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Submitted to the Annals of Applied Statistics

TORUS PRINCIPAL COMPONENT ANALYSIS WITH
APPLICATIONS TO RNA STRUCTURE

By Benjamin Eltzner1,∗, Stephan Huckemann1,∗ and Kanti V.

Mardia2,

1Felix-Bernstein-Institute for Mathematical Statistics in the Biosciences,
Georg-August-University Göttingen,

2Department of Statistics, University of Oxford and Department of
Statistics, University of Leeds,

There are several cutting edge applications needing PCAmethods
for data on tori and we propose a novel torus-PCA method that
adaptively favors low-dimensional representations while preventing
overfitting by a new test, both of which can be generally applied
and address shortcomings in two previously proposed PCA methods:
Unlike tangent space PCA, our torus-PCA features structure fidelity
by honoring the cyclic topology of the data space, and, unlike geodesic
PCA, produces non-winding, non-dense descriptors. These features
are achieved by deforming tori into spheres with self-gluing and then
using a variant of the recently developed principal nested spheres
analysis. This PCA analysis involves a step of subsphere fitting and
we provide a new test to avoid overfitting. We validate our torus-PCA
by application to an RNA benchmark data set. Further, using a larger
RNA data set, torus PCA recovers previously found structure, now
globally at the one-dimensional representation, which is not accessible
via tangent space PCA.

1. Introduction. Dimension reduction on non-Euclidean manifolds with
PCA-like methods has been a challenging task for which two usually suc-
cessful categories of methods have been developed in the last decades: ex-
trinsic (tangent space) approaches, e.g. Gower (1975); Fletcher et al. (2004);
Boisvert et al. (2006); Arsigny et al. (2006), and intrinsic (geodesic) ones,
e.g. Huckemann and Ziezold (2006). A critical review of PCA methods has
been given in Huckemann, Hotz and Munk (2010); Sommer (2013) is another
recently developed intrinsic PCA method. However, for the very simple non-
Euclidean case of the flat and compact space of a torus (a direct product
space of two or more angles), these approaches are not adequate. Namely,
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2 ELTZNER, HUCKEMANN, MARDIA

tangent space PCA (TS-PCA) fails to take into account the periodicity of
the torus and, even worse, geodesic PCA is completely inapplicable because
almost all geodesics densely wind around, as in Figure 1.

(a) Flat torus as square in R
2 with

edges identified.
(b) Curved torus embedded in R

3.

Fig 1: Flat (1a) and curved (1b) torus representation. Except for horizontal
and vertical geodesics (grey) in (1a), and diagonal ones, all other geodesics
wind around ((1a) and (1b)). All geodesics (black) with an irrational slope
in (1a) are dense.

In this paper, we propose the novel tool of torus-PCA (T-PCA), which
not only removes these defects, but also more flexibly adapts to low dimen-
sion, in a statistically controlled way to guard against overfitting. This is
achieved by transforming the “geometrically benign” structure of the torus
into a statistically benign geometry, namely one that does not allow for dense
geodesics. We note that these dense geodesics are in the closure of the non-
dense geodesics, which in turn can be viewed as 1D subtori, and so, an
attempt for principal nested tori still suffers from the statistically non be-
nign geometry. Specifically, we deform tori into spheres by choosing a nearby
statistically benign geometry with clever mapping and self-gluing, and then
use a modification of the recently developed principal nested spheres anal-
ysis (PNS) of Jung, Dryden and Marron (2012). In particular, this PNS
analysis involves a step of small sphere fitting and we provide a new test to
avoid overfitting. However, deforming the geometry of the torus into that of
a sphere – locally glued to itself (to honor periodicity) – creates singularities
(where curvature is unbounded). Notably, although locally respecting the
flat geometry of the torus, ignoring periodicity, TS-PCA introduces in fact
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not only geometric but also topological singularities (the tangent space is
not homeomorphic to the torus).

At this point we recall that within a sphere of radius r > 0, every sub-
sphere with the same radius r is a great subsphere and one of smaller radius
is a proper small subsphere. In this paper we speak of small subspheres to
include great and proper small subspheres.

Some torus-specific PCA approaches have been developed apart from TS-
PCA and geodesic PCA. Using wrapped normals, Kent and Mardia (2009)
circumvent the problem of winding geodesics and provide for an intrinsic
parametric model with the same number of degrees of freedom as classical
PCA. The PCA used by Altis et al. (2008) is a particular case of Kent
and Mardia (2009). Allowing only geodesics that wind around at most once,
as proposed by Kent and Mardia (2015), further reduces the degrees of
freedom. As discussed in Huckemann and Eltzner (2015) for classical PCA
in R

n the space of k-dimensional affine subspaces (0 ≤ k ≤ n) has dimension
(n − k)(k + 1); in contrast for PNS in the n-dimensional sphere, the space
of k-dimensional small subspheres has dimension (n − k)(k + 2) (1 ≤ k ≤
n−1). For this reason (building on PNS), T-PCA more flexibly favors lower
dimensional representations than TS-PCA, while this flexibility is better
controlled against overfitting than in classical PNS.

Sargsyan, Wright and Lim (2012) may have been the first to treat toroidal
data describing RNA structures in a spherical geometry. In their construc-
tion, they halved the corresponding seven torus angles defined below and
treated them as polar angles from a seven-dimensional sphere, thus tak-
ing only a very first step towards T-PCA. On this seven-dimensional sphere
they investigated a test data set which we call the benchmark data. However,
Sargsyan, Wright and Lim (2012) neither discussed nor exploited the dras-
tic change of geometry, let alone amended by self-gluing, and only applied
geodesic PCA (see Huckemann and Ziezold (2006)), maximizing projected
variance and not minimizing residual variance. Incidentally, some pitfalls of
using projected variance for compact manifolds were noted in Huckemann,
Hotz and Munk (2010).

RNA structure analysis and challenges: a bigger picture. The last
decades have witnessed finding an unexpected variety of RNA shape and
function, and this variety is ever increasing. Base sequences, also called pri-
mary structures and consisting of polymers of four different nucleotides, are
nowadays easily accessible by high throughput sequencing and it is one ulti-
mate goal to link these sequences to biological function. Biological function,
however, is highly dependent on the 3D structure (or fold) which manifests
at different levels (e.g. Chapman, Sidrauski and Walter (1998); Chakrabarti,
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Chen and Varner (2011); Seetin and Mathews (2012); Brewer (2013)). At
the bottom level is the single residue geometry usually described by dihedral
angles between neighboring planes, each spanned by three adjacent atoms,
similar to pages of an open book (Figure 2). The structure of each nucleotide
can be described by 6 angles for the polymeric backbone and one angle for
the nucleotide’s base, giving a total of 7 angles (Figure 3 and Table 1). Sec-
ondary structure is given by self-interaction within the RNA molecule via
base pairing and other interactions, forming specific patterns such as A-
helices, hairpin loops, and others. At the top level, tertiary and higher order
structure arises from interacting lower order structure patterns via further
base and backbone bindings.

