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Abstract  19 

The feasibility of geological carbon storage sites depends on their capacity to safely retain 20 

CO2. While deep saline formations and depleted gas/oil reservoirs are good candidates to 21 

sequester CO2, gas/oil reservoirs typically have a limited storage capacity (~1 Mt/year) compared 22 

to alternative targets considered for CO2 disposal (Celia et al. 2015). In this respect, deep saline 23 

aquifers are considered more appropriate formations for geological carbon storage but present the 24 

disadvantage of having limited characterization data. In particular, information about the 25 
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continuity of the overlying sealing formations (caprock) is often sparse if it exists at all. In this 26 

work, a study of CO2 leakage is conducted for a candidate geological carbon storage (GCS) site 27 

located in the Michigan Basin, whose sealing properties of the caprock are practically unknown. 28 

Quantification of uncertainty on CO2 leakage from the storage formation is achieved through a 29 

Monte Carlo simulation approach, relying on the use of a computationally efficient semi-30 

analytical leakage model based upon the solution derived by Nordbotten et al. (2009), which 31 

assumes leakage occurs across “passive” wells intersecting caprock layers. A categorical indicator 32 

Kriging simulator is developed and implemented to represent the caprock sealing properties and 33 

model the permeability uncertainty. Binary fields of caprock permeability are generated and 34 

exhibit mostly low permeability, with sparsely-occurring local high permeability areas where 35 

brine and CO2 may leak out of the storage formation. In addition, the feasibility of extending the 36 

use of the semi-analytical model to large-area leakage pathways is studied. This work advances a 37 

methodology for preliminary uncertainty quantification of CO2 leakage at sites of GCS with little 38 

or no information on the sealing properties of the caprock. The implemented analysis shows that, 39 

for the considered site, CO2 leakage may not be negligible even for relatively low (~1%) 40 

probabilities of finding permeable inclusions in the caprock and highlights the importance of 41 

being able to characterize caprock sealing properties over large areas. 42 

Keywords: Categorical indicator Kriging simulator; CO2 leakage; CO2 storage; Semi-analytical 43 

solution. 44 

1 Introduction 45 

Increases in average global air and ocean temperatures are documented around the world 46 

with a global mean annual surface temperature increase of 0.3-0.6oC since the late 19th century 47 

(Nicholls et al. 1996). This phenomenon is due to the proliferation of greenhouse gas 48 

concentrations from anthropogenic emissions, particularly from carbon dioxide (CO2), the most 49 

important greenhouse gas produced by human activities (IPCC 2007). To stabilize CO2 emissions 50 

into the atmosphere several strategies have been suggested, among them geological carbon 51 

storage (GCS). GCS is advanced as a promising approach to reduce CO2 emissions from power 52 
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plants without needing to switch fuel sources (IPCC 2005). Suitable reservoirs for GCS are deep 53 

saline formations, depleted oil and gas reservoirs, and unmineable coal seams (Bergman and 54 

Winter 1995; Bachu 2003; Ruether 1998). Deep saline formations are widespread and offer 60% 55 

of the estimated storage capacity (IEA 2008). However, compared to oil and gas reservoirs, they 56 

lack characterization data and available information about their geological properties is usually 57 

scarce.  58 

 One of the requirements for GCS is the presence of a sealing formation that prevents 59 

stored CO2 from escaping from the injected formation (IPCC 2005) and guarantees a long term 60 

sequestration. Deep saline aquifers have the inconvenience of being typically unexplored. 61 

Accordingly, little is known about the properties of the sealing formations, which are potentially 62 

compromised by the presence of leakage pathways, such as faults or fractures, permeable areas 63 

of the caprock, and poorly completed existing wells (IPCC 2005). 64 

Several studies that investigate the importance of CO2 leakage associated with faults and 65 

existing wells have been documented. For instance, Chang et al. (2008) studied the CO2 leakage 66 

through faults where flow properties of faults are uncertain. They found that lateral CO2 migration 67 

through overlying permeable formations attenuates CO2 leakage through faults. The effect of 68 

faults, fault permeability, and flow velocity of groundwater on the migration of a CO2 plume was 69 

studied by Sakamoto et al. (2011). Zhang et al. (2010) proposed a method to calculate the 70 

probability of CO2 leakage through fractures and faults in a two-dimensional system. In high well-71 

density areas, abandoned wells may represent a significant escape pathway for the injected CO2. 72 

Gasda et al. (2004) observed that a CO2 plume could impact twenty to several hundred abandoned 73 

wells depending on the well density. Kopp et al. (2010) concluded that high risk of leakage 74 

through abandoned wells was produced by long injection times, small distances between injection 75 

wells and leaky wells, high permeability anisotropy, high geothermal gradient, and low depth. In 76 

Celia et al. (2011), the permeability of abandoned wells was identified as the most influential 77 

parameter resulting in CO2 leakage from GCS. Nogues et al. (2012) implemented a Monte Carlo 78 

simulation where the main uncertainty was the effective well permeability. They showed that 79 

results on leakage depended on formation properties, location, and number of leaky wells.  80 
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In González-Nicolás et al. (2015a), stochastic and global sensitivity analyses were 81 

applied to study different types of uncertainty affecting leakage of CO2 through passive wells 82 

during GCS operations for a potential candidate site located in the Michigan Basin. In this work, 83 

the investigation of González-Nicolás et al. (2015a) is extended to include the presence of 84 

potential areas of high permeability of the caprock potentially much larger than passive wells. 85 

The level of uncertainty is significantly increased since the location of passive wells is known, 86 

whereas the location, the size and the spatial frequency of caprock discontinuities are practically 87 

unknown. A probabilistic study of CO2 leakage is performed by applying a Monte Carlo 88 

simulation approach, where the main source of uncertainty is the caprock permeability. “Weak” 89 

areas of the sealing formation are herein considered as localized depositions of higher 90 

permeability materials and referred to as “inclusions”.  91 

A categorical indicator Kriging simulation algorithm is applied to generate ensembles of 92 

realizations of the caprock permeability field with two types of facies: 1) sealing formation (areas 93 

with low permeability), and 2) inclusions (areas with high permeability). The caprock 94 

permeability ensemble is thus used in a Monte Carlo analysis to perform a stochastic simulation 95 

of CO2 injection and probabilistically quantify leakage through the weak caprock areas. Due to 96 

the unavailability of geological data with sufficient resolution, different geostatistical 97 

configurations for the sealing formation are studied to assess the impact of the uncertainty of 98 

caprock inclusions on the probability of CO2 leakage. Areas of high permeability having relatively 99 

similar spatial locations are grouped together into clusters to reduce the number of leaky points 100 

used by the semi-analytical multiphase flow model, thus reducing the computational effort. To 101 

understand the potential limitations of the clustering approach, results from the semi-analytical 102 

multiphase flow model are compared with those obtained using a numerical model. Also, the 103 

influence of CO2 leakage through existing abandoned wells located in the area of interest is 104 

studied.  105 

The organization of this paper is as follows. First, the methodology of the study is 106 

described, which includes the multiphase flow semi-analytical algorithm, the generation of binary 107 
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permeability fields, and the statistical analysis. Then the application of the methodology to the 108 

