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Autonomous Flame Detection in Videos with a

Dirichlet Process Gaussian Mixture Color Model
Zhenglin Li, Student Member, IEEE, Lyudmila S Mihaylova, Senior Member, IEEE, Olga Isupova

and Lucile Rossi

Abstract—This paper proposes a flame detection framework
based on the color, dynamics and flickering properties of flames.
The distribution of flame colors is modelled by a Gaussian Mix-
ture Model whose number of Gaussian component is estimated by
a Dirichlet process from training data rather than set empirically.
The proposed approach estimates the flame color distribution
more accurately as it can determine the number of Gaussian
components of the mixture model automatically. Additionally,
a probabilistic saliency analysis method and a one-dimensional
wavelet transform are used to extract motion saliency and
filtered temporal series as features, describing the dynamics and
flickering properties of flames. The developed Dirichlet Process
Gaussian Mixture Model based approach for autonomous flame
detection is tested on various videos and achieves frame-wise
accuracy higher than 95%.

Index Terms—Flame detection, Dirichlet Process Gaussian
mixture model, saliency analysis.

I. INTRODUCTION

F IRE detection techniques have drawn increasing attention

in the last decades due to the great loss caused by fires. To

reduce injuries as well as financial loss, fire detection systems

are usually required to provide quick and accurate alarms [1].

Early works, which mostly employ smoke or heat sensors

for fire detection, have several disadvantages. One of them is

that these methods are limited to indoor detection and have

a significant drop in their performance if applied to large

geographical areas. Additionally, environmental factors have

a high impact on the performance of these techniques.

Video based fire detection methods become increasingly

popular because of the limitations of traditional fire monitor-

ing techniques [2]. Different from sensor based approaches,

the computer vision based ones mostly employ information

extracted from optical videos rather than detecting smoke or

heat. They are not limited to indoor environments and are

suitable for large spaces. Moreover, environmental changes

hardly influence their performance. Third, faster and more

accurate results are enabled by the way information is captured

and processed. Finally, compared with expensive sensors, the

video based methods cost much less because they can be

combined with existing monitoring systems [3].
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The computer vision based fire detection research includes

flame detection and smoke detection (or wildfire detection) [1].

Our work in this paper focuses on the former.

To achieve good detection performance, existing work

mostly employs properties of color [4]–[6], texture [7],

shape [8] and dynamics [6], [7], [9], [10] as features. Specif-

ically, flames are mostly of particular colors, special textures

and irregular shapes, and all the properties above vary signif-

icantly and dynamically with time. These features are usually

combined to obtain more reliable results [11].

Features of colors work effectively and efficiently in detect-

ing flame pixels. Flame chromatic models aim at detecting as

many flame pixels as possible while filtering out non-flame

ones at the same time. Candidate pixels are further processed

based on other features and the falsely detected ones are

discarded. There are two main types of color models employed

in the literature, e.g. [4], [9], namely empirical inequality

models with experimental thresholds and statistical models

trained by real data. Two widely accepted empirical inequality

models are proposed by Chen et al. [4] and Celik et al. [5].

They work quite well in detecting real flame pixels, but not

in filtering out the disturbance in some areas. Comparatively,

statistical models work better if a proper model is selected and

trained with enough data, such as the Gaussian Mixture Model

(GMM) based flame color model proposed by Torenyin et al.

[9], [12].

The GMM is able to approximate any arbitrary distribution

theoretically and thus is suitable for flame pixels as well.

However, the number of mixture components is not known

in advance and it is not reasonable to set it empirically. Addi-

tionally, the color spaces in which the models are established

are crucial as well. RGB models are susceptible to luminance

changes as none of the channels is independent on the light

intensity. To overcome these disadvantages, researchers have

also established their flame chromatic models in YCbCr [5]

and HSV [6] spaces to relieve the influence of luminance [13].

Alternatively, the color features are transformed to a new

space with a conversion matrix trained by the particle swarm

optimization (PSO) with both flame and non-flame pixels,

to enhance the classification performance [14]. However, the

colors of non-flame pixels are in a very wide range and not

easy to be covered by training data. Comparisons of different

color models are made in [15].