In contrast to primary structure, the 3D structure is not easily accessi-
ble but needs to be reconstructed by elaborate technology such as X-ray
crystallography. However, experimental structures are prone to misinter-
pretation and various errors. For example, backbone inconsistencies, where
different reconstructed atoms occupy the same spatial location, frequently
occur during reconstruction Richardson et al. (2008); Jain, Richardson and
Richardson (2015). To avoid or correct such errors, the space of possible 3D
structures is often restrained or constrained to previously observed struc-
tures. This is typically done at the nucleotide or paired nucleotide level Yang
et al. (2003); Schneider, Morvek and Berman (2004); Wadley et al. (2007);
Čech et al. (2013). Specifically, use is made of so-called rotamers describ-
ing empirical modes of probability distributions of nucleotide or nucleotide
pair conformations. As these distributions are relatively peaked, limiting the
conformational space to such rotamers avoids the introductions of incorrect
conformations by limiting the conformational space to previously observed
3D patterns.

Among the many challenges along this path, we discuss two specific ones:
data reduction methods and alignment strategies.

To the end of backbone reconstruction, single residue conformation space
is explored and dimension reduction methods are applied to identify errors
in experimental structures, provided among others by the popular free soft-
ware of Davis et al. (2007). For example, removing inconsistencies, Murray
et al. (2003) have found that RNA backbone is rotameric locally at hemi-
nucleotide level, i.e. among others, when reducing the 7D single residue space
to a 3D backbone angular space, involving angles on only one side of the
base (cf. Table 1 and Figure 3), conformer groups of each of the two sugar
puckers (explained in Section 3), follow essentially one angle only. In our
second application below, we revisit the data corresponding to one sugar
pucker and generalize the result to finding a 1D structure common to all
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conformer groups.
On the one hand, matching RNA strands requires elaborate registration

and alignment strategies (e.g. Mardia (2013)), building on statistical (e.g.
Dryden and Mardia (2016); Srivastava and Klassen (2016)) and Bayesian
(e.g. Green and Mardia (2006)) shape technology including non-Euclidean
averaging and elastic curve representations (e.g. Liu, Srivastava and Zhang
(2011); Laborde et al. (2013)). On the other hand, averaging and explor-
ing the 7D single residue space can be achieved via dynamically simulating
similar structures (e.g. Duarte and Pyle (1998); Chen and Garćıa (2013);
Estarellas et al. (2015)), and probabilistic approaches to this end require di-
mension reduction methods (e.g. Frellsen et al. (2009)). In this context, also
for higher order structure prediction, it is necessary to explore not only the
variation of single residue geometries typical for specific secondary structure
elements but also single residue geometries for intermediate and transition
regions between structure elements (e.g. Dunbrack and Karplus (1994); Jain,
Richardson and Richardson (2015)).

Applying torus-PCA to RNA structure analysis we provide for a
novel dimension reduction method at residue level and we apply it within
the focus of current research to single residue geometries. However, it readily
generalizes to simultaneous analysis of geometries of residue sequences (7n
angles for n residues) but such an extension is left for future research. We
measure effectively the statistical performance of our method by dimension
reduction and faithfulness in terms of preserving previously known structure.

All of the angles used in our applications are defined in Table 1 and
displayed in Figure 3. First we use the benchmark data set of Sargsyan,
Wright and Lim (2012) which consists of neighborhoods of three known
cluster centers in the η–θ-plot (as in Figure 7a, the pseudo-torsion angles η,
θ are depicted in Figure 3b, cf. also Table 1). We find that T-PCA retrieves
the underlying clusters in an effective way. This benchmark data set is a
subset of a large RNA data set carefully selected for high experimental X-ray
precision (0.3 nanometers) by Duarte and Pyle (1998), updated by Wadley
et al. (2007) and analyzed by them and others, for example, Murray et al.
(2003); Richardson et al. (2008). Next we use another subset of this large
RNA data set with C2’-endo sugar pucker (this and the other sugar pucker
are explained fully in Section 3), subsequently called the C2 data set, where
we compare our method to TS-PCA and show that T-PCA captures not
only much more variance in the one-dimensional subspace, also the wrong
topology in TS-PCA hides and tears apart subtle structural similarities.

In contrast, T-PCA provides structure fidelity, as global and local struc-
tural similarities are naturally preserved, most of it already visible in the
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1D T-PCA representation, generalizing the above finding of Murray et al.
(2003) that RNA backbone is locally rotameric at heminucleotide level, to:

These RNA conformers are rotameric at full residue level, possibly in a
non-linear sense, however.

Fig 2: Illustration of a dihedral (torsion) angle defined by four atoms or three
bonds, it is the opening angle between two pages of a book. (Reproduced from
Mardia (2013).)

(a) 3D structure of an RNA residue. (b) 2D scheme of an RNA residue.

Fig 3: Part of an RNA backbone (Phosphate groups with central atom de-
noted by P, followed by sugar rings that connect along the atoms labeled
by C4’ and C3’, to which a nucleic base is bound). Dihedral angles (Greek
letters) are defined by three bonds, the central bond carries the label; pseudo-
torsion angles (bold Greek letters) are defined by the pseudo-bonds between
bold printed atoms (Figure 3b). Underlying each pseudo torsion angle are
three heminucleotide angles. The precise definitions with same canonical
atom notation are given in Table 1. The subscript “−” denotes angles of
the neighboring residue. Figure 3a is reproduced from Frellsen et al. (2009).

In Section 2 we introduce torus PCA, which is the center piece of our
methodology. In Section 3 we apply our method to the benchmark and
C2 data sets, and review the results. The paper ends with a discussion
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Table 1

Atom bonds (2nd column) defining angles (1st column) with description (3rd column).
The two sets of heminucleotide angles (each of which can be approximated by a pseudo
torsion angle) define the backbone, which in conjunction with the base angle χ define a

residue. Figure 3a shows the geometry of these atoms. (N denotes nitrogen.)

α O3′− P −O5′−C5′

heminucleotide anglesβ P −O5′−C5′−C4′

γ O5′−C5′−C4′−C3′

δ C5′−C4′−C3′−O3′

heminucleotide anglesǫ C4′−C3′−O3′− P

ζ C3′−O3′− P −O5′

χ O4′−C1′−N1−C2 for pyrimidine (monocyclic) bases
O4′−C1′−N9−C4 for purine (bicyclic) bases

η C4′− P −C4′− P
pseudo torsion angles

θ P −C4′− P −C4′

ν2 C1′−C2′−C3′−C4′ sugar pucker angle

and further illustrations in Supplement A. An implementation of our T-
PCA method and the RNA data sets we use are included as supplementary
material Supplement B, Supplement C and can be found under
http://www.stochastik.math.uni-goettingen.de/SFB755 B8.