Michigan Basin test site and results are presented. Lastly, a summary of conclusions is given. 109 

2 Methodology 110 

2.1 Multiphase Flow Semi-Analytical Model 111 

ELSA-IGPS (Baù et al. 2015) is a multiphase flow simulator based upon the semi-112 

analytical model ELSA developed by Celia and Nordbotten (2009) and Nordbotten et al. (2009). 113 

ELSA-IGPS is able to simulate the injection of supercritical CO2 into a deep saline formation and 114 

compute the leakage of brine and CO2 through poorly-sealed, “passive” wells. The domain is 115 

structured as a stack of horizontal, homogeneous, and isotropic aquifers separated by	caprock 116 

layers, and perforated by a generic number of CO2 injection wells and passive wells. CO2 injection 117 

rates are assumed to be constant during the injection period, and no post-injection phase is 118 

simulated. Caprock layers are impermeable except at passive well locations. Initially, the domain 119 

is saturated with brine at hydrostatic pressure. Flow is assumed to be horizontal in aquifers and 120 

vertical in passive wells. Capillary pressure, dissolution and chemical reactions are neglected. 121 

The model considers a brine relative permeability equal to one in areas where no CO2 is present, 122 

whereas in areas invaded by the CO2 plume, the relative permeability of CO2 is given by the end-123 

point CO2 relative permeability, which depends on the residual saturation of brine. The effective 124 

compressibility is assumed to be equal to the brine compressibility since most of the domain is 125 

filled with brine (Nordbotten et al. 2009). More details about the model assumptions can be found 126 

in Celia and Nordbotten (2009). 127 

In ELSA (Nordbotten et al. 2005), fluid pressures changes are the compound effect of 128 

CO2 injection and fluid leakage across caprock layers in passive wells. To determine the fluid 129 

overpressure, superposition of effects is applied based on a fundamental “well” function given in 130 

Celia et al. (2011). Using this approach, the fluid pressures 𝑝#,% 	at the bottom of each aquifer 𝑙 131 

(𝑙=1,2,..,𝐿; 𝐿 denotes the number of aquifers), at each passive well 𝑗 (𝑗=1,2,..,𝑁; 𝑁 denotes the 132 

number of passive wells),	and at any given time 𝑡 are non-linear functions of the fluid densities, 133 
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viscosities, and compressibility, as well as the thickness, porosity, brine residual saturation and 134 

permeability of the aquifers. These functions also depend on CO2 injection rates	entering aquifer 135 

𝑙	from each of the passive wells 𝑗. The cumulative fluid masses 𝑀#,%(𝑡) are calculated as 136 

𝑀#,% 𝑡 = 𝜌011,#,% 𝜏 𝑄#,% 𝜏 − 𝑄#,%56 𝜏 𝑑𝜏
8

9
,	 (1) 

where 𝑄 is the volumetric flow rate [L3T-1] and 𝜌011 is the effective fluid density [ML-3]. This 137 

density is time-dependent since the composition of the leaking fluid varies upon the CO2 plume 138 

location. To calculate leakage rates 𝑄#,%, Nordbotten et al. (2005) propose to use the sum of the 139 

flow rates 𝑄:#,% for each phase 𝛼 (𝑏 for brine and 𝑐 for CO2) given by  a multiphase version of 140 

Darcy’s law 141 

𝑄#,% = 	 𝜋𝑟@A
B

#,%

CD,EF,G
CHIF,G

JEKG
𝑝#,%L6 − 𝜌:𝑔𝐵% − 𝑝#,% − 𝜌:𝑔𝐻%L6:PQ,R .	 (2) 

In Eq. (2), 𝑟@A is the passive well radius [L], 𝑘@A is the single-phase passive well permeability 142 

[L2], 𝜇: is the dynamic viscosity of 𝛼 [ML-1T-1], 𝐵 is the aquitard thickness [L], 𝑝 is the pressure 143 

at the bottom of an aquifer [ML-1T-2], 𝑔 is the gravitational acceleration [LT-2] and 𝐻 is the aquifer 144 

thickness [L]. 145 

The substitution of Eqs. (1) and (2) in the expression of fluid pressures 𝑝#,% 	leads to a 146 

system of non-linear equations. In ELSA-IGPS (Baù et al. 2015), this system is efficiently solved 147 

using a fixed-point scheme, which leads to a substantial computational saving when compared to 148 

the linearization scheme adopted in ELSA by Nordbotten et al. (2005). Further details about the 149 

model equations and solving procedures are given in Baù et al. (2015) and González-Nicolás et 150 

al. (2015a). 151 

2.2 Binary Permeability Fields 152 

2.2.1 Generation of Binary Permeability Fields 153 

Equally likely realizations of the caprock permeability spatial distribution are generated 154 

with a categorical indicator Kriging simulator (CIKSIM), relying on a sequential Gaussian 155 

simulation algorithm similar to that implemented in the “sgsim” routine available in the 156 

Geostatistical Software Library (GSLIB) software developed by Deutsch and Journel (1998). 157 
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CIKSIM (González-Nicolás et al. 2015b) is based on a “multi-point” categorical geostatistics and 158 

has been developed to generate generic facies distributions characterized by arbitrary (continuous 159 

or discontinuous) and stationary local probability distribution functions (PDFs) and covariograms 160 

that may differ from category to category. CIKSIM approximates a generic cumulative 161 

probability distribution function (CDF) using a piecewise linear function. At any point in space 162 

during the simulation, the estimated conditional probabilities of the categories are used to 163 

randomly select the property values using the inverse CDF. 164 

Note that other algorithms are available to generate caprock permeability field based on 165 

generic, non-Gaussian, CDFs such as those based on the normal score transform (Goovaerts 1997; 166 

