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Objective Atherosclerosis is a focal disease occurring at arterial sites of disturbed blood flow that generates low oscillating

shear stress. Endothelial inflammatory signalling is enhanced at sites of disturbed flow via mechanisms that are in-

completely understood. The influence of disturbed flow on endothelial adenosine triphosphate (ATP) receptors

and downstream signalling was assessed.
....................................................................................................................................................................................................

Methods

and results

Cultured human endothelial cells were exposed to atheroprotective (high uniform) or atheroprone (low oscillatory)

shear stress for 72 h prior to assessment of ATP responses. Imaging of cells loaded with a calcium-sensitive fluores-

cent dye revealed that atheroprone flow enhanced extracellular calcium influx in response to 300 mM 2’(3’)-O-(4-

Benzoylbenzoyl) adenosine-5’-triphosphate. Pre-treatment with pharmacological inhibitors demonstrated that this pro-

cess required purinergic P2X7 receptors. The mechanism involved altered expression of P2X7, which was induced by

atheroprone flow conditions in cultured cells. Similarly, en face staining of the murine aorta revealed enriched P2X7

expression at an atheroprone site. Functional studies in cultured endothelial cells showed that atheroprone flow in-

duced p38 phosphorylation and up-regulation of E-selectin and IL-8 secretion via a P2X7-dependent mechanism.

Moreover, genetic deletion of P2X7 significantly reduced E-selectin at atheroprone regions of the murine aorta.
....................................................................................................................................................................................................

Conclusions These findings reveal that P2X7 is regulated by shear forces leading to its accumulation at atheroprone sites that

are exposed to disturbed patterns of blood flow. P2X7 promotes endothelial inflammation at atheroprone sites by

transducing ATP signals into p38 activation. Thus P2X7 integrates vascular mechanical responses with purinergic sig-

nalling to promote endothelial dysfunction and may provide an attractive potential therapeutic target to prevent or

reduce atherosclerosis.
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1. Introduction

Atherosclerosis is a chronic inflammatory disease. Despite its promotion

by several systematic risk factors (such as obesity, age, cholesterol, and

smoking), atherosclerosis is a focal disease which occurs predominantly

at distinct points of the arterial tree, such as at bends and branch points.1

Endothelial cells are exquisitely sensitive to shear stress, the mechanical

drag imposed on the vessel wall by the blood flow. Atheroprone sites

are exposed to disturbed blood flow generating low wall oscillatory

shear stress. In contrast, atheroprotected regions of the vascular tree

are exposed to a high magnitude and uniform wall shear stress.2 Shear

stress regulates key endothelial processes that influence atherogenesis

including inflammation and proliferation. Low shear stress is associated

with enhanced expression of inflammatory molecules, including adhesion

molecules and chemokines that direct the migration of leukocytes into

the arterial wall, thereby driving atherosclerosis.3

Purinergic signalling controls multiple processes in the vasculature.

Extracellular nucleotides have been documented to regulate vasodilation
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of blood vessels through nitric oxide production,4–6 indicating that they

have a role in mediating atheroprotection. However, adenosine triphos-

phate (ATP) signalling has also been implicated with vascular dysfunction,

with several studies reporting that excessive ATP-signalling induced ex-

pression of a range of chemokines and adhesion molecules, subsequently

enhancing adhesion of leukocytes to the endothelium.7–10 This process

relies predominantly on the ATP-gated receptors P2X4 and P2X7.

Endothelial P2X4 and P2X7 receptor expression has been reported to

be increased under inflammatory conditions in vitro10,11 and P2X7 ex-

pression is up-regulated in the atherosclerotic plaque12,13 contributing

towards atherosclerosis development.13,14A recent study demonstrated

that genetic deletion of P2X7 reduced lesion formation in hypercholes-

terolemic mice; this was associated with a reduction in leukocyte rolling

and adhesion14; however, the molecular mechanisms linking P2X7 to

this initiation of atherogenesis and the expression and function of P2X7

at atheroprone endothelial sites was not explored.

Here we studied the effects of prolonged flow on the expression and

function of P2X receptors. We demonstrate that prolonged athero-

prone flow primes endothelial cells for enhanced ATP responses, attenu-

ated CD39 ATPase activity and enhanced inflammatory activation,

whereas atheroprotective flow prevented this ATP-activation pathway.

The mechanism involves induction of P2X7 by atheroprone flow, leading

to an elevated calcium influx response and downstream p38-dependent

inflammatory activation, evidenced using in vitro and in vivo models. Our

observation provides a novel mechanism for enhanced inflammation at

sites of disturbed flow and suggests that therapeutic targeting of the

P2X7-calcium influx-p38 pathway may prevent or treat atherosclerosis.

2. Methods

2.1 Antibodies and reagents
Specific antibodies used, were targeting: P2X7 (APR-008, Alomone);

P2X4 (APR-002, Alomone); PDHX (H-130, Santa Cruz); p-p38 Thr180/

Tyr182 (28B10, Cell Signalling Technologies); E-selectin (NBP1-45545,

Novus Biologicals); CD31-AlexaFluor488 (Clone Mec13.3, Biolegend), and

CD39-FITC (Clone A1, Biolegend). HRP-conjugated secondary antibodies

were from Dako. AlexaFluor conjugated antibodies, TO-PRO-3 and

aqueous mounting media (Prolong Gold Antifade Mountant) were from

Invitrogen. All other reagents were from Sigma Aldrich unless specified.