Since color features only are not enough for accurate

flame detection, dynamics as well as foreground detection

are widely employed for further verification. Areas of flames

are not static because of air flows. Therefore, many existing

methods [9], [16]–[18] employ a motion detection step first to
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prune out static regions. It not only reduces the computational

complexity but also mitigates the interference due to noise

and distractors. Widely used methods include background

subtraction [9], [16], the motion history image [17] and the

adaptive background estimation based on GMM [18].

After processed by background detectors and/or color mod-

els, features of the dynamic property of candidate pixels are

extracted for discarding falsely detected ones. The method

in [7] divides the video into spatio-temporal blocks and

employs covariance matrices as features. It works well in most

cases although the covariance matrix-based feature fails to

distinguish flame-colored moving objects from flames some-

times. Additionally, two novel optical flow estimation methods

are specifically designed for two different kinds of flames

in [10]. Besides, some research methods analyze the dynamic

features in another domain [9] to better reveal the differences

between flames and distractors. Toreyin et al. [9] represent

the variations of pixels in the wavelet domain to reflect the

flickering property. The method works well for frame-wise

detection, but sometimes falsely discards pixels in the central

regions of flames.

Apart from color and dynamic properties of flames, tex-

tures [11], shapes [19] and other features are also employed

for flame detection, but mostly together with other properties.

These features are widely used together with machine

learning types of classifiers, for example, the support vector

machine (SVM) [20] and neural networks [10] and lead to

efficient fire detection. However, false detection rates are

not low enough when these classifiers are employed with

commonly used features such as the scale-invariant feature

transform (SIFT) and histogram of oriented gradients (HOG),

due to the variety in the appearance of flames.

Many methods work well in the detection rate of fires

currently, e.g. [3], [7]. However, most of them suffer from

high false alarm rates, which significantly hinders the appli-

cations of these techniques. Therefore, the challenge of flame

detection lies in achieving reliable accuracy as well as low

false alarm rates.

To solve or relieve the above problems, we propose a

hybrid flame detection framework based on Dirichlet Process-

Gaussian Mixture Model (DPGMM) [21], [22], saliency analy-

sis and one-dimensional (1-D) wavelet transform in this paper.

The proposed color model first assigns each pixel a probability

describing how likely it is to be a part of flames according to

the color. Subsequently, a saliency map is obtained based on

the optical flow magnitude of each pixel with a probabilistic

approach. The saliency map is combined with the results

of the color model to decide candidate flame pixels with

two independent experimental thresholds. Furthermore, the

framework prunes out pixels whose intensities are not larger

than the mean of the current frame. Candidate pixels obtained

by the above three steps are further processed by a 1-D wavelet

analysis step based on the flickering characteristic of flames.

A frame-wise decision is made according to the number of

finally detected flame pixels of each frame.

Compared with the approach proposed in [23], the main

contribution of this paper lies in the novel DPGMM based

flame color model. The model employs a GMM to represent

the flame color distribution, with the number of Gaussian

components automatically estimated by the Dirichlet Process

(DP) from training data [22]. The DPGMM can estimate the

distribution of flame colors well since it learns the component

number of a GMM from training data rather than setting it

empirically as in existing methods [9], [12]. An improperly

preset Gaussian component number will lead to poor estima-

tion of other parameters, i.e. means and covariance matrices,

which usually results in imprecise estimation of the color

distribution of flames. Therefore, the DPGMM significantly

enhances the detection performance of the color model, which

will contribute to high final detection rates. Additionally, the

bright property of flames is employed by discarding pixels

whose intensities are smaller than the average value of the

processed frame, instead of using a grayscale saliency map

in [23]. It describes the flame characteristics better and thus

contributes to more accurate detection results.

This paper is organized as follows: the DPGMM flame color

model is presented in Section II and we describe the detection

approach in Section III. Experiments and discussions of results

are provided in Section IV while conclusions are drawn in

Section V.