Deutsch and Journel 1998) and Gaussian mixtures (Grana et al. 2012). For the purposes of this 167 

study, CIKSIM is used to create binary fields that include two types of facies (or categories). 168 

Facies 1 represents caprock areas with little or no permeability, and facies 2 represents inclusions 169 

characterized by a high permeability. Thus, CIKSIM generates inclusions of the caprock to 170 

introduce in the multiphase flow semi-analytical model explained in Sect. 2.1. The caprock 171 

permeability	𝑘 is represented as a binary field (Deutsch and Journel 1998) 172 

𝑘 𝒖 = 𝑘6𝐼 𝒖 + 𝑘B[1 − 𝐼 𝒖 ], (3) 

where 𝑘6 and 𝑘B are the permeabilities of facies 1 and facies 2, respectively, at position u, and I 173 

is the indicator transform.  174 

2.2.2 Clustering of Inclusions 175 

If a large number of inclusions is generated for each field of the ensemble, the 176 

computational cost required by running the semi-analytical flow model (Sect. 2.1) will increase. 177 

To reduce this cost, a clustering algorithm of the inclusions is developed. A cluster is considered 178 

when two or more inclusion gridblocks are “in contact”, that is, when the distance between the 179 

centers of their gridblocks is less or equal to 2 ∙ ∆𝑥, where ∆𝑥 is the gridblock size adopted in 180 

the generation of the 𝑘 field. The size and distribution of these clusters depend on the parameters 181 

assigned for their generation. In the semi-analytical model, each cluster is modeled as a single 182 

circular leakage spot (passive well) with an area equivalent to that of the cluster itself. The 183 
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position of the leakage spot is calculated as the centroid of the gridblocks forming the cluster. 184 

One example of grouping the clusters at the caprock is shown in Fig. 1. In this example, the 185 

number of 84 inclusions-blocks (orange gridblocks) is reduced to only 16 clusters after applying 186 

the clustering approach. The equivalent areas of the clusters are shown as black circles in Fig. 1. 187 

Each of these clusters is used as a single leaky point in the semi-analytical model ELSA-IGPS of 188 

Sect. 2.1.  189 

[Figure 1 here] 190 

Originally, ELSA-IGPS was developed to simulate multi-phase flow and estimate the 191 

leakage of both brine and CO2 flux along existing passive wells. That is to say, leakage always 192 

occurs through small cross-sectional areas of the caprock (radii between 0.15 m – 1 m). In 193 

contrast, here, ELSA-IGPS is used to simulate escapes through larger weak areas of the caprock. 194 

A comparison with a numerical code is made to understand the limitations of using the semi-195 

analytical model in this way. The comparison is carried out using the compositional version E300 196 

of ECLIPSE (Schlumberger 2010). ECLIPSE is a commercial numerical multi-phase flow model 197 

based on a three-dimensional finite-difference discretization and widely used in the gas and oil 198 

industry. 199 

It is worth noting that the clustering approach is likely to alter the geostatistics of the 200 

inclusions and, in particular, their variogram. However, the most important requirement for this 201 

study is to maintain accuracy in the estimation of CO2 leakage, as explained above, rather than 202 

preserving the geostatistics of the caprock. 203 

2.3 Statistical Analysis 204 

In this work, CO2 leakage through caprock discontinuities and passive wells is quantified 205 

as the percentage of CO2 mass, %𝑀%0`C, released into aquifers overlying the targeted storage 206 

formation with respect to the total mass of CO2 injected. CO2 injection takes place in the deepest 207 

formation (𝑙=1) through a single injection well (𝑀=1), with only one overlying aquifer (𝑙=2) 208 

above the injected aquifer considered (more details on the conceptual model are in Sect. 3.1). 209 
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%𝑀%0`C is calculated as the ratio between the mass of CO2 that escapes from the injected 210 

formation into layer 𝑙=2 and the total CO2 injected into layer 𝑙=1 at final time 𝑡0ab 211 

%𝑀%0`C =
cGdef 8dgh

ijkl,l8dgh
100,	 (4) 

where 𝑀%0`C 𝑡0ab  is given by the net cumulative CO2 mass transferred into aquifer 𝑙=2 through 212 

all passive wells 𝑗 (𝑗=1,2,…,𝑁) 213 

𝑀%0`C 𝑡0ab = 	 𝜌R𝑠R,#,B 𝜏 𝑄#,B 𝜏
o
#P6 𝑑𝜏

8dgh

9
.	 (5) 

In Eq. (5) 𝑠R,#,B represents saturation of CO2 at passive well 𝑗 and aquifer 𝑙=2. 214 

Output ensembles of the state variable %𝑀%0`C are used to produce CDF plots. A CDF 215 

of the state variable %𝑀%0`C is obtained from the output of 𝑁cp  model simulations. After ordering 216 

the %𝑀%0`C values in ascending order, %𝑀%0`C6
< %𝑀%0`CB

< ⋯ < %𝑀%0`Cost
, the 217 

corresponding CDF values are calculated as 𝐶𝐷𝐹(%𝑀%0`C) = (𝑖	– 	0.5)/𝑁cp  (i=1,2,…,𝑁cp) 218 

(Hahn 1967). To optimize the performance of the simulations, preliminary tests are run to find 219 

the minimum ensemble size 𝑁cp  beyond which CDFs remain substantially stationary. A sample 220 

size of 𝑁cp= 500 is selected for each of the investigated scenarios.  221 

The methodology applied in this study is summarized as follows. First, CIKSIM is 222 

applied to the grid domain using conditional facies data, such as possible information on caprock 223 

sealing properties in given areas. As a result, an ensemble of caprock binary fields containing the 224 

two types of facies is obtained. The clustering approach is then applied to the caprock binary 225 

fields in order to decrease the number of leaky areas to be introduced in the multiphase flow semi-226 

analytical model. After the completion of the clustering process, ELSA-IGPS Monte Carlo 227 

simulations are run and a statistical analysis of the output ensembles of mass leakage are used to 228 

generate CDF profiles. Figure 2 shows a flowchart of such methodology. 229 

[Figure 2 here] 230 
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3 Application to the Michigan Basin Test Site 231 

3.1 Study Area 232 

The methodology introduced in Sect. 2 is applied to a geological test site located within 233 

the Michigan Basin in proximity to the town of Thompsonville, MI. The candidate formation 234 

proposed for GCS is known as the Gray Niagaran formation. Fig. 3 shows a cross-section of the 235 

