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ABSTRACT
We simulate the multiphase interstellar medium (ISM) randomly heated and stirred by super-
novae (SNe), with gravity, differential rotation and other parameters of the solar neighbour-
hood. Here we describe in detail both numerical and physical aspects of the model, including
injection of thermal and kinetic energy by SN explosions, radiative cooling, photoelectric heat-
ing and various transport processes. With a three-dimensional domain extending 1 × 1 kpc2

horizontally and 2 kpc vertically (symmetric about the galactic mid-plane), the model routinely
spans gas number densities 10−5–102 cm−3, temperatures 10–108 K and local velocities up to
103 km s−1 (with Mach number up to 25). The working numerical resolution of 4 pc has been
selected via simulations of a single expanding SN remnant, where we closely reproduce, at
this resolution, analytical solutions for the adiabatic and snowplough regimes. The feedback
of the halo on the disc cannot be captured in our model where the domain only extends to the
height of 1 kpc above the mid-plane. We argue that to reliably model the disc–halo connections
would require extending the domain horizontally as well as vertically due to the increasing
horizontal scale of the gas flows with height.

The thermal structure of the modelled ISM is classified by inspection of the joint probability
density of the gas number density and temperature. We confirm that most of the complexity
can be captured in terms of just three phases, separated by temperature borderlines at about 103

and 5 × 105 K. The probability distribution of gas density within each phase is approximately
lognormal. We clarify the connection between the fractional volume of a phase and its various
proxies, and derive an exact relation between the fractional volume and the filling factors
defined in terms of the volume and probabilistic averages. These results are discussed in
both observational and computational contexts. The correlation scale of the random flows is
calculated from the velocity autocorrelation function; it is of the order of 100 pc and tends
to grow with distance from the mid-plane. We use two distinct parametrizations of radiative
cooling to show that the multiphase structure of the gas is robust, as it does not depend
significantly on this choice.

Key words: hydrodynamics – turbulence – ISM: kinematics and dynamics – ISM: structure –
ISM: supernova remnants – galaxies: ISM.

1 IN T RO D U C T I O N

The multiphase structure of the interstellar medium (ISM) affects
almost all aspects of its dynamics, including its evolution, star for-
mation, galactic winds and fountains, and the behaviour of magnetic
fields and cosmic rays. In a widely accepted picture (Cox & Smith
1974; McKee & Ostriker 1977), most of the volume is occupied
by the hot (T � 106 K), warm (T � 104 K) and cold (T � 102 K)
phases. The concept of the multiphase ISM in pressure equilibrium

� E-mail: f.gent@sheffield.ac.uk

has endured with modest refinement (Cox 2005), e.g. deviations
from thermal pressure balance have been detected (Kalberla & Kerp
2009, and references therein). Dense molecular clouds, while bind-
ing most of the total mass of the interstellar gas and being of key
importance for star formation, occupy a negligible fraction of the
total volume (e.g. Kulkarni & Heiles 1987, 1988; Spitzer 1990;
McKee 1995). The main sources of energy maintaining this com-
plex structure are supernova (SN) explosions and stellar winds
(Mac Low & Klessen 2004, and references therein). The cluster-
ing of SNe in OB associations facilitates the escape of the hot
gas into the halo, thus reducing the volume filling factor of the
hot gas in the disc, perhaps down to 10 per cent at the mid-plane
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(Norman & Ikeuchi 1989). The energy injected by the SNe not
only produces the hot gas but also drives ubiquitous compressible
turbulence in all phases, as well as driving outflows from the disc,
associated with the galactic fountain or wind, as first suggested by
Bregman (1980). Thus, turbulence, the multiphase structure and the
disc–halo connection are intrinsically related features of the ISM.