II. DPGMM FLAME COLOR MODEL

The DP estimates the number of GMM components by

inferring the posterior of data assignments to clusters, with the

assumption that there is an infinite number of latent clusters,

but only a finite number of them is used to generate the

observed data. The Dirichlet Process is widely used in topic

modelling [22], abnormal detection [24] and other areas, but

it has not been applied to fire detection yet.

A. Dirichlet Process and Chinese Restaurant Process

1) Dirichlet Process: The Dirichlet Process (DP) works on

problems of exchangeable observations [22]. Each observation

is denoted as xi and is generated from a distribution with the

parameter θi (xi and θi can be either a scalar or a vector).

Different θis are exchangeable and may not be of distinct

values. The parameter θi is generated from a prior distribution

G. Thus, we have the model as follows:

θi|G ∼ G for each i (1)

xi|θi ∼ F (θi) for each i, (2)

where F (θi) is the distribution of xi given θi. It is assumed

that each parameter θi is conditionally independent given the

distribution G.

Given a measurable space and a probability measure G0 on

the space [25], a Dirichlet Process is defined as a distribution

of a probability measure G over the space. It satisfies the con-

dition that for any finite measurable partition (A1, ..., Ar) of

the space, (G(A1), ...G(Ar)) follows a Dirichlet distribution

with parameters of (α0G0(A1), ..., α0G0(Ar)), where α0 is a

positive real parameter, i.e.

(G(A1), ...G(Ar) ∼ Dir(α0G0(A1), ..., α0G0(Ar)). (3)

When G follows a Dirichlet process, we denote it as G ∼
DP (α0, G0) with the parameter α0 and a base distribution G0.
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2) Chinese Restaurant Process: The Chinese Restaurant

Process (CRP) is a distribution over partition of integers with

a parameter α0 [26]. It is another perspective of the DP. For

G ∼ DP (α0, G0), the CRP focuses on samples from G.

Consider a boundless Chinese restaurant with an infinite

number of tables and each table can serve an unlimited number

of customers. A sequence of customers θ1,θ2, ... (a metaphor

for a sequence of exchangable random variables drawn from

G) comes into the restaurant and chooses tables to sit at. The

i-th customer θi can either sit at an existing table or choose

a new one, following the distribution given below

p(ci|c1, ..., ci−1) =











mk,−i

i− 1 + α0

at an occupied table k

α0

i− 1 + α0

at a new table,
(4)

where ci is an indicator variable specifying on which table

customer θi sits and mk,−i is the number of customers already

at table k (not including θi).

After all the customers have taken their seats, a partition

plan of those customers (variables θ1,θ2, ...) is obtained.

When related with the DP, the customers (random variables)

at the same table share a parameter vector drawn from the

base distribution G0. The discrete values of the table related

parameters are denoted by φ = {φ1,φ2, ...}. The CRP thus

has a naturally clustering property and tables here in the CRP

correspond to clusters. The cluster number is influenced by

the concentration parameter α0, as it decides how likely a cus-

tomer chooses a new table relatively to customers already in

the restaurant. Additionally, since θ1,θ2, ... are exchangeable,

each customer can be treated as the last one.

B. DPGMM Based Flame Color Model

We train a GMM to model the flame color distribution in the

RGB space. As the training data is extracted from images of

various illumination, the DPGMM based flame color model is

robust to different lighting conditions. Denote the color vector

of a flame pixel i as xi = [Ri, Gi, Bi]
T . Then we have

p(xi|µ,Σ) =

K
∑

k=1

wkN (xi|µk,Σk), (5)

where N (·) is the Gaussian distribution. Here µk, Σk and

wk denote the mean, covariance and the weight of the

k-th Gaussian component respectively. Then the GMM is

charactersized with the parameters: µ = {µ1, ...,µK} and

Σ = {Σ1, ...,ΣK}. The parameters of the k-th component

is denoted as φk , {µk,Σk}, which corresponds to table k

in the CRP metaphor. As the component number K is not

intuitively known, we employ the DPGMM related approach

to find it for more reliable results.