2.2 Human umblical vein endothelial cell
isolation and culture
Human umbilical vein endothelial cells (HUVECs) were isolated from um-

bilical cords donated by informed consent (ethical approval: Sheffield REC

10/H1308/25 according to the principles outlined in the Declaration of

Helsinki) by incubating the vein with collagenase (Clostridium histolyticum)

for 20 min and collecting the flow through. Isolated cells were cultured in

gelatin [1% (w/v)] coated culture flasks in M199 media (Life Technologies)

supplemented with foetal bovine serum [10% (v/v)], new-born bovine se-

rum [10% (v/v)], 0.4 mM L-glutamine, 100 U/mL penicillin, 100 lg/mL

streptomycin, 2.5 lg/mL amphotericin-B, 90 lg/mL heparin and 10 lg/mL

endothelial cell growth supplement (Millipore). HUVEC were used for ex-

periments at P3 or P4. All replicates represent separate HUVEC donors.

2.3 HUVEC exposure to shear stress
HUVEC were exposed to shear stress for 72 h using either the ibidi par-

allel plate pump system or the orbital shaker system. When using the

ibidi pump system, HUVECwere grown to confluence on gelatin-coated

ibidi l-Slides I 0.4 Luer (ibidi GmbH). For atheroprotective flow,

HUVEC were exposed to þ4 dyn/cm2 for 5 min, þ8 dyn/cm2 for 5 min

and thenþ13 dyn/cm2 for the remainder of the experiment. For athero-

prone flow, HUVEC were exposed to a repeated cycle of 2 h of oscilla-

tory ±4 dyn/cm2 (0.5 Hz), followed by 5 min of unidirectional þ4 dyn/

cm2, to ensure redistribution of nutrients. The ibidi pump apparatus and

slide was housed inside a cell culture incubator at 37 �C and 5% CO2.

The orbital shaker system, as previously described in,15 involves orbiting

HUVEC using an orbital shaking platform (PSU-10i; Grant Instruments).

The radius of the orbital shaker was 10 mm and the rotation rate was set

to 210 rpm. HUVEC were grown to confluence on gelatin-coated 6-well

plates and then orbited. The rotations of the plate create a shear stress

profile where a pulsatile, unidirectional flow pattern of � þ13 dyn/cm2

is created in the periphery of the well, whereas a tangential flow pattern

of � þ4 dyn/cm2 is generated in the centre of the well. The orbital

shaker platformwas enclosed inside a cell culture incubator at 37 �C and

5% CO2. In experiments where inflammatory gene expression was as-

sessed following P2X7 or P2X4 antagonism, 10 lM A438079 (Abcam),

10 lM PSB-12062 or DMSO was added, respectively, before flow was

applied and re-supplemented 24 h before the end of the experiment.

In experiments examining p38 phosphorylation, HUVEC were cul-

tured under flow for 72 h using the orbital shaker system before applica-

tion of 300 lM 2’(3’)-O-(4-Benzoylbenzoyl) adenosine-5’-triphosphate

(BzATP) under static conditions. For examination of P2X7 involvement

in p38 phosphorylation under flow, HUVEC were cultured under flow

using the orbital shaker system for 72 h, where for the last 30 min of

flow, HUVECwere incubated with 10 lMA438079.

2.4 Calcium imaging
HUVEC were loaded with 5 lM CAL-520 (Stratech), diluted in HUVEC

cell culture media from a 5 mM stock in anhydrous DMSO, with 1: 1000

pluronic F-127. After a 90-min incubation, HUVEC were washed twice

with extracellular imaging buffer (134.3 mM NaCl, 5 mM KCl, 1.2 mM

MgCl2, 1.5 mM CaCl2, 10 mMHEPES, 8 mMGlucose, sterile-filtered, pH

7.4). Calcium imaging was performed by epifluorescence microscopy us-

ing a Nikon Eclipse Ti. Slides were clipped onto the microscope stage at

37 �C and 300 lM BzATP was flushed through the slides. When appro-

priate, CaCl2 was replaced in the extracellular imaging buffer with 0.4

mM ethylene glycol-bis(b-aminoetyhl ether)- N, N, N’, N’-tetraacetic

acid (EGTA). In experiments where ER calcium stores were depleted, 10

lM thapsigargin was added 3 min before BzATP stimulation, since stores

were previously assessed as being depleted by this time point (data not

shown). 10 lM A438079 hydrochloride, 10 lM PSB-12062 and 100 mM

ARL67156 (Tocris) were incubated with cells in extracellular imaging

buffer for 5 min before (or just prior to, for ARL67156) BzATP stimula-

tion. Calcium responses were normalized to the maximal peak of athe-

roprone flow to generate a percentage maximum response per donor,

which was performed to account for donor variability. For dose re-

sponse experiments, calcium responses from static HUVEC were mea-

sured using a BMG labtech FLUOstar OPTIMA plate reader.