A comprehensive description of the complex dynamics of the
multiphase ISM has been significantly advanced by numerical
simulations in the last three decades, starting with Chiang &
Prendergast (1985), followed by many others (Rosen, Bregman &
Norman 1993; Rosen & Bregman 1995; Passot, Vázquez-Semadeni
& Pouquet 1995; Vázquez-Semadeni, Passot & Pouquet 1995;
Rosen, Bregman & Kelson 1996; Gazol-Patiño & Passot 1999;
Korpi et al. 1999b; Wada & Norman 1999, 2001, 2007; de Avillez
2000; de Avillez & Berry 2001; de Avillez & Mac Low 2002;
Wada, Meurer & Norman 2002; Balsara et al. 2004; de Avillez &
Breitschwerdt 2004, 2005a,b, 2007; Mac Low et al. 2005; Slyz et al.
2005; Joung & Mac Low 2006; Gressel et al. 2008). Numerical sim-
ulations of this type are demanding even with the best computers
and numerical methods available. The self-regulation cycle of the
ISM includes physical processes spanning enormous ranges of gas
temperature and density, and of spatial and temporal scales, as it
involves star formation in the cores of molecular clouds, assisted by
gravitational and thermal instabilities at larger scales, which evolve
against the global background of transonic turbulence driven, in
turn, by star formation (Mac Low & Klessen 2004). It is under-
standable that none of the existing numerical models covers the
whole range of parameters, scales and physical processes known to
be important.

Two major approaches in earlier work focus either on the dy-
namics of diffuse gas or on dense molecular clouds. Our model
belongs to the former class, where we are mainly concerned with
the ISM dynamics in the range of scales of the order of 10 pc–1 kpc.
Numerical constraints prevent us (like many other authors) from
fully including the gravitational and thermal instabilities which in-
volve scales of less than 1 pc. In order to assess the sensitivity of
our results to the parametrization of radiative cooling, we consider
models with thermal instability, but reduce its efficiency using a
sufficiently strong thermal conductivity to avoid the emergence of
structures that are unresolvable at our numerical resolution. The
results are compared to models with no thermally unstable branch
over the temperature range between the cold and warm phases.
To our knowledge, no direct study addressing the difference be-
tween these two kinds of the cooling parametrizations has been
made. We note, however, that Vázquez-Semadeni, Gazol & Scalo
(2000) compared their thermally unstable model to a different model
by Scalo et al. (1998), who used a thermally stable cooling func-
tion. Similarly, de Avillez & Breitschwerdt (2004) and Joung &
Mac Low (2006) compared results obtained with different cooling
functions, but again comparing different models: here we compare
models with different cooling functions but which are otherwise the
same.

An unavoidable consequence of the modest numerical resolu-
tion available, if we are to capture the dynamics on 1 kpc scales,
is that star formation, manifesting itself only through the ongoing
SN activity in our model, has to be heavily parametrized. We do,
however, ensure that individual SN remnants are modelled accu-
rately, since this is essential to reliably reproduce the injection of
thermal and kinetic energy into the ISM. In particular, our model
reproduces with high accuracy the evolution of SN remnants from
the Sedov–Taylor stage until the remnant disintegrates and merges
into the ISM (Appendix B).

The dimensionless parameters characteristic of the ISM, such
as the kinetic and magnetic Reynolds numbers (reflecting the rel-
ative importance of gas viscosity and electrical resistivity) and the
Prandtl number (quantifying thermal conductivity), are too large to
be simulated with current computers. Similarly to most numerical
simulations of this complexity, our numerical techniques involve a
range of artificial transport coefficients for momentum and thermal
energy (such as shock-capturing viscosity). We explore and report
here the sensitivity of our results to the artificial elements in our
basic equations.

This paper is the first of a planned series, in which we aim to
clarify which components and physical processes control the dif-
ferent properties of the ISM. Our next step is to add magnetic fields
to the model, and to study both their origin and role in shaping the
ISM. But in order to identify where the magnetic field is important
and where it is not, we first must understand what the properties of
a purely hydrodynamic ISM would be.

The structure of the paper is as follows. In Section 2, we present
our basic equations, numerical methods, initial and boundary con-
ditions, as well as the physical ingredients of the model, such as our
modelling of SN activity and heating and cooling of the ISM. Our
results are presented in Sections 3–8, including an overview of the
multiphase structure of the ISM, the correlation length of random
flows, and their sensitivity to the cooling function and numerical
resolution. Our results are discussed in a broader context in Section
9, where our conclusions are also summarized. A detailed discus-
sion of important technical and numerical aspects of the model,
and the effects of the unavoidable unphysical assumptions adopted,
can be found in the appendices: the accuracy of our modelling of
individual SN remnants in Appendix B, our control of numerical
dissipation in Appendix C and sensitivity to thermal instability in
Appendix D.