According to the mixture model theory [26], each xi is

generated by first choosing a component indexed by ci which

is distributed according to w = [w1, ..., wK ]. Afterwards,

the observation xi is generated from the chosen Gaussian

component with the parameter θi = φci
, {µci

,Σci}.

However, the distribution weight w is not available only

with known observations, so we assume that θi is distributed

according to a DP. Thus, the generative model is

G ∼ DP (α0, G0) (6)

θi|G ∼ G (7)

xi|θi ∼ N (µci
,Σci). (8)

However, neither the GMM parameters nor the data allo-

cations are known with only training data X = {x1, ...,xN}
available. The collapsed Gibbs sampling [27] is employed here

to obtain the assignments of the data X and other parameters

can be estimated based on them. As θ is distributed according

to G, the distribution of ci conditional on {c1, ..., ci−1} is

induced by the CRP. Therefore the posterior is as follows [28].

p(ci = k|c−i,X, α0, G0)

∝ p(ci = k|c−i, α0) · p(xi|X−i, ci = k, c−i, G0),
(9)

where k ∈ {1, ..., t, k∗} and t denotes the number of occupied

tables while k∗ means choosing a new table. Besides, X−i

and c−i are referred to as the training data except xi and their

allocations.

To compute the conditional distribution of ci = k based

on assignments of other observations, θi is treated as the last

customer according to the exchangeability. Thus, the first term

of Eq. (9) can be obtained from Eq. (4)

If θi sits at an existing table, the second term of Eq. (9) is

p(xi|X−i, ci = k, c−i, G0) (10)

= p(xi|Xk,−i, G0) (11)

=
p(xi,Xk,−i|G0)

p(Xk,−i|G0)
(12)

=

∫

p(xi|θk)

[

∏

j 6=i,cj=k

p(xj |θk)

]

G0(θk)dθk

∫

[

∏

j 6=i,cj=k

p(xj |θk)

]

G0(θk)dθk

, (13)

where Xk,−i = {xj : j 6= i, cj = k} denotes the other

customers assigned to table k not including xi.

Similarly, if the i-th customer chooses a new table, we have

p(xi|X−i, ci = k∗, c−i, G0) = p(xi|G0) (14)

=

∫

p(xi|θ)G0(θ)dθ. (15)

Based on the collapsed Gibbs sampling for the CRP de-

scribed from Eq. (9) - Eq. (15), allocation plans are obtained

after convergence. Then we can estimate the GMM parameters

with the training data and their assignments to clusters.

With the trained color model, each pixel is assigned a

probability describing how likely it is part of flames according

to its color. Flame pixels will obtain higher probabilities while

non-flame regions are likely to have lower ones with an

accurate estimation of the flame color distribtution. Given an

appropriately chosen threshold, several candidate pixels are

obtained for further processing.
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Fig. 1. Flow Chart of the Proposed System.

III. HYBRID FLAME DETECTION SYSTEM BASED ON

FUSION OF DIFFERENT FEATURES

A motion saliency map of each frame is obtained with the

method in [23], [29], [30]. Candidate pixels with small motions

are discarded based on the selected threshold, while others are

combined with the results of the color model in Section II.

Subsequently, the framework discards pixels whose intensities

(I channel values of the HSI color space) are smaller than the

mean value of the current frame. Additionally, candidate pixels

are further checked by a wavelet transform based analysis

step [9]. A frame-wise decision is made according to the

final number of candidate flame pixels. The flow chart of the

framework is provided in Fig. 1.

A. Probabilistic Saliency Analysis

This step aims at measuring the motion saliency of each

pixel. It is based on a probabilistic interpretation of the semi-

local feature contrast. A sliding rectangular window W, shown

in Fig. 2, is employed in the approach, divided into an inner

kernel K and a border area B. The widths and heights of the

window W and kernel K are denoted as wW , hW , and wK ,

hK , respectively. Let (x, y) be a point inside the window W

with F (x, y) (the optical flow magnitude in our framework) as

its feature value. The Horn-Schunck method [31] is employed

for the estimation of optical flows.