Residues and residual variance. To avoid confusion, we clarify that
the biochemical term residue denotes a RNA molecule segment correspond-
ing to a single nucleic base (Section 3) whereas the statistical term residual
variance denotes unexplained variation (Section 2.3).

2. Torus PCA. Our dimension reduction procedure proceeds in two
steps. First, the data space is deformed from a torus to a sphere with self-
gluing, i.e. parts of the sphere are topologically identified with themselves,
see Figures 4 and 5. Several degrees of freedom are present in the defor-
mation map we propose and we discuss consequences of specific parameter
choices. The second step is the dimension reduction for which we use a well
established procedure for dimension reduction on spheres with some exten-
sions to take into account the original torus geometry and the self-gluing of
the sphere.

2.1. Torus Deformation Schemes. Let TD = (S1)×D be theD-dimensional
unit torus and S

D = {x ∈ R
D+1 : ‖x‖ = 1} the D-dimensional unit

sphere, D ∈ N. The definition of the data-adaptive deformation mapping
P : TD −→ S

D defined in this section is based on comparing squared Rie-
mannian line elements. If ψk ∈ S

1 = [0, 2π]/ ∼ (k = 1, . . . , D) where ∼
denotes the usual identification of 0 with 2π, the squared line element of TD
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is given by the squared Euclidean line element

ds2TD =
D
∑

k=1

dψ2
k .

For S
D, in polar coordinates φk ∈ [0, π] for k = 1, . . . , D − 1 and φD ∈

[0, 2π]/ ∼, whose relation to embedding Euclidean coordinates xk is given
by

x1 = cosφ1

∀2 ≤ k ≤ D : xk =





k−1
∏

j=1

sinαj



 cosφk

xD+1 =





D
∏

j=1

sinφj



 ,

the spherical squared line element is given by

ds2
SD

= dφ21 +
D
∑

k=2





k−1
∏

j=1

sin2 φj



 dφ2k .(1)

In fact, this squared line element is not defined for the full sphere but only
for φk ∈ (0, π) (k = 1, . . . , D − 1), i.e. the singularities of φk = 0, π are
excluded. The singularities at φk = 0, π will account for singularities of P
which results in a self-gluing as explained below.

Angular distortions in a spherical geometry. Following colloquial
usage, we use “distortion” synonymous with “deformation” in the following.
Because in (1), dφ21 comes with the factor 1, no deformation at all occurs
for φ1, i.e. this angle corresponds to spherical distances without distortion.
In the summation for k = 2, we have a factor sin2 φ1 of dφ22, which shows
how the angle φ1 distorts the angle φ2 and finally the deformation factor
∏D−1

j=1 sin2 φj of dφ2D reflects the distortions of φD by all other angles. For
this reason, in the following, we will refer to φD as the innermost angle and
to φ1 as the outermost angle.

We now make an important note for later use.

Remark 2.1. Near the equatorial great circle given by φk = π
2 (k =

1, . . . , D − 1) the squared line element ds2 is nearly Euclidean. Distortions
occur whenever leaving the equatorial great circle. More precisely, distortions
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are higher when angles φk with low values of the index k (outer angles) are
close to zero or π, than when angles φk with high values of the index k (inner
angles) are close to zero or π.

Definition 2.2 (Torus to Sphere Deformation). With a data-driven per-
mutation p of {1, . . . , D}, data-driven central angles µk (k = 1, . . . , D) and
data-driven scalings αk, all of which are described below, set

φk =
π

2
+ αp(k)(ψp(k) − µp(k)), k = 1, . . . , D(2)

where p(k) is the index k permuted by p and the difference (ψp(k) − µp(k)) is
taken modulo 2π such that it is in the range (−π, π].

We now explain in detail how the choices are data-driven. Further illustra-
tion including practical advice is given in Supplement A. First, we comment
on the general applicability of T-PCA.

Remark 2.3. The singularity set introduced, forms a subtorus of di-
mension D − 2. In consequence, T-PCA is applicable, whenever there is a
structural data gap in all angles except for at most two; the larger the gap,
the higher the structural fidelity.

In general, the scalings are restricted to the choices αk′ = 1/2 and
αk′ = 1, k′ = p(k). If all of the k′-th torus angles of the data are within an
interval of length π, choose αk′ = 1 (k′ = 1, . . . , D − 1) leading to unscaled
(U) angles. Otherwise, we choose αk′ = 1/2 (k′ = 1, . . . , D − 1) leading to
halved (H) angles. In practical situations, the torus data are often spread out
over more than half circles for several angles. Then we choose (H) angles.
In fact, for all of the analyses below, we chose (H) angles and discuss below
only the gluing effects corresponding to (H) angles. Notably, the innermost
angle φD always remains unscaled: αD = 1. This is depicted in the second
row of Figure 5.

The central angles µk will be chosen such that the mapped data points
come to lie near the equatorial great circle and omit the singularities. Two
plausible choices are:

(i) with the circular intrinsic mean ψk,intr, set µk = ψk,intr to obtain mean
centered data;

(ii) with ψk,gap, the center of the largest gap between neighboring ψk values
of data points and ψ∗

k,gap its antipodal point, define µk = ψ∗
k,gap to

obtain gap (antipode) centered data.
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While the implementation for (ii) is straightforward, for (i) we have used
the fast algorithm from Hotz and Huckemann (2014). Mean-centered data
has the merit that the intrinsic means for each angle φk are mapped to the
equatorial great circle thus minimizing deformation of the data.

For a strongly skewed data distribution, say, spread out over a half circle,
mean centered data using halved angles may touch the singularities, leading
to high distortion there, while gap centered data will still be confined to
a π/2 neighborhood of the equator. On the other hand, for data sets with
outliers, gap centered centering may be less robust than mean centered,
making the latter more favorable, as depicted in Figures 5c and 5e.

Remark 2.4. Robustness w.r.t. outliers is surprisingly different on a
compact space than on the usually considered non-compact spaces. Specific
loci of outliers occurring nearly antipodal to the data bulk do not much af-
fect the location of the mean, the largest data gap, however, is much more
sensitive to these loci.

The choice of the permutation pk is driven by analyses of the data
spread

σ2k =
n
∑

i=1

(ψk,i − µk)
2, k = 1, . . . , D(3)

for each angle, where ψk,i ∈ S
1 are the torus data and n is the number of data

points on TD. If the angles are ordered by increasing data spread, such that
σ2
p(1) is minimal and σ2

p(D) is maximal, in view of Remark 2.1, the change of

distances between data points caused by the deformation factors sin2 φj in
Equation (1) is minimized. We call this ordering spread inside (SI), because
variation is concentrated on the inner angles of the sphere. The opposite
ordering is called spread outside (SO). Figure 5 illustrates different effects
of SI and SO ordering of angles. We will restrict our considerations to these
two options.