2 BA S I C E QUAT I O N S A N D T H E I R
N U M E R I C A L I M P L E M E N TAT I O N

2.1 Basic equations

We solve numerically a system of hydrodynamic equations using
the PENCIL CODE (http://code.google.com/p/pencil-code) which is de-
signed for fully non-linear, compressible magnetohydrodynamic
(MHD) simulations. We consider only the hydrodynamic regime
for the purposes of this paper; MHD simulations, which are in
progress, will be reported elsewhere. Nor do we include cosmic
rays, which we subsequently plan to add to the MHD simulations.

The basic equations include the mass conservation equation, the
Navier–Stokes equation (written here in the rotating frame), and the
heat equation written in terms of the specific entropy:1

Dρ

Dt
= −ρ∇ · u + ρ̇SN, (1)

Du
Dt

= −ρ−1∇σSN − c2
s ∇

(
s/cp + ln ρ

)
− ∇Φ − Sux ŷ − 2Ω × u

+ ν

(
∇2u + 1

3
∇∇ · u + 2W · ∇ ln ρ

)
+ ζν (∇∇ · u) ,

(2)

1 For the reader’s convenience, Appendix A contains a list of variables used
in the text with their definitions.
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ρT
Ds

Dt
= σ̇SN + ρ� − ρ2� + ∇ · (

cpρχ∇T
) + 2ρν |W |2

+ ζχρ (∇ · u)2 , (3)

where ρ, T and s are the gas density, temperature and specific
entropy, respectively, u is the deviation of the gas velocity from the
background rotation profile (here called the velocity perturbation),
cs is the adiabatic speed of sound, cp is the heat capacity at constant
pressure, S is the velocity shear rate associated with the Galactic
differential rotation at the angular velocity Ω assumed to be aligned
with the z-axis (see below). The Navier–Stokes equation includes
viscosity ν and the rate of strain tensor W whose components are
given by

2Wij = ∂ui

∂xj

+ ∂uj

∂xi

− 2

3
δij∇ · u, (4)

as well as the shock-capturing viscosity ζ ν . The system is driven by
SN energy injection, at the rates σ̇SN (per unit volume) in the form
of kinetic energy in equation (2) and thermal energy in equation (3).
Energy injection is applied in a single time step and is confined to
the interiors of newly introduced SN remnants, and the total energy
injected per SN is denoted by ESN. The mass of the SN ejecta is
included in equation (1) via the source ρ̇SN. The forms of these terms
are specified, and further details are given in Section 2.2. The heat
equation also contains a thermal energy source due to photoelectric
heating ρ�, energy loss due to optically thin radiative cooling ρ2�,
heat conduction with the thermal diffusivity χ (with K = cpρχ the
thermal conductivity), viscous heating (with |W | the determinant
of W ) and the shock-capturing thermal diffusivity ζ χ .

The advective derivative,

D

Dt
= ∂

∂t
+ (U + u) · ∇, (5)

includes transport by an imposed shear flow U = (0, Sx, 0) in the
local Cartesian coordinates (taken to be linear across the local sim-
ulation box), with the velocity u representing a deviation from
the overall rotational velocity U . As will be discussed later, due
to anisotropies (e.g. density stratification, anisotropic turbulence),
large-scale flows will be generated in the system; one example is
the systematic vertical outflow discussed at length in this paper.
Therefore, the perturbation velocity u consists of two parts, a mean
flow and random velocities. Here we consider a mean flow obtained
by Gaussian smoothing (Germano 1992):

〈u〉�(x) =
∫

V

u(x′)G�(x − x′) d3x′,

G�(x) = (
2π�2

)−3/2
exp

[−x2/(2 �2)
]
, (6)

where we use a smoothing scale � � 50 pc, necessarily somewhat
shorter than the flow correlation length l0 obtained in Section 6
(for details, see Gent et al. 2013). The random flow is then u0 =
u − 〈u〉�. The differential rotation of the galaxy is modelled with a
background shear flow along the local azimuthal (y) direction, Uy =
Sx. The shear rate is S = r∂�/∂r in terms of galactocentric distance
r, which translates into the x-coordinate of the local Cartesian frame.
In this paper, we consider models with rotation and shear similar to
those in the solar neighbourhood, � = −S = 25 km s−1 kpc−1. We
do not expect the gas velocities and thermal structure discussed here
to depend strongly on the rotation and shear parameters, although
other aspects of the solution will be more sensitive to these. Future
papers will consider the rotation and shear in more detail and will
also include magnetic fields, whose generation may depend strongly
on these parameters.