Two hypotheses are proposed as H0: the point is not salient

and H1: the point is salient. The prior probabilities p(H0)
and p(H1) satisfy p(H0) = 1 − p(H1). It is assumed at the

beginning that H0 is valid for the points in B while H1 for

those in K.

The posterior probability p(H1|F (x, y)) reflects the saliency

S(x, y) of the point (x, y) according to its feature F (x, y).
That is

S(x, y) = p(H1|F (x, y)). (16)

Using Bayes’ theorem

p(H1|F (x, y)) =
p(H1)p(F (x, y)|H1)

p(H1)p(F (x, y)|H1) + p(H0)p(F (x, y)|H0)
.

(17)

Fig. 2. Schematic Diagram of Sliding Window.

It is reasonable to estimate the priors according to the

area ratios of K and B. The likelihoods p(F (x, y)|H1) and

p(F (x, y)|H0) are estimated using histograms of F (x, y)
computed in K and B. To enhance the robustness, the obtained

histograms are smoothed with a Gaussian blur function before

normalization. Mathematically,

p̂(F (x, y)|H1) = Norm(g(F ) ∗ histK(F ))

p̂(F (x, y)|H0) = Norm(g(F ) ∗ histB(F )),
(18)

where p̂(F (x, y)|H1) and p̂(F (x, y)|H0) denote the estimated

likelihoods respectively, g(F ) stands for the Gaussian blur

function and Norm denotes the normalization operation.

The sliding window W centering at point j is denoted by

W (j). When K is sliding with a step sW , windows at different

positions may overlap. If it happens, S(x, y) is calculated as

follows

S(x, y) = max
j

{Sj(x, y)|(x, y) ∈ W (j)}. (19)

Different step and window scales are employed to reduce

the influence of step and window sizes. Using the saliency

estimation approach mentioned above, a motion saliency map

of each frame is obtained by setting optical flow magnitudes

as features.

B. 1-D Wavelet Transform Based Analysis

As flames flicker with frequencies around 10Hz [9], dif-

ferent from most distractors, the proposed framework ap-

plies the 1-D wavelet transform to analyze this property

of flame pixels, especially those on the boundaries [9].

Denote rk(x, y) as the R channel value of a pixel lo-

cated at (x, y) in the k-th frame. Then we set Rk(x, y) =
[rk(x, y), rk+1(x, y), · · · , rk+N−1(x, y)] as a temporal series

of R values for N frames. To reveal the temporal characteris-

tics, a 1-D discrete wavelet transform is performed on Rk(x, y)
as

Tk(x, y) = DWT (Rk(x, y)), (20)

where DWT (·) represents the 1-D discrete wavelet transform

with a high-pass and low-pass filter of [-0.25 0.5 -0.25] and

[0.25 0.5 0.25] in our experiments. High frequency wavelet

series Tk of pixels in flame regions and those in moving

object areas differ significantly, as shown in Fig. 3 and Fig. 4.
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Fig. 3. Temporal variations of a flame pixel.
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Fig. 4. Temporal variations of a nonfire pixel of a moving object.

It is obvious that Tk series of a flame pixel fluctuates with

several zero-crossings and values are relatively large. Instead,

the values of Tk series in moving object regions are around

zero with only one spike. Therefore, the number of spikes or

zero crossings can be employed to distinguish flame pixels

with non-flame ones. In our experiment, candidate pixels with

less than five zero-crossings are discarded as non-flame ones.

IV. EXPERIMENTS AND DISCUSSION

A. Benchmarking Database and Performance Evaluation

Methods

We validate the performance of both the introduced

DPGMM color model and the entire detection framework. The

proposed color model is tested on 50 images from the database

of [2]. The frame-wise performance of the framework is tested

with videos of various scenes (downloaded from [3], [32]).

There are 4468 frames altogether and are different from the

training ones. Table I describes the testing videos briefly.