2.5 Western blotting
HUVEC were lysed directly in laemlli buffer (2% (w/v) SDS, 5% (v/v)

b-mercaptoethanol, 10% (v/v) glycerol in 60 mM Tris-HCL, pH 6.8) and

boiled at 95 �C for 5 min. Protein was then resolved on a 4-12% bis-tris

gel (Invitrogen) in MES buffer at 200 V for 35 min. Proteins were then

transferred onto a PVDF membrane at 35 V for 1 h at room
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temperature. After blocking for 1 h in 5% (w/v) milk in tris buffered saline

[1% (v/v) Tween] (TBS-T) or 5% (w/v) BSA TBS-T, membranes were in-

cubated with primary antibodies overnight at 4 �C. Blots were washed

three times in TBS-T then incubated for 1 h with HRP-conjugated

secondary antibodies. Membranes were washed three more times in

TBS-T then visualized by chemiluminescence using ECL-select

(GE-Healthcare). Chemiluminescence was detected using a LiCOR

c-digit blot scanner and densitometry was determined using Image

Studio (LiCOR Biosciences). Band intensities were normalized against

PDHX. Data were analysed as densitometry to PDHX but presented as

fold change.

2.6 qRT-PCR
RNA was isolated using the isolate II RNA mini kit (Bioline) and reverse

transcribed to cDNA using iScript cDNA synthesis kit (BioRad). Relative

gene expression was then measured by quantitative real time PCR (qRT-

PCR) using gene specific primers. iTaq universal SYBR green supermix

(Biorad) and corresponding manufacturer’s instructions were used to

perform qRT-PCR. Each reaction was performed in triplicate, with the

Ct value averaged. Ct values were normalized using the Ct value of

Hypoxanthine-guanine phosphoribosyltransferase (HPRT) to generate

DCt values. Statistics were performed on DCt values, but fold changes

are shown, calculated using the DDCt method. Gene gene specific pri-

mer sequences used for qPCRwere:

HPRT Fwd: TTGGTCAGGCAGTATAATCC; Rev: GGG

CATATCCTACAACAAAC

IL-8 Fwd: GGCACAAACTTTCAGAGACAG, Rev: ACA

CAGAGCTGCAGAAATCAGG

E-selectin Fwd: GCTCTGCAGCTCGGACAT Rev: GAA

AGTCCAGCTACCAAGGGAAT

2.7 Enzyme-linked immunosorbent assay
Commercial enzyme-linked immunosorbent assay (ELISA) kits (R&D

systems) were used to detect IL-8 in cell culture supernatant using the

corresponding manufacturer’s instructions. Standards and samples were

run in duplicate and optical density absorbance was measured at 450 nm

using an absorbance plate reader (Thermo Scientific Varioskan Flash).

Concentrations of samples were determined by interpolation from a

four-parameter logistic standard calibration curve. Data were analysed

as pg/mL but presented as fold change.

2.8 Flow cytometry
After flow conditioning, disassociated HUVECs were incubated with

CD39-FITC (Clone A1, Biolegend) and Zombie UV viability dye

(Biolegend) in Ca2þ/Mg2þ free phosphate buffered saline [0.25% (v/v)

foetal bovine serum] for 40 min at 4 �C. Cells were then washed twice

by re-suspension. Fluorescence was measured using a LSRII flow cytom-

eter (BD Bioscience), with the median fluorescent intensity measured

on live cells.

2.9 Gene silencing
HUVEC were transfected via electroporation using the Neon transfec-

tion system (Invitrogen; 1200 V, 40 ms, 1 pulse), where expression of

P2X7 was silenced using SMARTpool: ON-TARGETplus P2RX7 siRNA

(siP2X7, 50 nM) (Dhamacon, L-003728-00-0005) and compared with

control non-targeting siRNA (siNC, 50 nM) (Dharmacon, LD001810-

10-20). HUVEC were seeded into complete growth medium in 6-well

plates, allowed to settle for 2 h then cultured under flow using the orbital

shaker system for 72 h. Knockdown was assessed by qPCR and immuno-

blotting as above, where experiments showing >50% efficiency were

compared.

2.10 ATP detection assay
HUVEC were cultured under flow using the ibidi pump system for 72 h

and extracellular ATP was detected in HUVEC supernatant using a com-

mercially available luciferase-based ATP determination assay (Thermo

Fisher).

2.11 Mouse lines and en face

immunostaining
The animal experiments were performed according to the guidelines

from Directive 2010/63/EU of the European Parliament on the protec-

tion of animals used for scientific purposes and the UK Scientific

Procedures Act 1986 (ASPA, licence number 70/7992), under local

ethical approval. C57BL/6 mice were used to examine P2X7 expression

and BALB/c mice (wild-type or P2X7-/-16) were used to examine E-selec-

tin expression. Six- to eight-week old female wild type mice were sacri-

ficed by anaesthetic overdose with pentobarbital (i.p. 200 mg/kg).