Michigan basin in the area of interest with the candidate storage formation highlighted in yellow. 236 

The Gray Niagaran formation lies below an almost depleted hydrocarbon reservoir (Brown 237 

Niagaran pinnacle in Fig. 3), which is currently used by Michigan Technological University for 238 

geophysical research.  239 

[Figure 3 here] 240 

The Gray Niagaran formation has a thickness of 119 m with its top at 1,500 m below the 241 

ground surface, making this formation appropriate as a geological repository of CO2. The choice 242 

to store supercritical CO2 in this formation is justified by the sealing capacity of the formations 243 

above the Brown Niagaran pinnacle. However, a relevant source of uncertainty lies in the 244 

continuity of the caprock, highlighted in Fig. 3 (green shading). Although several data are 245 

available from monitoring wells at the test site (Halliburton 1990; SCH 1983, 1991), the 246 

information that can be used directly to describe the spatial distribution of the sealing properties 247 

of the caprock formation at the basin scale is scarce. 248 

The model system is conceptualized in ELSA-IGPS as a stack of two aquifers (𝐿=2): the 249 

Gray Niagaran formation (119 m thick) below and the Carbonate formation (35 m thick) above. 250 

The two aquifers are separated by a 17-m thick caprock layer constituted by marine evaporites 251 

(Fig. 3). Supercritical CO2 is injected into the Gray Niagaran formation through a single well.  252 

When using the numerical simulator ECLIPSE, the geological model is also 253 

conceptualized as two aquifers separated by a caprock, with the same thicknesses described 254 

above. The model domain is divided into 100 m × 100 m gridblocks horizontally. Vertically, each 255 

formation is divided into four sub-layers. A single vertical CO2 injection well is modeled at the 256 

center of the domain and screened within the lower aquifer. The grid resolution in the area 257 
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surrounding the injection well is progressively increased to achieve an appropriate size for a well 258 

(about 0.5 m). To simulate a laterally infinite aquifer system, the pore volume of the boundary 259 

gridblocks is multiplied by a factor of 1×106. In order to obtain comparable results with ELSA-260 

IGPS, the CO2SOL option of ECLIPSE is selected, which models the flow of two immiscible 261 

fluids with no capillary pressure. 262 

In both models, ELSA-IGPS and ECLIPSE, the mass injection rate is 𝑄}= 30 kg/s (about 263 

0.95 Mt/year) and remains constant during a simulated period	of 10 years (𝑡0ab in Eq. (5)). 264 

Initially, all formations are assumed to be saturated only with brine and under hydrostatic pressure 265 

conditions. The caprock is assumed impermeable except for the location of inclusions or passive 266 

wells located in the area of interest. A Van Genuchten constitutive model (Van Genuchten 1980) 267 

is used to calculate relative permeabilities of CO2 and brine, assuming a brine residual saturation 268 

𝑠Q
~0�=0.3 and a fitting parameter of 0.41 (Zhou et al. 2009). Porosity values are extracted from the 269 

log-wells of the two boreholes in Fig. 3 (Halliburton 1990; SCH 1983, 1991). The injected aquifer 270 

and the overlying formation are assumed to have a permeability equal to 2.8×10-14 m2 and 9.6×10-271 

15 m2
, respectively, calculated according to Trebin (1945) as 272 

𝑘 = 2𝑒�6.��				                     if 100𝜑	< 12%   

𝑘 = 4.94(100𝜑)B − 763   if 100𝜑 > 12%  , 

 

(6) 

where: 𝑘 is the permeability in millidarcy (mD, 1mD ≡  1×10-15 m2), and 𝜑 is the porosity (/). For 273 

the comparison of ELSA-GPS and ECLIPSE results, the sealing formation is assigned a 274 

permeability 𝑘6=0. For simplicity, inclusions in the caprock are assumed to have the same 275 

permeability as the injected aquifer 𝑙=1 (𝑘B = 𝑘%l). The hydro-geomechanical parameters used in 276 

this study are provided in Table 1. 277 

 [Table 1 here] 278 

3.2 Caprock Permeability Generation 279 

In order to generate caprock permeability realizations, CIKSIM is used. For this purpose, 280 

a grid covering an area of 7 km × 7 km is considered with the hydrocarbon reservoir located at its 281 

center (Fig. 1). Each gridblock is 100 m × 100 m, yielding a total of 4,900 blocks. The thickness 282 
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of the caprock above the Gray Niagaran formation is relatively small when compared to the 283 

horizontal extension of this formation (30.5 m thickness of caprock versus 7,000 m of estimated 284 

grid extension), thus the permeability is represented as a two-dimensional heterogeneous field 285 

with no variation in the vertical direction.  286 

Since the reservoir has contained oil before, it is assumed that the caprock in its area is 287 

perfectly impermeable. This information is used to “condition” caprock permeability realizations 288 

as facies 1 in the gridblocks inside the reservoir boundary. The caprock permeability in the other 289 

gridblocks (unsampled locations) is unknown and thus simulated stochastically. In Fig. 1, the 290 

lateral boundary of the reservoir is indicated by the blue line, and red dots correspond to 291 

gridblocks where the permeability is that of facies 1.  292 

3.2.1 Uncertainty from Caprock Continuity 293 

The generation of the caprock permeability ensembles with CIKSIM is based on the two-294 

point geostatistics described in Table 2. The following exponential covariance model is used for 295 

both facies 296 

𝐶C�C� 𝑑; 𝜎C�
B , 𝑙C� = 𝜎C�

B 𝑒𝑥𝑝 −
𝑑

𝑙C�
				 𝑖 = 1,2 , (7) 

where: 𝑑 is the horizontal distance between any two points; 𝜎Cl
B , 𝜎C�

B , and 𝑙Cl, 𝑙C� are the variances 297 

and the correlation lengths of the two facies; and 𝑘6 and 𝑘B are the permeability of facies 1 and 298 