The performance of the DPGMM model is illustrated

pixel-wise with the Receiver Operating Characteristic (ROC)

curve [33]. Comparisons with other models are also shown in

the ROC curve. Different from the color model, the framework

is evaluated frame-wisely as the detection of fire existence

is more important than marking flame regions. A widely

accepted way is with true positive rate (TPR) and true negative

rate (TNR) [33], which reflect the sensitivity and specificity

of models, respectively. However, the TPR and TNR are

usually competing. Therefore, flame detection methods need to

balance the TPR and TNR to achieve satisfactory performance.

A natural logarithmic threshold of −14.4441 is selected for

the color probabilities obtained from the DPGMM color model

in the experiment. Moreover, the motion saliency threshold is

set as 0.21. Besides, a frame is considered as a flame one

when the detected flame pixels in it are more than 25.

B. Performance Comparison of Flame Color Models and

Analysis

The DPGMM flame color model is trained on 293756 flame

pixels with concentration parameter α0 set as a fixed value

of 1. The base distribution G0 is set as the conjugate prior

Gaussian-Wishart distribution for computational convenience.

With training data of X = {x1, ...,xN}, the hyperparameters

of the Gaussian-Wishart distribution are set as

G0 ∼ N (µ′|µ0, (βΛ)−1)W(Λ|W, v) (21)

µ0 =
1

N

N
∑

i=1

xi (22)

W = s ∗ Id (23)

s =
1

N ∗ d

N
∑

i=1

‖xi − µ0‖
2
2 (24)

where d is the dimension of xi and Id is a d × d identity

matrix. The number of degrees of freedom v is set equally to

the data dimension. The scale parameter β is set as 1 in our

experiment.

The trained GMM has 22 mixture components after dis-

carding the ones with too small weights (less than 0.001). It

is quite different from the predetermined component number

10 of the model proposed in [9], [12]. Their method also

assumes that R, G and B are independent and each channel has

the same variance for computational convenience. However,

our estimated covariances show that the assumption is not so

reasonable.

A threshold is needed in the proposed model to turn the

obtained probability of each pixel into a binary detection

result. The ROC curve of the DPGMM based model is

shown in Fig. 5 together with those of some state of the art

models introduced by Chen et al. [4], Celik et al. [5] and

Toreyin et al. [9], [12]. From it we can see that the DPGMM

based model achieves a higher TPR than others with a FPR

smaller than 0.05. Specifically, our model outperforms the

fixed component number GMM based color model proposed
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TABLE I
TESTING VIDEOS

Video Burning Objects Distractors
Positive
Frames

Negative
Frames

Lighting Condition Smoke Condition Location

V1 Trees None 230 0 Bright Thin Outdoor
V2 Trees None 192 0 Dark Thin Outdoor
V3 Branches A walking man 692 0 Bright Medium Outdoor
V4 Grass None 386 0 Bright Medium Outdoor
V5 Papers A moving light 395 0 Bright Thin Indoor
V6 Trees None 202 0 Bright Thick Outdoor
V7 Assemble line None 571 70 Bright Thin Indoor
V8 None A walking person in red clothes 0 155 Bright None Indoor
V9 None Flashing carlights 0 378 Bright None Indoor

V10 None Moving cars and people 0 943 Bright None Outdoor
V11 None Moving people 0 254 Bright None Indoor
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Fig. 5. ROC curves of color models.

by Toreyin et al. [9], [12]. It is because the DPGMM estimates

the parameters more accurately and approaches a better esti-

mation of the flame color distribution than a GMM of fixed

component number. It proves experimentally the advantages

of the DPGMM which learns the component number from

training data instead of setting it empirically. The models of [4]

and [5] both contain a group of rules, so the false positive

rate (FPR) cannot reach 1 no matter how the thresholds are

changed. Besides, the model in [9], [12] has no threshold since

it conducts a hard classification (pixels within two standard

deviations from one of the means are classified as flame ones).