Exsanguination was performed via cardiac puncture before the aorta

was perfused in situ with PBS before perfusion-fixation with 4% (v/v)

paraformaldehyde (PFA) before harvesting. Ribcage segments, including

the aorta, were further fixed for 1 h in 2% (v/v) PFA at room tempera-

ture. Aortae were dissected and blocked and permeabilized in PBS (20%

(v/v) goat serum, 0.5% (v/v) triton X-100) overnight at 4 �C. Primary anti-

bodies were incubated in PBS-T [5% (w/v) BSA, 0.1% (v/v) tween 20]

overnight at 4 �C. Aortae segments were washed three times in PBS be-

fore incubation with appropriate AlexaFluor conjugated secondary anti-

bodies in PBS-T at room temperature for 5 h. After a further three

washes in PBS, aortae were stained with TO-PRO3 for 1 h at room tem-

perature. Samples were washed three more times in PBS before being

mounted. Fully stained vessels were visualized using confocal laser-

scanning microscopy (Zeiss LSM510 NLO inverted microscope), where

endothelial cells were identified by strong positive CD31 immunostain-

ing. IgG isotype controls (Invitrogen) were run to determine antibody

specificity. Three fields-of-view were taken from the atheroprotected

and atheroprone site in each mouse. Images were analysed using Image J

software, where the expression of the protein of interest was quantified

by measuring fluorescence intensity and averaging the measurements

from the three fields of view. Fluorescent measurements from the

IgG control were subtracted from the staining, as this represented a

non-specific or autofluorescent component. Cell surface quantification

was predicted by creating a mask from the cell surface CD31 staining

and measuring only the fluorescent intensity of the protein of the re-

gion within this mask. It should be noted that CD31 can undergo

endocytosis and rapid recycling under some circumstances, such as

diapedesis.17

2.12 Statistics
Differences between samples were analysed using a paired Students

t-test or two-way ANOVA with the Sidak multiple comparison test,

as appropriate (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

All analyses were performed on un-normalized data.

326 J.P. Green et al.

Downloaded from https://academic.oup.com/cardiovascres/article-abstract/114/2/324/4596617
by University of Sheffield user
on 23 February 2018

Deleted Text: &thinsp;
Deleted Text: our
Deleted Text: (
Deleted Text: )
Deleted Text: 3
Deleted Text: &thinsp;
Deleted Text: our
Deleted Text: 3
Deleted Text: s
Deleted Text: s
Deleted Text: '
Deleted Text: s
Deleted Text: ELISA
Deleted Text: ELISA
Deleted Text: '
Deleted Text: &thinsp;
Deleted Text: (
Deleted Text: )
Deleted Text: &thinsp;
Deleted Text: utes
Deleted Text: &trade;
Deleted Text: volts
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: to 
Deleted Text: &thinsp;
Deleted Text:  
Deleted Text: &thinsp;
Deleted Text: ,
Deleted Text: &thinsp;
Deleted Text: ours
Deleted Text: &thinsp;
Deleted Text: >
Deleted Text: &thinsp;
Deleted Text: ours
Deleted Text: <sup>-</sup>
Deleted Text: <sup>-</sup>
Deleted Text:  
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: our
Deleted Text: s
Deleted Text: (
Deleted Text: )
Deleted Text: 3
Deleted Text: &thinsp;
Deleted Text: ours
Deleted Text: 3
Deleted Text: &thinsp;
Deleted Text: our
Deleted Text: 3
Deleted Text: s
Deleted Text: 3
Deleted Text: .
Deleted Text:  
Deleted Text: &equals;
Deleted Text: &thinsp;
Deleted Text: <&thinsp;
Deleted Text: &equals;
Deleted Text: &thinsp;
Deleted Text: <&thinsp;
Deleted Text: <italic>&equals;</italic>
Deleted Text: &thinsp;
Deleted Text: <&thinsp;
Deleted Text: &equals;
Deleted Text: &thinsp;
Deleted Text: <&thinsp;
Deleted Text: s


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3. Results

3.1 Atheroprone flow primes endothelial
cells for ATP-dependent calcium influx
Live cell calcium imaging was used to measure endothelial cell responses

to ATP. Calcium responses were identified in HUVEC in response to a

range of ATP and BzATP (20(30)-O-(4-Benzoylbenzoyl)adenosine-50-tri-

phosphate triethylammonium salt) doses (see Supplementary material

online, Figure S1A and B). 300 mM BzATP produced a sustained calcium

elevation which was attenuated in the absence of extracellular calcium

(see Supplementary material online, Figure S1B). HUVEC were condi-

tioned under either atheroprotective (þ13 dyn/cm2) or atheroprone

(±4 dyn/cm2) flow for 72 h and then stimulated with exogenous BzATP,

which exibits higher potency at P2X7 receptors than ATP, a broadly

acting agonist at P2X and Purinergic receptors Y (P2Y). Atheroprone

flow-conditioned HUVEC exhibited an enhanced and more sustained

calcium response to BzATP than those pre-conditioned under athero-

protective flow (Figure 1A and C). The total calcium response was mea-

sured by analysing the area under the curve, which was significantly

increased after atheroprone flow conditioning (Figure 1B). As a control,

it was shown that the calcium response occurred specifically in response

to the addition of BzATP, as no response was seen when extracellular

buffer alone was applied to the cells (Figure 1A). These data indicate that

atheroprone flow primes endothelial cells for an enhanced ATP

response.

Regulation of extracellular ATP has already been reported to be al-

tered by shear stress, with endothelial expression of the cell surface

ATPase CD39 up-regulated by atheroprotective flow.18 Therefore,

CD39 was examined as a potential mechanism regulating the difference

in BzATP-induced calcium responses between atheroprotective and

atheroprone flow conditions. Matching previous reports,18 CD39 sur-

face expression in HUVEC was significantly enhanced under atheropro-

tective flow conditions (see Supplementary material online, Figure S2A).