2, respectively. Note that 𝜎Cl
B = 𝑃6 1 − 𝑃6  and 𝜎C�

B = 𝑃B 1 − 𝑃B , where 𝑃6 and 𝑃B are the 299 

probability of facies 1 and 2, respectively. Several probabilities of the occurrence of 𝑃B are applied 300 

for facies 2 (inclusions) ranging between 0.0005 and 0.02, as well as correlation lengths 𝑙C� = 𝑙�� 301 

ranging between 200 m and 1,500 m (𝑥𝑦 denotes equal correlation lengths in the 𝑥 and 𝑦 302 

directions. Facies 1 has a probability 𝑃6 = 1 −	𝑃B, and a correlation length 𝑙Cl= 1,000 m in all 303 

scenarios. 𝑁cp  in Table 2 refers to the ensemble size. 304 

 [Table 2 here] 305 

 To analyze the caprock permeability field generated by CIKSIM in relation to the 306 

correlation length 𝑙�� and the effect that this has on CO2 leakage, two parameters are here 307 
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introduced: the average distance 𝐷 between the inclusion clusters and the injection well; and the 308 

inclusion ratio 𝑟%R. The distance 𝐷 is calculated as 309 

𝐷 =
6

ost

b�,F
�jG
��l

ojG

ost
#P6 ,	 (8)	

where 𝑁R% (𝑖=1,2,..,	𝑁R%) is the total number of clusters present in realization 𝑗 (𝑗=1,2,..,	𝑁cp), and 310 

𝑑�,# is the distance between the center of the cluster 𝑖 in realization 𝑗 and  the injection well. In 311 

general, one can expect CO2 leakage to be probabilistically more pronounced for smaller values 312 

of 𝐷, which practically indicates how close to the injection well the inclusions are on average. 313 

The inclusion ratio 𝑟%R is defined as the fraction between the average number of actual 314 

inclusion blocks generated in the ensemble and the expected number of inclusion blocks 315 

𝑟%R =

Gj,F
�st
F�l

�st

��	o��
,	

(9) 

where 𝑁�Q   is the total number of gridblocks considered for the generation of the caprock (𝑁�Q= 316 

4,900), and 𝑙R,# is the number of inclusion gridblocks in realization 𝑗. For instance, for a 317 

probability 𝑃B= 0.01, the expected number of inclusion blocks is 49 (𝑃B𝑁�Q). In general, larger 318 

𝑟%R values indicate the presence of larger inclusions than expected, which should probabilistically 319 

produce larger CO2 leakage. 320 

Finally, to investigate the influence of the injected formation permeability and inclusions 321 

permeability on CO2 leakage, different combinations of these are considered as in the scenarios 322 

1.1, 2.1, 3.1, 4.1, and 5.1 presented in Table 2. The range of permeabilities of the injected 323 

formation 𝑘%l and inclusions 𝑘B studied spans from 1×10-15 m2 (about 1 mD) to 1×10-12 m2 (about 324 

1,000 mD). Results of these analyses are reported in terms of the 95th percentile of %𝑀%0`C (Eq. 325 

(4)). 326 

3.2.2 Uncertainty from Caprock Continuity and Passive Wells Permeability 327 

The study area considered in Sect. 3.1 comprises 60 wells that perforate the candidate 328 

formation to store CO2. The locations of these wells are obtained from the Michigan Department 329 

of Environmental Quality database (MDEQOGD 2014). The integrity of these wells is uncertain. 330 
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A deteriorated or poorly cemented well can create a leaky pathway for brine and/or CO2. Since 331 

the number of these passive wells is significant, they are included in the uncertainty analysis for 332 

CO2 leakage. 333 

Before use in the semi-analytical model, these 60 passive wells are grouped into 20 334 

equivalent leaky pathways following the approach outlined in González-Nicolás et al. (2015a). 335 

Following this approach, these groups are identified by minimizing the sum of the Euclidean 336 

distances of the passive wells that form a cluster of wells and the cluster centroid. The equivalent 337 

leaky area considered for each cluster of wells is equal to the sum of the cross-sectional areas of 338 

the wells included in that group. From the equivalent leaky area, an equivalent radius is calculated 339 

and introduced into Eq. (2) to compute the flow rate through this cluster. Figure 4 shows the 340 

positions of the 60 passive wells and the position of the 20 equivalent groups of wells after 341 

clustering. 342 

 [Figure 4 here] 343 

The location of these well groups is fixed in each of the realizations of the caprock 344 

permeability, but their permeability is considered stochastic, as no information is available on 345 

passive well integrity. All passive well permeabilities are assumed to fit to the same lognormal 346 

probability distribution function with a log-mean of log(1×10-14 m2) and a log-standard deviation 347 

of 1 log-m2 (Nordbotten et al. 2009). 348 

4 Results and Discussion 349 

4.1 Simulating CO2 Leakage from Large Caprock Areas Using ELSA-IGPS  350 

To investigate the viability of simulating CO2 leakage across generic caprock inclusions 351 

with the semi-analytical model, results of ELSA-IGPS are compared with those of the numerical 352 

model ECLIPSE. Results of the comparison are summarized in Fig. 5 and Fig. 6.  353 

Figure 5 presents the cumulative mass leakage of CO2 over time for two representative 354 

caprock permeability realizations from scenario 3.1. These two realizations are shown in Fig. 5a 355 

and 5b, whereas the corresponding CO2 leakage profiles are shown in Fig. 5c and 5d. In both 356 
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realizations, the final (at 𝑡0ab =10 years) cumulative CO2 mass leakage given by ELSA-IGPS 357 

and that given by ECLIPSE are quite similar. In addition, the final cumulative CO2 mass leakages 358 

in the two realizations are of the same order of magnitude. However, for the realization in Fig. 359 

5a, the CO2 mass leakage simulated by ECLIPSE starts earlier than that obtained with ELSA-360 

IGPS (Fig. 5c). These differences are not observed in Fig. 5d, which relates to the realization 361 

shown in Fig. 5b. 362 

[Figure 5 here] 363 

The analysis of the two models’ results for several other realizations of the caprock 364 

permeability (results not shown here) suggests that ECLIPSE simulates consistently an earlier 365 

CO2 leakage than ELSA-IGPS’s when caprock discontinuities are located farther away from the 366 

CO2 injection well. In this respect, a major difference between the realizations in Figs. 5a and 5b 367 

lies in the distance at which the closest inclusion to the CO2 injection well is found. In Fig. 5a 368 

such distance is 1,532 m, whereas in Fig. 5b it is 526 m. Numerical tests conducted in this study 369 

show that this distance is a crucial parameter for the comparison, and discrepancies between the 370 

two models, in terms of CO2 leakage versus time, are observed only when this minimum distance 371 

is greater than about 600 m (Figs. 4a and 4c). For realizations having the closest inclusion within 372 

600 m (Fig. 5b) no substantial difference in the CO2 mass leakage profiles is found (Fig. 5d).  373 