Self-gluing in case of halved angles: “From a donut to a sausage”.
In the following, we give a brief overview of this procedure for (H) halved-
angles (not for (U) angles for the reasons given above).

Due to periodicity on the torus, ψk = 0 is identified with ψk = 2π for
all k = 1, . . . , D. In contrast, for all angles φk (k = 1, . . . , D − 1), φk =
0 denotes spherical locations different from φk = π. For a representation
respecting the torus’ topology, however, it is necessary to identify these
locations accordingly. Due to the spherical geometry, each of those regions
is of dimension D − j − 1, in which all angles vary except for j of the
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φ1, . . . , φD−1 which are set to fixed values in {0, π}. In the topology of the
torus, all those regions with a specific choice of fixed angles are identified
with one-another. In particular, there are 2(D − 1) such regions of highest
dimension D − 2 on the sphere (where only one angle is fixed to 0 or π),
two of which are pairwise identified in the topology of the torus. In fact, in
the topology of the torus, each of these D − 1 regions of highest dimension
D − 2 itself carries the topology of a torus of dimension D − 2, each glued
to each other torus along a subtorus of dimension D − 3, and so on. Thus
the self-gluing of SD giving the topology of TD can be iteratively achieved
along a topological subsphere of dimension D − 2 which is suitably divided
into 2(D− 1) regions that are pairwise identified by way of a torus, sharing
common boundaries which correspond to lower dimensional tori.

Example 2.5 details the case D = 3 and Figures 4 and 5 illustrate the
case D = 2 as well as different choices for the permutation p.

(a) Cutting open along a
circle, giving two cir-
cles.

(b) Separately collapsing
each circle to a point.

(c) Identifying the points
restores the cyclic
topology.

Fig 4: Self-gluing of T 2: From a donut to a sausage. These operations are
only topological, Figure 5 reflects the changes in geometry.

Example 2.5. For D = 3, on S
3 we have the squared line element

ds2 = dφ21 + sin2 φ1
(

dφ22 + sin2 φ2dφ
2
3

)

,

where the angle ranges are φ1, φ2 ∈ [0, π], φ3 ∈ [0, 2π).
Due to the spherical geometry in the region determined by φ1 = 0 mod π

or φ2 = 0 mod π, the circle φ3 ∈ [0, 2π) is a single point, say, φ3 = 0. This
region is a topological circle on S3 comprising four arcs

A1 ={(0, φ2, 0) : 0 ≤ φ2 < π} , A2 = {(π, φ2, 0) : 0 ≤ φ2 < π} ,
A3 ={(φ1, 0, 0) : 0 ≤ φ1 < π} , A4 = {(φ1, π, 0) : 0 ≤ φ1 < π} .

Imposing the topology of the torus, when using halved angles, for φ1 and
φ2 we also have the identification 0 ≡ π which results in the identification of
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A1 with A2 and of A3 with A4 with endpoints identified as one single point,
forming a topological figure eight.

2.2. Linking the Torus’ Deformation to PNS. For data sets on a torus,
having applied a deformation on the resulting self-glued S

D (see Section 2.1),
we modify principal nested sphere analysis (PNS) by Jung et al. (2010);
Jung, Dryden and Marron (2012) for dimension reduction.

Assume a d-dimensional sphere Sd ⊂ R
D+1 with center x ∈ R

D+1 and
radius r > 0, and an affine d-dimensional plane Ad ⊂ R

D+1 with distance
s < r from x. For d ≥ 2 then the intersection Sd ∩ Ad ⊂ R

D+1 is a (d− 1)-
dimensional subsphere Sd−1 of Sd with radius r =

√
1− s2. If r = 1 (i.e.

s = 0) this subsphere is a great subsphere, otherwise it is a proper small
subsphere. For d = 1 we pick just one point µ, writing in expedient abuse of
notation: S0 = {µ}. In order to include all, great, proper small subspheres
and the ultimate point, we call these small subspheres.

The PNS iteration leads to a sequence of small subspheres

S
D ⊃ SD−1 ⊃ · · · ⊃ S2 ⊃ S1 ⊃ S0 = {µ} ,(4)

where the ultimate point µ is called the nested mean. Each Sd (d = 1, . . . , D)
is a d-dimensional sphere, the radii of which decrease monotonically with
decreasing dimension (due to nesting). At each reduction step, the residual
variances not explained by the corresponding subsphere are given as signed
distances: points lying inside the small subsphere – if it is a proper small
sphere – receive a positive distance, points lying outside a negative distance.
Indeed, for most realistic data applications, with probability one, all sub-
spheres are proper small subspheres. However, to avoid overfitting, we want
to ensure that the “small subsphere” is not too small but rather a great sub-
sphere is fitted; see Section 2.4. In this case the direction of positive distance
is picked at random. Similarly, we pick the direction of positive distance at
random for the reduction from d = 1 to d = 0.

The classical PNS algorithm consists of two parts which alternate, namely
the fitting of a subsphere Sd and the projection to this subsphere πd :
Sd+1 → Sd (d = D − 1, . . . , 0) giving the fitted values explained by this
subsphere. As S

D is glued to itself in T-PCA, distances through the glued
part can be shorter than spherical distances. In such cases, these distances
are used in the fitting step as well as in the projection step. More precisely,
our fitting procedure is done in two steps to avoid local minima. In the first
step, we minimize the sum of squares of spherical distances. The resulting
subsphere is taken as a starting point for the second step.
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(a) gap centered (b) mean centered

(c) SO (d) SI (e) SO (f) SI

Fig 5: All possibilities for gluing for T 2, illustrated by a data set uniform in
a square with three outliers. Using mean centered (5b), the square is near
the equatorial great circle (ψ1 = π for SO (5e) and ψ2 = π for SI (5f))
and thus the square suffers little distortion, in comparison to the outliers.
For gap centered (5a), the outliers are less distorted and for SO (5c) the
square is particularly distorted because the equatorial great circle (ψ1 = π)
is then between outliers and square. In both cases, SO decreases the spread of
the outliers, SI increases it, more drastically for mean centered. Due to the
torus’ periodicity, lines of same type in the flat torus angle plots (top row,
5a and 5b) are identified. The respective outer angle is halved, the respective
inner angle is unscaled (middle row, (5c) and (5d)). Due to collapsing of
some identified lines to points (the singularity set, in Figure 4 this is the
circle along which the donut is cut), north and south pole of each sphere are
identified (bottom row, (5e) and (5f)).



14 ELTZNER, HUCKEMANN, MARDIA

For the second step, we use the torus metric

δ : TD × TD → R
≥0 (p, q) 7→

(

D
∑

i=1

min
(

|pi − qi|2, (2π − |pi − qi|)2
)

)

1

2

.