We consider an ideal gas, with thermal pressure given by

p = kB

μmp
ρT ,

where kB is the Boltzmann constant, mp is the proton mass and μ =
0.62 is the mean molecular weight of a fully ionized gas of the solar
chemical composition.

In equation (2),  is the gravitational potential produced by
stars and dark matter. For the solar vicinity of the Milky Way,
Kuijken & Gilmore (1989) suggest the following form of the vertical
gravitational acceleration (see also Ferrière 2001):

gz = −∂

∂z
= − a1√

z2
1 + z2

− a2
z

z2
, (7)

with a1 = 4.4 × 10−16 km s−2, a2 = 1.7 × 10−16 km s−2, z1 =
200 pc and z2 = 1 kpc. We neglect self-gravity of the interstellar
gas because it is subdominant at the scales of interest.

2.2 Modelling SN activity

We include both Type II and Type I SNe in our simulations, distin-
guished only by their frequency and vertical distribution. The SN
frequencies are those in the solar neighbourhood (e.g. Tammann,
Löffler & Schröder 1994). Type II SNe are introduced at a rate, per
unit surface area, of νII = 25 kpc−2 Myr−1 (0.02 yr−1 in the whole
Galaxy), with fluctuations of the order of 10−4 yr−1 at a time-scale
of thw order of 10 Myr. Such fluctuations in the Type II SN rate are
natural to introduce; there is some evidence that they can enhance
dynamo action in MHD models (Balsara et al. 2004; Hanasz et al.
2004). The surface density rate of Type I SNe is νI = 4 kpc−2 Myr−1

(interval of 290 yr between Type I SN explosions in the Galaxy).
We do not explicitly include any spatial clustering of the SNe.

Unlike most other ISM models of this type, the SN energy in
the injection site is split into thermal and kinetic parts, in order to
reduce artificial temperature and energy losses at early stages of the
SN remnant evolution. Thermal energy density is distributed within
the injection site as exp [−(r/rSN)6], with r the local spherical radius
and rSN (of the order of 10 pc – see below) the nominal location of
the remnant shell (i.e. the radius of the SN bubble) at the time
of injection. Kinetic energy is injected by adding a spherically
symmetric velocity field ur ∝ exp [−(r/rSN)6]; subsequently, this
rapidly redistributes matter into a shell. To avoid a discontinuity in u
at the centre of the injection site, the centre is simply placed mid-way
between grid points. We also inject 4 M	 as stellar ejecta, with the
density profile exp [−(r/rSN)6]. Given the turbulent environment,
there are significant random motions and density inhomogeneities
within the injection regions. Thus, the initial kinetic energy is not
the same in each region, and injecting part of the SN energy in the
kinetic form results in the total kinetic energy varying between SN
remnants. We therefore record the energy added for every remnant
so we can fully account for the rate of energy injection. For example,
in model WSWa we obtain the energy per SN in the range

0.5 < ESN < 1.5 × 1051 erg,

with the average of 0.9 × 1051 erg.
The SN sites are randomly distributed in the horizontal coordi-

nates (x, y). Their vertical positions are drawn from the Gaussian
distributions in z with the scale heights of hII = 0.09 kpc for Type II
and hI = 0.325 kpc for Type I SNe. Thus, equation (1) contains the
mass source of 4 M	 per SN,

ρ̇SN � 4 M	
(

νII

2hII
+ νI

2hI

)
,
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whereas equations (2) and (3) include kinetic and thermal energy
sources of similar strength adding up to ESN per SN:

σ̇SN � 1

2
ESN

(
νII

2hII
+ νI

2hI

)
.

The only other constraints applied when choosing SN sites are to
reject a site if an SN explosion would result in a local temperature
above 1010 K or if the local gas number density exceeds 2 cm−3. The
latter requirement ensures that the thermal energy injected is not lost
to radiative cooling before it can be converted into kinetic energy in
the ambient gas. More elaborate prescriptions can be suggested to
select SN sites (Korpi et al. 1999a; de Avillez 2000; Joung & Mac
Low 2006; Gressel et al. 2008); we found this unnecessary for our
present purposes.