The earlier CO2 leakage simulated by ECLIPSE as compared to ELSA-IGPS has already 374 

been observed by Nordbotten et al. (2009), who attributed these differences to numerical diffusion 375 

in ECLIPSE. Our results confirm these observations. Effects of numerical diffusion lead to 376 

simulating a more spread out CO2 plume front at any given time, that is, a CO2 plume that 377 

somehow advances faster. This results in an earlier leakage, particularly when inclusions are 378 

located farther away from the injection well, since in this case the CO2 plume has to travel longer 379 

distances before leakage starts, exacerbating the effects of numerical diffusion. 380 

Figure 6 shows the CDF of %𝑀%0`C (Eq. (4)) of ELSA-IGPS (in red) and ECLIPSE (in 381 

blue) for scenarios 2.1 (dashed lines) and scenario 4.1 (solid lines). One can observe that CO2 382 

mass leakage for the two codes is quite similar for %𝑀%0`C values greater than 1%, whereas larger 383 
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discrepancies are found for smaller %𝑀%0`C values. Also, differences in CO2 leakage are more 384 

pronounced for larger inclusion probabilities 𝑃B. Statistically, ECLIPSE produces more leakage 385 

of CO2 than ELSA-IGPS, which can also be explained by the effects of numerical diffusion 386 

discussed above. The analysis of the CDFs in Fig. 6 reveals that low ranges of %𝑀%0`C are 387 

characterized by realizations with inclusions located farther away from the injection well, in 388 

which the CO2 leakage simulated by ELSA-IGPS starts later than ECLIPSE’s, thus producing a 389 

lower %𝑀%0`C. 390 

[Figure 6 here] 391 

In general, the cumulative CO2 mass leakage produced by the two models is of the same 392 

order of magnitude at later times, hence showing a reasonably good agreement between the two 393 

approaches. But since the computational cost of ELSA-IGPS is about two/three orders of 394 

magnitude lower than ECLIPSE’s, the advantage achieved by introducing clustered inclusions 395 

into ELSA-IGPS is quite significant for quantifying the uncertainty on CO2 leakage at the 396 

considered site. 397 

4.2 Quantifying Uncertainty on Caprock Continuity  398 

4.2.1 Testing of Binary Permeability Fields 399 

Figure 7 shows profiles of the average distance 𝐷 (Eq. (8)) and the inclusion ratio 𝑟%R (Eq. 400 

(9)) as functions of the correlation length 𝑙��. In Fig. 7a, the 𝐷 versus 𝑙�� relationship is graphed 401 

for probabilities 𝑃B equal to 0.005, 0.01, and 0.02. In general, as the correlation length  𝑙�� of 402 

facies 2 increases, the distance 𝐷 is observed to decrease at first and then become roughly 403 

constant. In practice, low correlation lengths lead to generating smaller inclusions, generally 404 

spread out throughout the domain and thus situated – on average – farther away from the injection 405 

well. On the other hand, larger correlation lengths signify larger inclusions, which are constrained 406 

within the domain and thus lead to smaller values of 𝐷. As a result, for a given probability 𝑃B and 407 

different correlation lengths, larger 𝑙�� values will reflect larger CO2 mass leakage because the 408 
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average distance 𝐷 that the CO2 plume has to travel through the storage formation to reach 409 

caprock inclusions, and thus the travel time, will be shorter.  410 

[Figure 7 here] 411 

Figure 7b displays the relationship between correlation length 𝑙�� and the inclusion ratio 412 

𝑟%R for probabilities 𝑃B equal to 0.005, 0.01, and 0.02. This figure shows that in general 𝑟%R is equal 413 

to 1 only when the correlation length is very small (𝑙��= 0.1 m) and exhibits a general increasing 414 

trend as 𝑙�� increases. This trend is, however, not significant for correlation lengths 𝑙�� beyond 415 

400 m, where 𝑟%R becomes roughly constant with values oscillating between 1.6 and 1.8 depending 416 

on the assigned probability 𝑃B. This indicates that, in order to simulate caprock continuity and its 417 

impact on the uncertainty on CO2 leakage, assigning meaningful values of the correlation 𝑙�� can 418 

be as significant as assessing the inclusion probability 𝑃B. 419 

4.2.2 Quantifying CO2 Leakage 420 

The effects of the correlation length 𝑙�� and the inclusion probability of facies 2 on CO2 421 

leakage are summarized in Fig. 8, which shows the CDF of %𝑀%0`C (Eq. (4)) for some of the 422 

scenarios described in Table 2. In general, CO2 mass leakage is higher for larger 𝑃B values. This 423 

is not surprising, since a higher 𝑃B substantially means a higher probability of the CO2 plume to 424 

encounter leakage pathways across the caprock. It is interesting to observe, however, that if a 425 

maximum %𝑀%0`C target of 1×10-3 is prescribed, this is met with an 81% probability in scenario 426 

1.1 (𝑃B= 0.0005 and 𝑙��= 200 m) and only with a 1% probability in scenario 5.1 (𝑃B= 0.02 and 427 

𝑙��= 200 m). 428 

 [Figure 8 here] 429 

Results in Fig. 7 confirm that the %𝑀%0`C associated to caprock permeability fields with 430 

the same probability 𝑃B is larger for larger correlation lengths, since inclusions have larger extent 431 

and, consequently, the CO2 mass leakage is more likely to occur. This is in agreement with two 432 

points made previously: i) the distance from the center cluster to the injection well 𝐷 is lower for 433 
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a higher correlation length (Fig. 7a); and ii) the inclusion ratio is greater for higher correlation 434 

lengths (Fig. 7b). For example, there are, on average, more inclusions in a scenario where 𝑙��= 435 

1,500 m, than when 𝑙��= 200 m, and the distance that the CO2 plume has to travel to reach the 436 

center of inclusion clusters is shorter, thus promoting earlier leakage of CO2. 437 

4.2.3 Influence of Permeability Values of the Injected Formation and Inclusions 438 

To study the combined influence of the storage formation permeability 𝑘%l 	and the 439 

inclusions permeability 𝑘B	on the maximum probable amount of leaked CO2, different 440 

combinations of 𝑘%l and 𝑘B are considered for scenarios 1.1, 2.1, 3.1, 4.1, and 5.1 (Table 2). These 441 

results are presented in Fig. 9, which shows contour maps of the %𝑀%0`C 95th percentile as a 442 

function of 𝑘%l and 𝑘B. Each subpanel in Fig. 9 corresponds to one of the scenarios above. All 443 

scenarios exhibit the lowest CO2 mass leakage when 𝑘%l is high and 𝑘B is low. In general, high 444 

permeability of the injection formation 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 to less escape of CO2 through weak areas. 445 