Assuming a data set A and a corresponding adaptive deformation PA :
TD → S

D we define the following function on the sphere

δ̃ : SD × S
D → R

≥0 (x, y) 7→ δ
(

P−1
A (x), P−1

A (y)
)

(5)

using the inverse deformation P−1
A , which is well-defined except for the sin-

gularities which are of dimension D− 2. This is a metric when we take into
account the topological identifications. To considerably lower computational
speed for data analyses, we orthogonally project data to lower dimensional
subspheres using the spherical geometry only. On the deformed torus this
can be viewed as a non-orthogonal projection. For the minimization in the
second step, however, we use δ̃ as the distance function.

2.3. Comparing Variances. In Euclidean spaces, PCA variances are ad-
ditive with monotone decrements leading to a convex variance plot as a prop-
erty of the metric because decrements correspond to the non-increasingly or-
dered eigenvalues of the corresponding covariance matrix. This means that
every component can be thought of as contributing a fixed amount of vari-
ance and thus the sum of such individual variances can be understood as ex-
plained variance. If one views the principal components as defining a nested
sequence of subspaces, the amount of variance which is not explained by the
components spanning the subspace is equal to the residual variance of data
around the subspace. Explained variance and residual variance add to 1 and
thus yield equivalent descriptions of data variance.

In non-Euclidean spaces, linear PCA is not applicable and non-linear di-
mension reduction methods do not come with a similar notion of additive
variance (see the discussion for various definitions of intrinsic variances in
Huckemann, Hotz and Munk (2010)). This means that explained variance
can no longer be defined in a straightforward way. However, residual vari-
ance is still a well-defined notion, therefore we use residual variances in the
following to define cumulative variances, and to compare results of different
approaches.

Recall that T-PCA just as PNS yields a sequence of subspaces S
D ⊃

SD−1 ⊃ · · · ⊃ S1 ⊃ S0 = {µ} with projections πd : Sd+1 → Sd ⊂ Sd+1

(d = 0, . . . , D − 1). From these we define the iterated projections

Πd = πd ◦ πd+1 ◦ · · · ◦ πD−1
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and finally the residual variances (variance not explained by Sd) of a data
set A

VA,PA,d =
∑

q∈A

δ̃2(q,Πd(q)) , d = 0, . . . , D − 1

and VA,PA,D = 0, where δ̃ is from (5). Due to nestedness, these sequences
are non-increasing with d. However, the decrements VA,PA,d−1 − VA,PA,d

(d = 1, . . . , D) are not necessarily non-increasing, so the resulting curve
in the variance plot need not be convex. Still, this allows to define that
{µ}, S1, . . . , Sd explain the cumulative variance up to dimension d

VA,PA,0 − VA,PA,d , d = 0, . . . , D

which is non-decreasing in d.

2.4. Avoiding Overfitting. In the PNS algorithm a cluster of points con-
centrated around a single center may still be best fitted by a “very” small
subsphere. As this overfitting is obviously undesirable, Jung, Foskey and
Marron (2011); Jung, Dryden and Marron (2012) have fitted a great sub-
sphere in such cases: Jung, Foskey and Marron (2011) have given a decision
rule whereas Jung, Dryden and Marron (2012) have given a test for this
purpose. We propose the following new test based on a geometrically better
suited model and highlight its attractive properties, in particular we show
how robust is our test under the null model of Jung, Dryden and Marron
(2012), that is a misspecified model for our case. We also indicate some
limitations of the two previous procedures.

New model. Let Sd be a fitted small subsphere, 2 ≤ d < D. For ease
of notation, we now move and rescale Sd to the unit sphere S

d, without
loss of generality, and p ∈ S

d is the center of the, also moved and rescaled,
fitted small subsphere Sd−1 ⊂ S

d. For our purpose, we can restrict our
probability model for q ∈ S

d, say, g(q; p), to depend only on the angular
distance r = d(p, q) ∈ [0, π]. Further suppose that volSd denotes the surface
volume of the d-dimensional unit sphere. Then, due to symmetry, g fully
characterizes the spherical angular marginal density of r

h(r; p) := volSd−1 · g(γ(r); p), r ∈ [0, π] .(6)

Here, γ is any curve along a great circle connecting p with its antipodal,
parametrized by r ∈ [0, π] such that ∀r : d(p, γ(r)) = r. Using the spherical
volume element dSdΩ(q) at q = γ(r) we note that

1 =

∫

g(q; p)dSdΩ(q) =

∫

h(r; p)

volSd−1

dSdΩ(q) =

π
∫

0

h(r; p) sind−1(r)dr ,
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which means that h(·; p) is indeed a marginal density with respect to the
spherical angular measure

dµ(r) = sind−1(r)dr, r ∈ [0, π] .

Then the Lebesgue angular marginal density f(·; p) of r is defined as

f(r; p) := sind−1(r)h(r; p) ,

π
∫

0

f(r; p)dr = 1 ,

since it gives the marginal density corresponding to h(·; p) with respect to
the Lebesgue measure on [0, π].

Note that these densities are well studied for d = 2 where the angle r is
called colatitude (see for example, Mardia and Jupp (2000)); the uniform
distribution in polar coordinates for any d on which this discussion is based,
see, for example, Mardia, Kent and Bibby (1979).

For the following, we will need the density of the “folded normal distri-
bution” on [0,∞):

F(r; ρ, σ) :=
1√
2πσ

(

exp

(

−(r − ρσ)2

2σ2

)

+ exp

(

−(r + ρσ)2

2σ2

))

.

That is, we have

F(r; ρ, σ) =
2√
2πσ

exp

(

− r2

2σ2
− ρ2

2

)

cosh
(rρ

σ

)

, r ≥ 0 .(7)

This density has two positive parameters, ρ and σ. Note that here r is
on [0,∞) so it is not restricted to [0, π], a fact which will be of importance
later on where we will truncate this distribution. For ρ→ ∞ this tends to a
usual normal distribution centered at ρσ, while it becomes a halved normal
distribution (of doubled height) for ρ → 0. For ρ ≤ 1 the mode stays fixed
at the origin, for ρ > 1 it moves to the right.

With the above discussion on the marginals we therefore choose g ∝ F
yielding the spherical angular marginal density h and the Lebesgue angular
marginal density f :

h(r; p, ρ, σ) :=

√
2πσ

C(ρ, σ)F(r; ρ, σ),(8)

f(r; p, ρ, σ) :=

√
2πσ

C(ρ, σ) sin
d−1(r)F(r; ρ, σ), r ∈ [0, π] ,
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where we have truncated F(r; ρ, σ) from (7) and C(ρ, σ) is the normaliza-
tion. These will be referred to as h- and f -distribution, respectively, in the
following.