Furthermore, extracellular levels of ATP were significantly higher in the

supernatant of HUVEC cultured under atheroprone flow than athero-

protective flow (see Supplementary material online, Figure S2B). In order

to determine if enhanced CD39 expression regulated the BzATP-

induced calcium response, a chemical inhibitor of CD39, ARL-67156,

was used. Inhibition of CD39 evoked an enhanced BzATP-induced cal-

cium responses in HUVEC conditioned under atheroprotective flow

(see Supplementary material online, Figure S2C), but not under athero-

prone flow (see Supplementary material online, Figure S2D). Therefore,

this suggests that enhanced CD39 activity contributes to reducing ATP

signalling under atheroprotective flow.

We tested whether enhanced responses to BzATP were also due to

changes in either P2Y or P2X receptor activity. BzATP has been re-

ported to activate all P2X receptors and a sub-set of P2Y receptors.19-22

P2X receptors are ion channels, so are responsible for calcium influx

from the extracellular space, whereas P2Y receptors are G-protein cou-

pled receptors and mobilize intracellular calcium stores in response to

Figure 1 HUVECs pre-conditioned under atheroprone flow exhibit an enhanced ATP-induced calcium response. BzATP (300 mM)-induced calcium re-

sponse in HUVEC pre-conditioned with atheroprotective or atheroprone flow for 72 h (A) and analysed by measuring the area under the curve (B) (n = 7,

*** indicates P <_ 0.001 using a paired t-test.). (C) Representative screenshots display the change in calcium response over time before and after BzATP treat-

ment (scale=50mm). Values are mean ± S.E.M.
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ATP (similar to other endothelial stimuli including thrombin, histamine

and bradykinin whose activation mobilizes intracellular calcium).

Therefore, stimulating HUVEC with ATP whilst blocking either extracel-

lular or stored intracellular calcium allows discrimination between P2X

and P2Y receptor responses.

Initially, extracellular calcium was substituted with the calcium chela-

tor EGTA, to prevent BzATP-mediated calcium influx, whilst maintaining

release from intracellular calcium stores. In HUVEC pre-conditioned

with atheroprotective flow, there was no significant difference in the cal-

cium response between calcium- or EGTA-containing extracellular buf-

fer (Figure 2A), indicating an absence of extracellular calcium influx. In

contrast, HUVEC pre-conditioned with atheroprone flow showed a

reduction in the calcium response in the presence of EGTA (Figure 2B),

indicating a significant contribution from extracellular calcium influx.

To substantiate this finding, the converse experiment was performed

where extracellular calcium influx was maintained and intracellular cal-

cium mobilization was inhibited. To achieve this, intracellular ER calcium

stores were depleted using thapsigargin prior to BzATP stimulation.

Depletion of ER calcium stores led to a significant reduction in BzATP-

dependent calcium influx in HUVEC exposed to atheroprotective flow

compared with BzATP-mediated influx responses under atheroprone

flow (Figure 2C). Together these data suggest that extracellular calcium

influx in response to ATP occurs exclusively under atheroprone flow.

Since P2X ion channels mediate calcium influx in response to ATP, this

Figure 2 Extracellular calcium influx in response to ATP is increased under atheroprone flow. (A) BzATP (300 mM)-induced calcium responses in

HUVEC pre-conditioned with atheroprotective flow in the presence of physiological extracellular calcium or EGTA, analysed by measuring area under the

curve (n = 4). (B) BzATP (300 mM) induced calcium responses in HUVEC pre-conditioned with atheroprone flow in the presence of physiological extracel-

lular calcium or EGTA, analysed by measuring area under the curve (n = 4, ** indicates P <_ 0.01 using a paired t-test). (C) Representative single cell

BzATP-induced calcium responses in atheroprone or atheroprotective flow conditioned HUVEC after 10 mM thapsigargin pre-treatment, analysed by mea-

suring the average area under the curve (right-hand graph, n = 6, 175 cells per donor, *indicates P <_ 0.05 using a paired t-test). Values are mean ± S.E.M.
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suggests that endothelial P2X receptors are selectively activated under

atheroprone flow.

3.2 Expression of ATP-gated P2X7 ion
channels was enhanced under atheroprone
flow
Since atheroprone flow-conditioned HUVEC exhibited a selective in-

crease in extracellular calcium influx, P2X receptor involvement was as-

sessed. Previous studies have shown that P2X4 and P2X7 receptors are

more abundantly expressed in endothelial cells compared with other

P2X receptors.22,23 We found that expression of P2X7 was increased in

HUVEC cultured under atheroprone flow in two complementary in vitro

flow models (Figure 3A and B). Expression of P2X4 was also induced by

atheroprone flow but to a modest extent compared with P2X7 (see

Supplementary material online, Figure S3A).