The CO2 plume advances more easily through the injected formation when 𝑘%l is high, which 446 

enhances its injectivity and storage properties, and limits CO2 escape, particularly if the inclusion 447 

permeability 𝑘B is low. As indicated in Fig. 9, scenarios 1.1 and 2.1 are those characterized by 448 

the lowest CO2 mass leakages. In scenarios 4.1 (Fig. 9d) and 5.1 (Fig. 9e), considerable amounts 449 

of CO2 leakage are observed when the inclusion permeability is greater than 3.16×10-13 m2 450 

(log𝑘B= -12.5). Broadly, results of these scenarios show that %𝑀%0`C  is more sensitive to 𝑘%l 451 

than 𝑘B, except when permeability of inclusions presents a very high value of 𝑘B (log𝑘B ≥-12.5). 452 

These results are aligned with those in González-Nicolás et al. (2015a), which have shown that 453 

the permeability of the storage formation has the greatest impact on CO2 leakage uncertainty, 454 

whereas the permeability of passive wells, which can be seen as analogues for inclusions, has a 455 

significant influence on CO2 leakage through the interaction with other parameters (higher order 456 

effects), such as the location of the leaky pathways.  457 

 [Figure 9 here] 458 
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The %𝑀%0`C 	maps given Fig. 9 can be used in relation to the metric reported by Pacala 459 

(2003), which limits the amount of CO2 leakage returning to the atmosphere to 1% per one year. 460 

In scenario 1.1 (Fig. 9a), where the probability of finding an inclusion is the lowest, %𝑀%0`C 461 

would be less than or equal to 1% per one year for values of 𝑘%l greater than 5.01×10-14 m2 462 

(log𝑘%l ≥ -13.3). On the other hand, if 𝑃B is increased to 0.01 (Fig. 9d), in order to maintain the 463 

maximum probable CO2 leakage below the 1% per year threshold, the minimum permeability 464 

required for the injection formation and the inclusions should be 3.98×10-13 m2 (log𝑘%l= -12.4) 465 

and 6.31×10-14 m2 (log𝑘B= -13.2), respectively. 466 

This analysis shows that geostatistical data, such as the probability 𝑃B and the correlation 467 

length, 𝑙��, play a critical role for the probabilistic assessment of CO2 leakage prior to the GCS 468 

development for a candidate reservoir. For instance, Fig. 9 indicates that a probability 𝑃B greater 469 

than 0.001 with 𝑙��= 200 m (scenarios 2.1, 3.1, 4.1, and 5.1) is likely to produce a CO2 leakage 470 

greater than 1% per year, in which case the injections of CO2 into the candidate storage formation 471 

should not be recommended. If the permeability of the storage formation is 𝑘%l= 2.8×10-14 m2 472 

(log𝑘%l= -13.55) (Table 1), injection of CO2 into the formation is not viable since this would lead 473 

to a probability of CO2 leakage exceeding 1% independently of the 𝑃B value considered in the 474 

scenarios shown in Fig. 9. It is, however, important to emphasize that these estimates are quite 475 

conservative since the limit proposed by Pacala (2003) is on CO2 leakage rates back to the 476 

atmosphere, whereas in this study the CO2 mass leakage considered is the CO2 that escapes the 477 

target storage formation 𝑙=1. Additional processes of trapping and attenuation that CO2 may 478 

undergo in the overburden formations are not accounted for. 479 

4.3 Combining the Effects of Caprock Inclusions and Passive Wells 480 

Uncertainty from permeability of passive wells affects CO2 mass leakage results when 481 

this uncertainty is added to caprock continuity uncertainty, especially in scenarios where CO2 482 

leakage from the caprock discontinuities is expected to be low. Figure 10 and Fig. 11 show CDFs 483 

of %𝑀%0`C (Eq. (4)) for some of the scenarios described in Table 2 in the cases where uncertainty 484 
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in passive well is (solid lines) and is not (dashed lines) accounted for. In Fig. 10, the selected 485 

inclusion scenarios are those characterized by the same correlation length 𝑙��= 200 m (scenarios 486 

2.1, 3.1, 4.1, and 5.1). Results in Fig. 10 reveal that, for the considered test site, uncertainty from 487 

permeability of passive wells does not affect significantly CO2 mass leakage, independently of 488 

the prescribed 𝑃B value, if %𝑀%0`C exceeds 1%; yet significant differences are observed for 489 

smaller values of %𝑀%0`C, especially for the lowest probabilities 𝑃B of the inclusions (e.g., 𝑃B= 490 

0.0005 and 𝑃B= 0.001). 491 

 [Figure 10 here] 492 

In Fig. 10, scenario 1.1 (blue lines), which has the lowest inclusion probability 𝑃B, shows 493 

an 82% probability of %𝑀%0`C to be less than 1×10-3 when only caprock continuity uncertainty is 494 

considered (blue dashed line). When adding the uncertainty from passive well permeability (blue 495 

solid line) this probability is reduced to zero, and there is practical certainty to exceed the 1×10-3 496 

threshold. Scenarios 2.1, 3.1, and 4.1 exhibit the same tendency as in scenario 1.1. However, 497 

scenarios with higher probability 𝑃B, such as scenario 4.1 (green profile) and 5.1 (in gray), show 498 

small differences between their CDFs even for low values of %𝑀%0`C. Moreover, in scenario 5.1 499 

(gray profile) the influence on leakage produced by the uncertainty on the permeability of passive 500 

wells is negligible in comparison to the leakage produced through the weak areas of the caprock. 501 

Similar to Fig. 10, Fig. 11 shows CDFs of %𝑀%0`C (Eq. (4)) for scenarios 2.1, 2.2, 2.3 502 

and 2.4 in Table 2, characterized by the same probability 𝑃B and different correlation lengths, 503 

when uncertainty in passive wells is (solid lines) and is not (dashed lines) considered. Results of 504 

Fig. 11 indicate that uncertainty on passive wells permeability has an important impact on the 505 

CDFs for values of %𝑀%0`C 	below 0.25%, independently of the correlation length. Figure 11 also 506 

shows that when uncertainty on passive wells is considered, the influence of the inclusion 507 

correlation scale 𝑙��, which practically dictates the size of the inclusions, is noticeable for  508 