Subsequently, it will be important to note the following property of these
distributions, for dimension d = 2, as a surface of revolution over R2. In polar
coordinates (r, ϑ) 7→ F(r; ρ, σ) 1

2π , the case ρ > 1 yields a ring while the case
ρ = 0 yields a symmetric Gaussian distribution. Due to its smoothness it is
a good candidate for a test distribution for the angular spherical marginal
density (6) to distinguish “just” concentrated data near p (p is at r = 0)
from concentrated data along a distinct subsphere (a ring in 2D) around p.

Likelihood ratio test. Suppose we are given the sample {q1, . . . , , qn}
from the f -distribution with the spherical distances ri = d(p, qi) (i =
1, . . . , n) where the center p of the subsphere is known. If ρ ≤ 1, the h
distribution has its maximum at r = 0, i.e. there is no proper small spheri-
cal structure about the center p. If ρ > 1, there is a proper small spherical
structure about the center p. Thus, ρ = 1 forms the boundary between the
two cases.

Therefore, we can formulate our hypotheses as follows for testing for a
great subsphere.

H0 : ρ = 1 (great subsphere) vs. H1 : ρ > 1 (small subsphere) .(9)

The log likelihood up to a constant is given by

ℓ(ρ, σ|{ri}ni=1) =− n ln C(ρ, σ) + (d− 1)
n
∑

i=1

ln sin(ri)

− nρ2

2
− n ln(σ) +

n
∑

i=1

(

− r2i
2σ2

+ ln cosh
(riρ

σ

)

)

.

Note that the normalization C(ρ, σ) can be easily computed numerically so
we can determine the MLEs for ρ and σ using standard numerical optimiza-
tion. For H1, the MLEs need to be constrained under ρ > 1. Then twice the
log of the likelihood ratio (with negative sign) is given by

λ =2 sup{ℓ(ρ, σ|{ri}ni=1) : ρ ∈ (1,∞), σ ∈ R
+}(10)

− 2 sup{ℓ(ρ, σ|{ri}ni=1) : ρ = 1, σ ∈ R
+} .

FromWilks’ theorem, the statistic λ, underH0, is asymptotically distributed
as χ2

1. We use a 5% significance level for our test, which means that when
H0 is rejected, we keep the fitted small subsphere if λ > χ2

1,0.95 ≈ 3.84;
otherwise, we perform a great subsphere fit.
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Comparison with the decision rule of Jung, Foskey and Marron
(2011). This rule is based on another type of angular h and f (versus our
angular f and h given by (8))

hJung(r; p, ρ, σ) :=
1

sind−1(r)
F(r; ρ, σ), fJung(r; p, ρ, σ) := F(r; ρ, σ) .

In their decision rule, a great sphere is fitted if the probability distribution
does not exhibit a ring-shaped local maximum, which is the case if ρ ≤ 2.
But this model leads to a singularity of the density hJung at p, which is
not a desirable feature. In contrast, our h-distribution leads to a smooth
distribution on the sphere as illustrated by the above considerations about
the surface of revolution. Our h distribution is compared with the hJung
distribution in Figure 6 for appropriate values of ρ. Our h distribution is
the same for all d but for illustration, we have used d = 2 for hJung which
depends on d.

Fig 6: The probability densities for σ = 0.5 along the geodesic γ in S
d from

(6) for our h (invariant under d) and the hJung (for d = 2) distribution.
Displaying a value for ρ below the respective boundary, at the boundary and
above the boundary; namely, ρ = 1 for our h and ρ = 2 for the hJung
distribution.

In validation of our test we carried out two simulation studies.

D0: We simulate data under H0 in (9) by choosing ρ = 1 in (8) and average
over the nuisance parameter σ by 1000 samples, where in each σ is
uniform in [0.1, 0.4].
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D1: We simulate data under H1 in (9) by choosing various combinations
of ρ ∈ {1.2, 1.5, 2, 3} and σ ∈ {0.15, 0.2, 0.5} in (8), and for each we
average using 1000 samples.

Table 2

Type 1 errors (rejecting H0) for D0 and Type 2 errors (accepting H0) for D1 for our test
with various parameter values in a simulation with 1000 repetitions and asymptotic level

of 5%, i.e. rejecting for λ > χ2

1,0.95 ≈ 3.84 with λ from (10).

Type 1 (D0) Type 2 (D1)

Sample size ρ = 1 ρ = 1.2 ρ = 1.5 ρ = 2 ρ = 2 ρ = 3
σ = 0.15 σ = 0.2 σ = 0.2 σ = 0.5 σ = 0.15

100 7.4% 80.4% 41.2% 3.4% < 0.1% < 0.1%
200 5.5% 73.2% 20.2% < 0.1% < 0.1% < 0.1%
500 5.0% 59.7% 1.0% < 0.1% < 0.1% < 0.1%
1000 4.9% 34.7% < 0.1% < 0.1% < 0.1% < 0.1%

Table 3

We estimate the asymptotic level for our test leading to a true level of 5% i.e. achieving
a Type 1 error (rejecting H0) for D0 of 5%. The table gives the asymptotic level and
Type 2 errors (accepting H0) for D1 for our test with various parameter values in a

simulation with 1000 repetitions.

(D0) Type 2 (D1)

Sample size asymptotic level ρ = 1.2 ρ = 1.5 ρ = 2 ρ = 2 ρ = 3
ρ = 1 σ = 0.15 σ = 0.2 σ = 0.2 σ = 0.5 σ = 0.15

100 3.0% 85.0% 54.4% 5.1% < 0.1% < 0.1%
200 4.4% 76.4% 24.2% 0.1% < 0.1% < 0.1%
500 5.0% 59.7% 1.0% < 0.1% < 0.1% < 0.1%
1000 5.0% 34.7% < 0.1% < 0.1% < 0.1% < 0.1%

The results in Table 2 show that our test at asymptotic level of 5%, i.e.
it rejects a small sphere when λ > χ2

1,0.95 ≈ 3.84 with λ from (10), holds
asymptotically the level and that the Type 2 error asymptotically decays
to zero, very quickly for larger ρ. Since for N = 100, 200 the true levels
are above 5%, we have estimated the asymptotic levels yielding a true level
of 5% in Table 3 and display the corresponding Type 2 error there also.
This estimation is a matter of minutes for N = 100 and below one hour for
N = 1000. Based on these simulations we recommend to use our test for
sample sizes at least around N = 200. This is the case for our application
to the C2 data set with N = 649 (cf. Section 3.2) and almost the case for
the benchmark data set with N = 181 (cf. Section 3.1). For both data sets
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we have used our test against overfitting a small sphere at asymptotic level
of 5%.