To examine if P2X7 receptors were also regulated in vivo by shear

stress, expression of endothelial P2X7 at sites protected and prone to

atherosclerosis in the murine aorta was examined using en face immu-

nostaining. Specific regions of the mouse aorta have been mapped by

computation fluid dynamics where the outer curvature, exposed to high

shear stress, is considered an atheroprotected site, and the inner curva-

ture, exposed to disturbed flow is an atheroprone site.24 In agreement

with our in vitro findings using HUVEC, endothelial P2X7 expression was

increased at sites prone to atherosclerosis compared with protected

sites (Figure 3C). Analysing P2X7 co-localization with the cell surface en-

dothelial marker CD31 also showed a significant increase at sites of athe-

roprone flow compared with atheroprotected regions, indicating that

surface P2X7 levels may be increased (Figure 3C). Analysis of the CD31/

P2X7 co-staining also allowed for adjustment in differences between rel-

ative cell membrane proportions since the elongated aligned morphol-

ogy in the atheroprotected region confers an increase in cell membrane,

despite a small reduction in density. As a control, P2X7 antibodies were

shown to interact specifically to P2X7 by en face immunostaining of en-

dothelial cells in the descending aorta of P2X7-/- mice (see

Supplementary material online, Figure S4). These data support our obser-

vations that an up-regulation of P2X7 receptors occurs due to chronic

exposure to disturbed blood flow.

3.3 P2X7 receptors are required for
enhanced inflammatory signalling under
atheroprone flow
The function of endothelial P2X receptors was assessed using antago-

nists. Application of the P2X7 antagonist A438079 hydrochloride re-

sulted in a �50% reduction in the extracellular calcium influx response

to ATP under atheroprone flow (Figure 4B); calcium influx was negligible

in atheroprotected cells in the absence and presence of this antagonist

(Figure 4A). Knockdown of P2X7 using siRNA also reduced BzATP-

induced calcium influx in atheroprone flow conditioned HUVEC (Figure

4C). Conversely, P2X4 inhibition in atheroprone flow conditioned

HUVEC using PSB-12062 did not alter extracellular calcium influx (see

Supplementary material online, Figure S3B). It was concluded that athero-

prone flow enhanced calcium signalling, via an up-regulation of P2X7 re-

ceptor expression.

Next we studied the effects of enhanced P2X7 activity on inflamma-

tory signalling under atheroprone flow. Atheroprone flow significantly

enhanced expression of IL-8 and E-selectin (Figure 5A and B). P2X7 re-

ceptor inhibition reduced induction of E-selectin and IL-8, with both de-

clining to similar levels of those expressed by HUVEC under

atheroprotective flow (Figure 5A and B). Secretion of IL-8, determined by

ELISA of the cell culture supernatant, was also increased under athero-

prone flow compared with atheroprotective flow and was significantly

reduced by P2X7 inhibition specifically under atheroprone flow (Figure

5C). These effects were specific to P2X7, as P2X4 inhibition with PSB-

12062 did not alter expression of IL-8 or E-selectin (see Supplementary

material online, Figure S3C–E). eNOS expression was unaffected by

P2X7 inhibition (data not shown), while NFATc1 (but not other NFAT

transcripts) was downregulated in endothelial cells exposed to athero-

prone flow and this expression was further attenuated in the presence

of the P2X7 antagonist (data not shown). This suggests that the in-

creased P2X7 responsiveness observed in the atheroprone exposed

cells is unlikely coupled to NFAT activation or to eNOS expression.

Overall, these data suggest that endothelial P2X7 receptors are activated

by endogenously produced ATP under atheroprone flow and are re-

quired for the induction of inflammatory signalling.

In order to identify the signalling mechanisms leading to E-selectin and

IL-8 up-regulation, p38 phosphorylation in response to ATP was exam-

ined. p38 has been reported to be activated by atheroprone flow25 and

by P2X7,26 but these mechanisms have not been linked in endothelial

cells. p38 was phosphorylated rapidly following BzATP stimulation in

atheroprone, but not atheroprotected, flow conditioned HUVEC (Figure

5D) suggesting that ATP signalling is sufficient to activate p38 signalling in

these cells. Next, P2X7 receptor antagonists were used to identify if

P2X7 mediates p38 phosphorylation under atheroprone flow condi-

tions. In agreement with previous reports, p38 phosphorylation was sig-

nificantly increased under atheroprone flow compared with

atheroprotective flow (Figure 5E). Interestingly, inhibition of P2X7 signifi-

cantly reduced p38 phosphorylation under atheroprone flow conditions

(Figure 5E). These data indicate that the induction of inflammatory mole-

cules by atheroprone flow is mediated via a P2X7-p38 signalling

pathway.

To examine if P2X7 regulates atheroprone flow-mediated inflamma-

tory signalling in vivo, en face immunostaining for E-selectin at atheropro-

tected and atherosusceptible sites of the murine aorta was performed

using wild-type and P2X7-/- mice. E-selectin expression was significantly

enhanced at sites predisposed to atherosclerosis (Figure 6). In agreement

with our in vitro data using HUVEC (derived from a non-arterial source),

we found that expression of E-selectin at atheroprone sites was signifi-

cantly reduced in P2X7-/- mice compared with wild-type, suggesting that

P2X7 regulates endothelial inflammation in vivo at sites prone to athero-

sclerosis development.

In summary, our data reveal that atheroprone flow enhances inflam-

mation via an ATP-dependent P2X7-p38 signalling pathway.

