19 0.00 0.00 10.31 1.76 0.00

one level of local refinement. For each of these cases, the

total number of boxes at level 1 is 64, out of which 32 are

refined (active at level 2) and 32 are unrefined (active at level

1 only). At level 2, there are a total of 256 boxes (as each

of the 32 inactive blocks at level 1 have been divided into 8

boxes). Thus a total of 288 active boxes are updated for the

solution. Considering a three level problem (see Figure 6d

and Figure 6c), 128 boxes out of a total of 256 boxes at level

2 are refined again to give 128x8=1024 active boxes at level

three. Thus, in the three level problem, we have a total of

32+128+1024=1184 active boxes which are updated. While

varying the box-shape, the volume of the box is kept constant

but the box-dimensions are changed.

Figure 6b shows the performance of various box-shapes

for a domain of size 5123 and a two level problem (1

refined and 1 unrefined). It can be seen that a non-cubic

box shape of 256x128x64 outperforms (or equalizes) the

performance of the cubic block of 128x128x128 from 24

to 192 cores. Since in Fortran the first dimension is the

contiguous data dimension, a box of shape 256x128x64 has

twice the data points in the contiguous dimension as a box

of shape 128x128x128. Thus, we can expect a better cache

utilization when packing/unpacking the non-cubic block as

the X-plane i.e. 128x64 is half the size of the cubic-block

i.e. 128x128. The X-plane is the plane perpendicular to the

direction of the unit stride dimension. Another topology

that outperforms the cubic block is that with a box-shape

of 512x128x32 at 96 and 192 cores. The total number of

communication elements grow with an increasing size of a

particular dimension in a non-cubic block, thus the unit-stride

dimension cannot arbitrarily grow for large domains. There

is always a trade-off between minimizing cache-misses

and communication elements due to which we do not see

a consistent performance at all process counts. Figure 6a

also portrays the same picture in the sense that the cubic

box-shape given by the communication minimizing topology

is not the optimal choice at all core counts.
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Fig. 6: Strong Scaling (time/iteration) two and three level AMR problem with boxes of varying shapes but equal volume,

optimization flags : -O3 -xHost -ip -align array64byte, Compiler used : Intel 17.0.1

Figure 6c and 6d show the performance of various block

shapes for the AMR test problem when the number of levels

is three (i.e. two levels of local refinement). It can bee seen

from Figure 6c that the cubic block size is not optimal

for 48, 384 and 768 cores and the performance difference

between it and the optimal non-cubic block is approximately

1.18 - 10.30%. For Figure 6d with OpenMPI, the range of

performance difference is 1.9 - 8.74%. The maximum and

minimum ratio of the execution time per solve iteration when

using OpenMPI, compared to when IntelMPI is used, is 1.27

and 0.99, respectively, for a domain of size 5123 (see Figure 6c

and Figure 6d). The ratio increases as the number of processes

increase from 48 to 1176. It is not correct to say that one MPI

implementation is faster than the other as the allocation of

nodes changes between using the two MPI implementations.

Table II shows the percentage gain of the best topology over

the cubic sub-domain i.e. the sub-domain produced by the

mpi_dims_create() topology for various core counts and

varying levels of AMR for two domain sizes, namely, 2563 and

5123.

VIII. DISCUSSION

In [7] and [20] we formulated a strategy for minimizing

the cache-misses of a sub-domain and showed the superiority

of such partitions by experimenting on single grids and

Geometric Multigrid, respectively . Overlap of communication

with computation formed a significant part of our analytical

derivation for cache-minimizing topologies. The reason is

that when communication is overlapped with computation,

both while packing/unpacking and communicating data, the

next-to-halo layers are accessed separately after the halo

data arrives. This has the advantage of MPI advancing its

communication progress engine while the serial computing

thread updates the Independent Computation kernel but at the

same time suffers from a disadvantage that the next-to-halo

layers now cannot be updated along with the Independent

Computational kernel, resulting in extra cache-misses.

Our model holds only partially when evaluating single

uniform grids and AMR in BoxLib. Since the codes were in

Fortran, we also took into account the reverse communication

minimizing topology (Rev. MDC or Rev) but our experimental

evaluation always found topologies which outperform both the

MDC and Rev. MDC for all the cases considered. For AMR

codes, there existed cases where the MDC was outperformed

by specific non-cubic sub-domains, thus, establishing that the

MDC is not generally the optimal choice at all domain sizes

or core counts. We shed light on the plausible reasons for

the partial correctness of our model in the BoxLib setting. In



BoxLib, communication of the halo zones is not overlapped

with computation and further the packing and unpacking of

data from the boxes does not use derived data types. This

completely eliminates the cache-misses that we calculated

separately for the Dependent Planes in [7]. It is also difficult to

estimate the size and the consequent effect on the application

performance because of the metadata that BoxLib maintains

for both single grids and AMR. The user does not have any

control over the distribution of boxes in AMR and this is com-

pletely controlled by BoxLib using the Knapsack or Morton

ordering with a dynamic switching scheme implemented to

choose the appropriate algorithm. Since boxes are distributed

per-level, BoxLib does not distinguish between inactive or

active boxes. Thus, there is a large probability that the active

boxes may not be load-balanced. Furthermore, since the load

balancing algorithm used by BoxLib takes account of the

coordinates, the number of boxes per core can change when

the shape of the box is changed, though the volume remains

constant.

IX. CONCLUSION

In this work we tested our high level model for predicting

optimal domain partitions on uniform structured 3-D grids

developed in [7] and [20] for the more general cases

of an AMR solver. The model in [7] demonstrated that

communication minimization is not the sole criterion upon

which mesh partitioning should be based and that it is

essential to take into account the cache-misses for optimality.

Due to the combinatorial explosion of the possible topology

space, optimality in the current work implies the best topology

of those considered. We undertook our assessment based

upon the model in [7], [20] and the use of the open source

BoxLib library which we described briefly in the current work.

We have been able to demonstrate that the cache-misses

minimizing topologies outperform the default communication

minimization topology in all the cases that we tested for

uniform single grids. To this effect we implemented an MPI

Cartesian topology of processes and replaced the default box

distribution policy of BoxLib with it. The best topologies

on uniform grids with only two exceptions demonstrated that

DbxDby ≥ DsxDsy , Dby ≥ Dbz and Dbx ≤ Dsx is needed

to outperform the MDC and Rev. MDC. The performance

gain range of 1-70% and the significant number of topologies

outperforming the default topology showed that for single

grid applications, using non-cubic blocks/boxes is the optimal

choice. Further, it is possible to obtain increasing gains from

the cache-minimizing topologies while performing Strong

Scaling, both for uniform single grids and AMR applications

(as illustrated in Table I and Table II). Thus, even in the

absence of overlap of communication with computation, our

hypothesis remains true. When the use of non-cubic boxes is

extended to the AMR test code, the performance gains are still

observed, however they typically fall down to less than 10%.

This can be attributed to the change in communication pattern,

non-overlap of communication with computation, the load-

balancing criterion, the increase in metadata and automatic

box-distribution strategy in BoxLib. We thus conclude that

the communication minimization topology/cubic-partitions are

not always optimal and the emphasis/efforts should shift on

obtaining a balance between minimizing both cache-misses

and communication volume for optimality.
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