Assessment of robustness of our test under the null distribution
of Jung, Dryden and Marron (2012). We now assess the robustness of
our test under a misspecified model, namely, the von Mises-Fisher distribu-
tion which is the null distribution of Jung, Dryden and Marron (2012). To
carry this out, we note the following points related to their test. First, we
note that they have translated their null hypothesis of a compact cluster
into fitting by a great subsphere through a von Mises-Fisher distribution.
The parameters of this distribution are estimated via MLE. Then a Stu-
dent t-like test statistic of distances to the estimated center point is used as
their test statistic. Next, we note that for their test statistic, they simulate
bootstrap quantiles from the von Mises-Fisher distribution with parameters
given by the MLE. However, Jung, Dryden and Marron (2012) have given
neither a theoretical result – like we have the asymptotic p-value of our test
statistics λ – nor a simulation study to assess their test statistics under their
null hypothesis. We have reimplemented their data driven procedure so as
to use their null hypothesis and have carried out the following simulation
study.

D′
0: Here, we directly simulate spherical samples leading to a great cir-

cle, from the null hypothesis of the test of Jung, Dryden and Marron
(2012), namely from a von Mises-Fisher distribution with density in x

proportional to eκµ
T x with a high value of the concentration parame-

ter κ = 10 to give a fair chance. We average over 1000 samples with µ
uniform on the sphere.

Table 4

Type 1 errors (rejecting the null hypothesis of Jung, Dryden and Marron (2012) which is
a von Mises-Fisher distribution) for the test of Jung, Dryden and Marron (2012) and

errors under this misspecified model for our test, with concentration parameter κ = 10 in
a simulation with 1000 repetitions. For their test we use a simulated level of 5% and for

our test we use an asymptotic level of 5%.

Sample size Jung, Dryden and Marron (2012) our test

100 17.0% 1.0%
200 13.4% < 0.1%
500 8.4% < 0.1%
1000 5.9% < 0.1%

As shown in Table 4, we note that our test is more conservative on the
null hypothesis of the test of Jung, Dryden and Marron (2012). Further, the
true level of the test of Jung, Dryden and Marron (2012) also decreases with
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sample size, and almost reaches the simulated level for N = 1000. In passing,
we note that estimating the simulated level leading to a true level of 5% for
the test by Jung, Dryden and Marron (2012), however, is impractical, as for
N = 100 already, estimation takes weeks.

3. Application to RNA Structure. RNA is usually single-stranded
and the single strand interacts with itself, forming complex shapes (this is
in contrast to DNA which usually takes a double-stranded helical confor-
mation). This means that the geometry is rather variable even on the scale
of single atoms. As described in Section 1, each nucleic base corresponds
to a backbone segment described by 6 dihedral angles and one angle for
the base, giving a total of 7 angles, cf. Table 1 and Figure 3. The distribu-
tion of these 7 angles over large samples of RNA strands have been studied
in detail, see Murray et al. (2003); Schneider, Morvek and Berman (2004);
Wadley et al. (2007); Richardson et al. (2008); Frellsen et al. (2009). Figure
3a details a segment of the RNA backbone with seven angles for each residue
giving the 3D folding structure. An approximation of the geometric folding
structure on the level of single residues is given by the two pseudo-torsion
angles η and θ (Figure 3b). These two (dihedral) angles provide at once a
two-dimensional visualization (Figure 7a), see e.g. Duarte and Pyle (1998);
Wadley et al. (2007).

Finally, the dihedral angle ν2 (Figure 3b and Table 1) quantifies the fold-
ing (pucker) of the sugar ring. Only two modes of folding are geometrically
and energetically possible, which are characterized by either C3’ or C2’ be-
ing outside the plane spanned by C1’-O1’-C4’ and towards the direction of
O5’. If C2’ lies outside the plane then ν2 ≈ 325◦, this is called C2’-endo
sugar pucker, whereas if C3’ lies outside the plane then ν2 ≈ 35◦, this is
called C3’-endo sugar pucker. The hydroxy group attached to the C2’ atom
in RNA causes the C3’-endo sugar pucker to be energetically preferred (see
e.g. Egli, Portmann and Usman (1996)) and thus this is about 10 times
more abundant than the C2’-endo sugar pucker in the large RNA data set
of Duarte and Pyle (1998) and Wadley et al. (2007).

For our application below we use two subsets of a large classical data
set (8301 residues) which was carefully selected for high experimental X-ray
precision (0.3 nanometers) by Duarte and Pyle (1998), updated by Wadley
et al. (2007) and analyzed by them and others, for example, Murray et al.
(2003); Richardson et al. (2008).

3.1. The Benchmark Data Set. This benchmark data set has been care-
fully selected by Sargsyan, Wright and Lim (2012) to validate their method.
From the C3’-endo sugar pucker they took clusters labeled I (“triangles”,
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59 points), II (“crosses”, 83 points) and V (“disks”, 39 points) by Wadley
et al. (2007) totaling 181 data points, which form three clusters in the η–θ
plot as shown in Figure 7a. While clusters I and II correspond to distinct
structural elements featuring base stacking, the residues in cluster V belong
to a wider variety of structural elements.

(a) η–θ plot (b) α–ζ plot

Fig 7: 7a: The benchmark data set of Sargsyan, Wright and Lim (2012) with
their three preselected clusters in the η–θ plot. 7b: The benchmark data set
plotted for the two most discriminant angles (α, ζ) chosen out of the seven
dihedral angles; in the “donut to sausage” transformation along the dashed
lines the corresponding angles are collapsed to a single point.

Visualization is obviously not possible in the 7D space of all torsion angles.
However, we find that the angle pair (α, ζ) is the most discriminatory and
a plot is given in Figure 7b: The “disks” cluster is not very concentrated,
in contrast to the “crosses” cluster which is twice as big, and parts of the
“disks” are very close to the “crosses” cluster. In fact, upon close inspection,
due to periodicity, the “triangles” and “crosses” clusters are also rather close
in the η–θ plot in Figure 7a.

We have applied T-PCA to all seven angles and depict the two-dimensional
representation for SI ordering in Figure 8a (which is hardly visually distin-
guishable from SO ordering). To see that the data are, in fact, very well
approximated by the best fit circle we use a planar representation of the
first two T-PCs in Figure 8b. Using the same symbols for Figure 8 as in
Figure 7 shows that the three preselected clusters can be rather well dis-
tinguished by eye. We note that the first component explains 84% of data
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variation. In comparison in Figure 8c we adapt Figure 6 from Sargsyan,
Wright and Lim (2012). Again the clusters can be well discriminated along
the first GeoPC (horizontal in the 2D approximation in Figure 8b). In con-
trast to T-PCA, however, the data are not well approximated by the first
GeoPC, as the projections to the second GeoPC component (vertical in the
2D approximation in Figure 8c), feature maximal data range. In fact, both
GeoPCs explain roughly similar amounts of data variation.

Thus Figure 8 illustrates the power of T-PCA going significantly beyond
the analysis of Sargsyan, Wright and Lim (2012). Not only can the prese-
lected clusters be separated but the data are very accurately approximated
by their projection to the 1D component.