4. Discussion

Mechanical shear stress influences the focal nature of atherosclerosis by

activating multiple signalling pathways that influence endothelial cell func-

tion. At bends and branch points of arteries disturbed flow generates

shear stress with low magnitude and oscillations that promotes inflam-

matory activation. Here we show for the first time that atheroprone

flow primes endothelial cells for enhanced purinergic signalling which

drives vascular inflammation via a calcium-p38 signalling pathway. The

underlying mechanism relies on low shear stress-dependent up-regula-

tion of P2X7 at the cell surface, which responds to ATP by mediating cal-

cium influx. The atheroprone shear stress up-regulation of P2X7

receptor expression was observed at the protein level, and also at the
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Figure 3 Expression of ATP-gated P2X7 receptors is enhanced under atheroprone flow. (A)Western blot and densitometry of P2X7 in flow conditioned

HUVEC using the ibidi flow system (n = 6, ** indicates P <_ 0.01 using a paired t-test). P2X7 is shown by an arrow, validated by P2X7 knockdown, shown in

Supplementary material online, Figure 4B. (B) Western blot and densitometry of P2X7 in flow conditioned HUVEC using the orbital shaker system (n = 4,

** indicates P <_ 0.01 using a paired t-test). (C) Representative en face immunostaining for P2X7 (red) on wildtype C57BL/6 mice at atheroprotective (outer

curvature) and atheroprone (inner curvature) regions of the aorta (scale = 25 mm). Endothelial cells were identified by staining with CD31 (green) and cell

nuclei were stained using TO-PRO (blue). P2X7 expression was analysed by measuring the relative fluorescent intensity at sites protected or prone to ath-

erosclerosis. Surface expression was measured by measuring P2X7 fluorescence at sites co-localized with the endothelial cell surface marker CD31.

Relative fluorescent intensities for P2X7 were corrected against the relative fluorescent intensity of IgG performed on the descending aorta (n = 5,

* indicates P <_ 0.05 and *** indicates P <_ 0.001 using a paired t-test). Values are mean ± S.E.M.
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cell surface at atherosusceptible sites when measured in vivo. We con-

cluded that shear stress regulation of P2X7 is downstream from tran-

scription or mRNA stability because P2X7 mRNA levels were not

enhanced by atheroprone flow (data not shown). Interestingly P2X7 re-

ceptors are associated with caveolae in osteoblasts,27 cardiomyocytes,28

and alveolar epithelial cells,29,30while post-translational modifications di-

rect P2X7 to lipid microdomains.31 Thus we speculate that caveolae,

which are shear sensitive,32may play a role in atheroprone-mediated up-

regulation and clustering of P2X7 at the cell surface thereby enhancing

calcium influx and inflammatory signalling in response to ATP.

Our observation that atheroprone flow sensitizes endothelial cells for

responses to ATP complements previous studies showing that disturbed

flow patterns canmodulate local ATP levels through its degradation, syn-

thesis and release. Of note, in vivo studies revealed that the ATPase

CD39 is highly expressed under atheroprotected high shear stress expo-

sure, thereby rapidly hydrolyzing ATP at the cell surface.18 In contrast

CD39 is down-regulated in atherosusceptible regions of the murine

aorta and CD39 deficient mice on an Apolipoprotein E (ApoE)-/- back-

ground exhibited increased atherosclerosis.18 Similarly we observed sig-

nificantly reduced CD39 expression in atheroprone compared with

atheroprotected endothelial cells in our in vitro models, and an enhance-

ment of the BzATP mediated calcium response in atheroprotected cells

following CD39 inhibition. In addition to reduced hydrolysis, ATP levels

are also actively increased in response to atheroprone flow and

Figure 4 P2X7 receptor activity occurs exclusively in HUVEC under atheroprone flow. Representative single cell ATP-induced calcium responses in athe-

roprotected (A) or atheroprone (B, C) flow conditioned HUVEC after thapsigargin pre-treatment ± the P2X7 inhibitor 10 mM A438079 (P2X7i) or siRNA

control and P2X7 knockdown (C) and analysed by measuring the average area under the curve (n = 4, 175 cells per donor, * indicates P <_ 0.05 using a paired

t-test). Values are mean ± S.E.M.
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inflammation by: augmented cell surface F1/F0 ATP synthase activity

within caveolae33,34; increased activation of pannexins35; and release of

ATP-rich vesicles.36,37 Together these studies reveal that ATP genera-

tion and hydrolysis are regulated by shear stress, leading to enhanced

ATP levels at atheroprone sites. Collectively, our observations and those

from previous reports indicate that endothelial cells at atheroprone sites

display enhanced ATP-dependent signalling via two complementary

mechanisms; accumulation of ATP and sensitization to ATP via P2X7 re-

ceptor up-regulation.

Although purinergic signalling has been linked to multiple diverse en-

dothelial functions its contribution to focal atherogenesis was uncertain.