%𝑀%0`C equal to 0.1% and becomes more prominent for %𝑀%0`C larger than 1%. On the other 509 
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hand, when uncertainty on passive wells is not considered, the influence of 𝑙�� is noticed at much 510 

lower leakage values (%𝑀%0`C = 1×10-3%).  511 

 [Figure 11 here]  512 

5 Summary and Conclusions 513 

This work advances a novel methodology for the preliminary assessment of the suitability 514 

of saline aquifers for GCS in relation to the risk of CO2 leakage across high permeable areas of 515 

the caprock. The study is focused on inclusion facies but it also considers the presence of 516 

passive/abandoned wells of uncertain integrity. This framework is applied to a saline aquifer 517 

embedded within the Michigan sedimentary basin, with very limited information on the sealing 518 

properties of the caprock. An uncertainty quantification analysis of CO2 leakage is conducted by 519 

developing a Monte Carlo simulation approach, where the caprock permeability field is the major 520 

source of uncertainty. Because of the computational cost involved in the use of numerical 521 

multiphase flow numerical models, the viability of substituting them with a semi-analytical flow 522 

model originally developed to treat leakage from passive wells is studied. To generate caprock 523 

discontinuities a two-point geostatistics simulator of permeability is coupled with a clustering 524 

algorithm that produces equivalent circular discontinuities for direct use in the semi-analytical 525 

flow model. To understand the limitations of applying the semi-analytical model to simulate 526 

leakage through large areas of the caprock, a comparison of the semi-analytical algorithm with a 527 

numerical code is carried out. Results show that, in general, there is a good agreement between 528 

the two models, with the cumulative CO2 mass leakage produced being practically the same at 529 

later times.  530 

Parameters such as 𝐷 and 𝑟%R can be regarded as useful indicators for assessing the 531 

vulnerability of any site to CO2 leakage. Since CO2 leakage varies greatly depending on 𝑃B and 532 

𝑙�� values, it is critical to prescribe realistic values of 𝑃B and 𝑙�� to be able to quantify uncertainty 533 

in CO2. Uncertainty from passive well permeability has less impact on CO2 leakage when large 534 
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amounts of CO2 leakage through the inclusions are expected (%𝑀%0`C >1%) and is only 535 

significant when CO2 leakages from caprock inclusions are low. 536 

Overall, seemingly low inclusion probabilities 𝑃B, of the order of 1%, may lead to 537 

considerable CO2 leakage. Therefore, extreme caution should be used before injection of CO2 into 538 

the selected candidate formation. While processes of trapping and attenuation that CO2 may 539 

undergo in the overburden formations are expected, to enhance GCS safety, only the collection 540 

of high resolution geophysical data over a large area around the injection site may help narrow 541 

down the uncertainty on the caprock continuity. 542 

Finally, the methodology presented here can be transferred to assess the probability and 543 

intensity of CO2 leakage in other potential GCS candidate sites in which data on the caprock 544 

sealing properties are limited or inexistent. Since this situation is often encountered in the real 545 

world, this framework can offer a valid tool to support decision makers in the preliminary 546 

selection of safe GCS sites. 547 
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 694 

Table 1 Hydro-geomechanical parameters 695 

Parameter Symbol Value Units 

Brine density 𝜌Q 1, 045 kg m-3 

CO2 density 𝜌R 575 kg m-3 

Brine viscosity 𝜇Q 4.5×10-4 Pa s 

CO2 viscosity 𝜇R 4.6×10-5 Pa s 

System compressibility  𝑐011 4.6×10-10 Pa-1 

Injected aquifer porosity 𝜑%l 0.084 / 

Overlying aquifer porosity 𝜑%� 0.05 / 

Brine residual saturation 𝑠Q
~0� 0.3 / 

End-point CO2 relative permeability 𝑘~,R9  0.42 / 

Injection aquifer permeability 𝑘%l 2.8×10-14 m2 

Overlying aquifer permeability 𝑘%� 9.6×10-15 m2 

Sealing formation permeability 𝑘6  0 m2 

Weak areas/inclusions permeability 𝑘B 2.8×10-14 m2 
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Table 2 Parameters used for the generation of caprock fields. All considered scenarios are 697 

assumed to have a correlation length 𝑙Cl=1,000 m for facies 1 698 

Scenario  
Covariance 

model 
𝑁cp  𝑃B

* 𝑙��	(m) 

1.1 

Exponential 500 0.0005 

200 

1.2 400 

1.3 600 

1.4 1,500 

2.1 

Exponential 500 0.001 

200 

2.2 400 

2.3 600 

2.4 1,500 

3.1 

Exponential 500 0.005 

200 

3.2 400 

3.3 600 

3.4 1,500 

4.1 

Exponential 500 0.01 

200 

4.2 400 

4.3 600 

4.4 1,500 

5.1 

Exponential 500 0.02 

200 

5.2 400 

5.3 600 

5.4 1,500 

*Facies 2 corresponds to inclusions. Probability of facies 1 (perfectly sealing formation) is 𝑃6 =699 

1 −	𝑃B.  700 
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  702 

Fig. 1 Representation of the clustering approach. In this example, the number of 84 inclusions-703 

blocks (in orange) is reduced to 16 clusters (black circles). Limit of the hydrocarbon reservoir 704 

(red gridblocks) is shown by the blue line (Brown Niagaran pinnacle in Fig. 3) 705 
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Fig 2. Flow chart of the methodology  708 
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Fig. 3 Cross-section of the Michigan Basin test site proposed for GCS (Turpening et al., 1992). 710 

The candidate formation is highlighted in yellow and the caprock is colored in green  711 
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Fig. 4 Locations of 60 passive wells that cross the candidate GCS formation of the Michigan 713 

Basin (black crosses) and of the 20 equivalent clusters (blue circles). The red dot indicates the 714 

position of the proposed injection well (Merit 1-20A in Fig. 3) 715 
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 717 

Fig. 5 Panels a and b: caprock permeability for two representative realizations of scenario 3.1. 718 

Panels c and d: ECLIPSE and ELSA-IGPS comparison of CO2 mass leakage over time for 719 

realizations in a and b, respectively 720 

721 
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Fig. 6 CDFs of %𝑀%0`C for ELSA-IGPS (in red) and ECLIPSE (blue) of scenario 2.1 and scenario 723 

4.1 724 
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Fig. 7 a Relationship between correlation length and the average distance between cluster centers 727 

and injection well and b relationship between correlation length and the inclusion ratio 728 
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