3.2. The 1D structure of C2 Data Set. We now describe in detail how
our C2 data set is extracted from the large RNA data set. Notably, some
of the RNA structures in this data set are only short pieces adhering to a
protein or another RNA structure. Therefore, we prune by removing residues
further than 50◦ in torus distance from their nearest neighbor. This leads to
7544 residues and 649 of these are residues with C2’-endo sugar pucker. i.e.
ν2 ∈ [300◦, 350◦]. This produces a moderately large data set to analyze (in
contrast to the very large data set of all other residues including C3’-endo
sugar pucker).

Murray et al. (2003) noted that this data set is locally rotameric, as,
among others, conformer clusters essentially extend along the β angle, con-
sidering only the 3 heminucleotide angles α − β − γ (Figure 9a). Already
in this heminucleotide space, these individual 1D cluster patterns compete
with the group spread along the α angle and in full 7D residual space, there
are more competing features, which, in the 2D TS-PCA plot involving all 7
angles, manifest as 3 diffused stripe shaped clusters (Figure 9b). Here the
1D pattern of the largest conformer group can be traced along the shifted
second diagonal. The two conformer groups next in size, which are close in
heminucleotide angles, are ripped apart in TS-PCA due to its wrong topol-
ogy, because they are far from the base point of the tangent space that is
controlled by the dominating cluster. Notably, the correct topology could not
even be forced onto that plot because, due to the winding effects illustrated
in Figure 1, boundary loci correspond to different torus loci.

Due to its larger flexibility and higher fidelity, T-PCA recovers a 1D pat-
tern as the overall dominating structure, reflecting the proximity of the sec-
ond and third largest cluster in the 2nd component (Figure 9c, and Figure
9d in planar representation for better illustration, which is, of course, peri-
odic). Notably, according to Remark 2.3, structural fidelity can be expected
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(a) 2D approximation, T-PCA (SI) (b) 2D approximation, T-PCA (SI)
in planar coordinates

(c) 2D approximation, GeoPCA

Fig 8: Two-dimensional PCA approximations of the benchmark data set via
T-PCA with SI ordering in natural spherical coordinates (8a), in planar
coordinates (8b) and GeoPCA adapted from (Sargsyan, Wright and Lim,
2012, Figure 6) (8c). The symbols represent the same clusters as in Figure
7.

due to the large gaps in the β and γ angles, cf. Figure 9a. Using T-PCA,
we generalize the finding of a locally rotameric structure by Murray et al.
(2003) to

In full 7D angular space, the RNA residue conformers are rotameric,
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(a) Conformer clusters in the α−β−
γ plot adapted from (Murray et al.,
2003, Figure 4.b)

(b) TS-PCA

(c) T-PCA (SI) (d) T-PCA (SI), planar view

Fig 9: Residues with C2’-endo sugar pucker with clustering following Mur-
ray et al. (2003). Three-dimensional heminucleotide angles (9a); two-
dimensional TS-PCA (9b) approximation; two-dimensional T-PCA (SI)
approximation, the small circle gives the 1D approximation (9c); two-
dimensional T-PCA (SI) approximation in planar representation (9d).

essentially following a single angle that is a non-linear combination of the
original ones, however.

Upon yet closer inspection, the fine clustering along the 1D component re-
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flects the clustering in the complementary heminucleotide δ − ǫ − ζ angles
from (Murray et al., 2003, Figure 4.c, rear part).

3.3. Comparing T-PCA with TS-PCA. We summarize our use of T-PCA
and TS-PCA using all 7 angles for the C2 data in Table 5a and Figure 10a.
In 1D, T-PCA captures 73% of the variance whereas TS-PCA captures
only 44% of the variance. Only when adding a second dimension TS-PCA
captures more variance (81%) than the 1D component of T-PCA. Higher
order PCs, both for T-PCA and TS-PCA, explain roughly the same amount
of data variance.

To highlight the differences between the two PCA methods, let us consider
the example of three points. There is an exactly fitting small circle used by
T-PCA. Indeed, if applied to the η–θ plot (Figure 7a), T-PCA would reduce
the three clusters rather accurately to a 1D circle. In contrast, TS-PCA
approximates three points only along a straight line in the tangent space
and such an approximation is only possible if data lie favorably such as in
the η–θ plot, see (Figure 7a). The α–ζ plot (Figure 7b), however, illustrates
that a 1D approximation for all seven angles is not possible for TS-PCA,
while it is possible for T-PCA (Figure 8b).

In fact, usually T-PCA requires one dimension less than TS-PCA because
k points in general position span a k-dimensional affine subspace, which
is detected by TS-PCA, and the surface of a (k − 1)-dimensional sphere,
which is detected by T-PCA. We illustrate this using a simulated simplex
data set with points in general position, namely, 800 7D angles distributed
independently at one of 8 simplex vertices, π apart with Gaussian noise of
variance (π/3)2. The results are displayed in Table 5b and Figure 10b. If
there are affine data dependencies, however, this advantage of T-PCA over
TS-PCA by one dimension is lost. Indeed the C2 data set features such affine
dependencies between angles, which is already visible in Figure 9a, and hence
in Figure 10a, T-PCA outperforms TS-PCA in terms of explained variance
only in dimension one.
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(a) C2 data (b) Simulated simplex data

Fig 10: Scree plots of cumulative variances for T-PCA (SI) compared to
TS-PCA.

Table 5

Cumulative variances for T-PCA (SI) and for TS-PCA.

(a) C2 data

Dimension T-PCA (SI) TS-PCA

1 74% 44%
2 83% 81%
3 90% 90%
4 95% 94%
5 98% 97%
6 99% 99%

(b) Simulated simplex data

Dimension T-PCA (SI) TS-PCA

1 39% 18%
2 50% 34%
3 63% 48%
4 77% 62%
5 89% 75%
6 95% 88%

4. Discussion. We have provided a novel framework for torus PCA to
perform PCA-like dimension reduction for angular data. Previous attempts
have not been satisfactory, because, on the one hand, the geometry featuring
dense geodesics leads to severe restrictions for geodesic approaches while, on
the other hand, Euclidean approximations disregard periodicity. We have
used an adaptive deformation to a statistically benign geometry, allowing
for increased and statistically controlled flexibility whilst at the same time
guaranteeing structure fidelity. In application to dihedral angles of RNA
structures we have validated our method using a classical benchmark data
set. Using a C2’-endo sugar pucker residue data set we have given evidence
on how T-PCA is better and more meaningful than TS-PCA, and we have
illustrated that the significant interdependence found by Murray et al. (2003)
in a 3D representation is seen by T-PCA remarkably in 1D.

There are several benefits coming with dimension reduction to 1D. In view
of data clustering it allows to build on powerful and well established sta-
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tistical 1D methods for mode detection (e.g. Dümbgen and Walther (2008);
Schmidt-Hieber, Munk and Dümbgen (2013); Huckemann et al. (2016)), and
this challenge will be taken up in future research.
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