Here we demonstrate that enhanced P2X7-dependent ATP signalling

promotes endothelial inflammatory activation at atheroprone sites via a

calcium-dependent signalling pathway. This observation is consistent

with previous studies demonstrating that extracellular ATP can induce

expression of adhesion molecules7,10,38,39 and chemokines10,40,41 and

promote leukocyte adhesion to the endothelium.7–10 Moreover recent

studies have shown that administration of extracellular ATP to ApoE-/-

mice exacerbated atherosclerosis by increasing leukocyte adhesion and

migration.9 Furthermore, inflammatory stimuli such as LPS42, TNF,35

hypoxia,36 and high glucose/palmitate10 all increase extracellular ATP re-

lease from endothelial cells, further supporting a role of extracellular

Figure 5 Atheroprone flow mediated inflammatory signalling is regulated by P2X7 responses. qPCR analysis of E-selectin (A) and IL-8 (B) in HUVEC con-

ditioned with atheroprotective or atheroprone flow using the ibidi system ± the P2X7 inhibitor 10 mM A438079 (P2X7i) (n = 5, * indicates P <_ 0.05 using a

two-way ANOVA). (C) IL-8 release measured by ELISA in the supernatant of HUVEC conditioned under atheroprotective or atheroprone flow using the

ibidi system ± the P2X7 inhibitor 10 mM A438079 (P2X7i) (n = 9, * indicates P <_ 0.05, *** indicates p=<0.001 and **** indicates P <_ 0.0001 using a two-

way ANOVA). (D) Representative western blot and densitometry for p38 phosphorylation following 5- or 15-min treatment of BzATP (300 mM) in athero-

protective or atheroprone flow conditioned HUVEC (n = 4, * indicates P <_ 0.05, ** indicates P <_ 0.01, *** indicates P <_ 0.001 and **** indicates P <_ 0.0001

using a two-way ANOVA). (E) Representative western blot and densitometry of p38 phosphorylation in atheroprone or atheroprotective flow conditioned

HUVEC using the orbital shaker system ± 30-min treatment with the P2X7 inhibitor 10 mM A438079 (P2X7i) (n = 5, ** indicates P <_ 0.01, **** indicates

P <_ 0.0001 using a two-way ANOVA). Values are mean ± S.E.M.
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ATP in endothelial inflammatory responses. Thus we suggest that me-

chanical shear-dependent upregulation of P2X7 at atheroprone sites

may be important in the initiation of atherosclerosis by transducing ex-

tracellular ATP into pro-inflammatory signalling responses. Our studies

of the molecular mechanism underlying P2X7-dependent inflammatory

activation identified a potential role for p38 MAP kinase. Although P2X7

has not been linked previously to p38 activation in atheroprone endo-

thelium, P2X7 activation is known to promote p38 phosphorylation in

other cell types.3,43,44 Our observations also support considerable evi-

dence demonstrating a role for p38 activity in vascular inflammation,45,46

atherosclerosis,25,47–49 and specifically in IL-8 and E-selectin activa-

tion.50–52

Our findings align with previous studies linking P2X7 with atheroscle-

rosis. Recently a role for P2X7 in lesion development, atherosclerosis,

and plaque inflammation was demonstrated using cholesterol fed

P2X7-/-LDLR-/- mice.14 P2X7 was found to drive inflammasome

Figure 6 P2X7 regulates E-selectin expression at sites susceptible to atherosclerosis in vivo. Representative en face immunostaining for E-selectin (red) on

wildtype or P2X7-/- BALB/c mice at atheroprotective (outer curvature) and atheroprone (inner curvature) sites of the aorta (n = 4–5) (scale = 25 mm).

Endothelial cells were identified by staining with CD31 (green) and cell nuclei were stained using TO-PRO (blue). E-selectin expression was analysed bymea-

suring the relative fluorescent intensity at sites of protected or prone to atherosclerosis (n = 4–5, * indicates P <_ 0.05, ** indicates P <_ 0.01 and *** indicates

P <_ 0.001 using a two-way ANOVA). Relative fluorescent intensities for P2X7 were corrected against the relative fluorescent intensity of IgG. Values are

mean ± S.E.M.
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activation in plaque macrophages. Interestingly leukocyte rolling and ad-

hesion was reduced in P2X7 deficient mice,14 linking directly to our dis-

covery that P2X7 activation promotes E-selectin upregulation at

endothelial sites exposed to atheroprone flow. This recent work by

Stachon et al. (2017)14 did not detect P2X7 staining in CD31 positive en-

dothelial cells, although cross-sectional histology was performed and ex-

pression at atheroprone arterial regions was not explored, whilst our

study addressed this question specifically using the more sensitive en face

staining technique, showing P2X7 expression in atheroprone endothe-

lium which was considerably lower at atheroprotective arterial sites.

Our findings are also consistent with clinical epidemiological evidence

that a loss-of-function polymorphism in the human P2X7 receptor has

been associated with a reduced risk of ischaemic heart disease and

ischaemic stroke.53 Our study provides novel insight, demonstrating a

role for P2X7 in mediating endothelial inflammation following chronic

exposure to atheroprone flow, an early event in atherosclerosis devel-

opment. Thus P2X7 likely plays a role in both focal initiation of lesion for-

mation as well as plaque progression. P2X7 has already been extensively

studied as a potential therapeutic target in inflammation. As a result, sev-

eral P2X7 receptor antagonists are available,54,55 for use in pre-clinical

and clinical studies.56 Future studies should therefore address which

P2X7 inhibitors can prevent the initiation of atherosclerotic lesions by

dampening local inflammation.

In summary, endothelial P2X7 is essential for atheroprone flow-

induced inflammatory signalling in vitro and at atheroprone sites in vivo.

Since P2X7 is activated specifically at atheroprone sites linked to dysre-

gulation of localized extracellular ATP levels, we propose its activity con-

tributes to early endothelial dysfunction preceding atherosclerosis

development.

Supplementary material

Supplementary material is available at Cardiovascular Research online.
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