Furthermore, Fig. 6 shows the detected flame color pixels

by those methods. From the results, we can see that the

proposed approach succeeds in detecting most flame pixels

including the ones behind thick smoke. At the same time, it

prunes out most pixels of a flame-colored trunk, which works

better than the model by Chen et al. [4]. The DPGMM based

model works well in discarding artificial red colors with higher

saturation values. Thus, it can reduce false alarms caused by

distractors like red vehicles or clothes. Although the proposed

model misses some pixels of inner parts of flames, it will not

influence the final detection results. This can be explained with

the fact that contour pixels of flames rather than inner ones

reflect the dynamic property better.

C. Detection Performance Evaluation and Discussion

In Fig. 7 and Fig. 8, some examples are given, including

both successful detections of flames and excluding the dis-

turbance of non-fire objects. Fig. 7 shows not only the final

detected pixels but also intermediate results of each phase of

the detection framework. It can be seen that the DPGMM

based flame color model detects most flame regions for further

processing, which helps enhance the TPR of the final detection

results. Though parts of the grounds are detected as candidate

pixels based on colors due to the reflection of lights emitted

by flames, they are then pruned out by the saliency map and

temporal wavelet transform based analysis.

Fig. 9 and Fig. 10 illustrate the frame-wise detecting results

of the proposed framework compared with Method 1 in [3]

and Method 2 in [23]. We can see that the introduced ap-

proach achieves good performance on most of the experiment

videos. It overwhelms Method 1 and achieves a significant

enhancement compared with Method 2 in TPR, especially in

V3 shown in Fig. 7. The challenge lies in the transparent

color of weak flames at the beginning and end of the video.

The proposed approach works better than benchmark methods

because the DPGMM based color model achieves a higher

TPR, which means it detects more flame pixels for further

processing. Instead, the color models in the compared methods

(Chen et al. in Method 1 [3] and Celik et al. in Method

2 [23]) fail to detect pixels of weak flames, resulting in

misdetection of fires of semitransparent colors like in V3. As

we know, flames are mostly weak at the beginning of fires

and thus not easy to be detected. Better performance on these

situations means earlier detection of fires which can reduce

injuries and financial loss. At the same time, both Method 2

and the proposed system work well in reducing false alarm

rates. Although the TNRs of Method 2 are slightly better than

the proposed approach in a few videos (both are higher than

99%), our framework works much better in TPR. Generally,

the introduced framework achieves better results on all the

experiment videos than comparing approaches. The average

TPR and TNR are 97.08% and 99.50% respectively. The

performance of the proposed framework is shown in Table II.

V. CONCLUSIONS

This paper proposes a novel flame color model based on the

DPGMM, employed together with saliency analysis and tem-
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(a) Original frame (b) Ground truth (c) Chen et al.

(d) Celik et al. (e) Toreyin et al. (f) The proposed model

Fig. 6. Comparison of detection results by different flame color models.

TABLE II
DETECTION PERFORMANCE

Videos tp fn tn fp

Total

positive

frames

Total

negative

frames

TPR TNR

V1 230 0 0 0 230 0 1 -

V2 192 0 0 0 192 0 1 -

V3 630 62 0 0 692 0 0.9104 -

V4 384 2 0 0 386 0 0.9948 -

V5 392 3 0 0 395 0 0.9924 -

V6 202 0 0 0 202 0 1 -

V7 560 11 70 0 571 70 0.9807 1

V8 0 0 155 0 0 155 - 1

V9 0 0 378 0 0 378 - 1

V10 0 0 937 6 0 943 - 0.9936

V11 0 0 251 3 0 254 - 0.9882

Overall 2590 78 1791 9 2668 1800 0.9708 0.9950

poral wavelet transform for flame detection. The color model

approaches the flame color distribution with a GMM whose

component number is learned from training data by a Dirichlet

process. It avoids the deviations caused by improper number

of Gaussians set empirically and thus achieves more accurate

estimation of other parameters of the GMM. Experiments

show that the proposed approach outperforms existing color

models. Together with the saliency analysis and the wavelet

transform based temporal feature, the developed color model

contributes to final detection results of TPR and TNR higher

than 95%, which are better than state of the art approaches.

For future work, we aim to solve the multiscale problem of

flame detection with super-resolution algorithms.
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