Arguably the most important feature of SN activity, in the present
context, is the efficiency of evolution of the SN energy from ther-
mal to kinetic energy in the ISM, a transfer that occurs via the
shocked, dense shells of SN remnants. Given the relatively low
resolution of this model (and most, if not all, other models of this
kind), it is essential to verify that the dynamics of expanding SN
shells is captured correctly: inaccuracies in the SN remnant evolu-
tion would indicate that our modelling of the thermal and kinetic
energy processes was unreliable. Therefore, we present in Appendix
B detailed numerical simulations of the dynamical evolution of an
individual SN remnant at spatial grid resolutions in the range � =
1–4 pc. We allow the SN remnant to evolve from the Sedov–Taylor
stage (at which SN remnants are introduced in our simulations) for
t ≈ 3.5 Myr. The remnant enters the snowplough regime, with
a final shell radius exceeding 100 pc, and we compare the nu-
merical results with the analytical solution of Cioffi, McKee &
Bertschinger (1998). The accuracy of the numerical results depends
on the ambient gas density n0: larger n0 requires higher resolu-
tion to reproduce the analytical results. We show that agreement
with Cioffi et al. (1998) in terms of the shell radius and expan-
sion speed is excellent at resolutions � ≤ 2 pc for n0 � 1 cm−3,
and also very good at � = 4 pc for n0 ≈ 0.1 and 0.01 cm−3.
Comparisons with models of higher resolution (de Avillez &
Breitschwerdt 2004; Joung, Mac Low & Bryan 2009), in Section
8.3, also indicate that our basic � = 4 pc resolution is adequate.

Since shock waves in the immediate vicinity of an SN site are
usually stronger than anywhere else in the ISM, these tests also
confirm that our handling of shock fronts is sufficiently accurate
and that the shock-capturing diffusivities that we employ do not
unreasonably affect the shock evolution.

Our standard resolution is � = 4 pc. To be minimally resolved,
the initial radius of an SN remnant must span at least two grid
points. Because the origin is set between grid points, a minimum
radius of 7 pc for the energy injection site is sufficient. The size
of the energy injection region in our model must be such that the
gas temperature is above 106 K and below 108 K: at both higher
and lower temperatures, energy losses to radiation are excessive
and adiabatic expansion cannot be established. Following Joung &
Mac Low (2006), we adjust the radius of the energy injection region
to be such that it contains 60 M	 of gas. For example, in model
WSWa this results in a mean rSN of 35 pc, with a standard deviation
of 25 pc and a maximum of 200 pc. The distribution of radii appears
approximately lognormal, so rSN > 75 pc is very infrequent and the
modal value is about 10 pc; this corresponds to the middle of the
Sedov–Taylor phase of the SN expansion. Unlike Joung & Mac Low
(2006), we found that the mass redistribution within the injection
site was not necessary. Therefore, we do not impose uniform site
density, particularly as it may lead to unexpected consequences in

the presence of magnetic fields in our MHD simulations (described
elsewhere).

2.3 Radiative cooling and photoelectric heating

We consider two different parametrizations of the optically thin
radiative cooling appearing in equation (3), both of the piecewise
power-law form � = �kT

βk within a number of temperature ranges
Tk ≤ T < Tk+1, with Tk and �k given in Tables 1 and 2. Since
this is just a crude (but convenient) parametrization of numerous
processes of recombination and ionization of various species in
the ISM, there are several approximations designed to describe
the variety of physical conditions in the ISM. Each of the earlier
models of the SN-driven ISM adopts a specific cooling curve, often
without explaining the reason for the particular choice or assessing
its consequences. In this paper, we discuss the sensitivity of the
results to the choice of the cooling function.

One parametrization of radiative cooling, labelled WSW and
shown in Table 1, consists of two parts. For T < 105 K, we use the
cooling function fitted by Sánchez-Salcedo, Vázquez-Semadeni &
Gazol (2002) to the ‘standard’ equilibrium pressure–density relation
of Wolfire et al. (1995, cf. fig. 3b therein). For higher temperatures,
we adopt the cooling function of Sarazin & White (1987). This part
of the cooling function (but extended differently to lower tempera-
tures) was used by Slyz et al. (2005) to study star formation in the
ISM. The WSW cooling function was also used by Gressel et al.
(2008). It has two thermally unstable ranges: at 313 ≤ T < 6102 K,
the gas is isobarically unstable (βk < 1); at T > 105 K, the gas is
isochorically or isentropically unstable (βk < 0 and βk < −1.5,
respectively).

Table 1. The cooling function of Wolfire et al. (1995)
at T < 105 K, joined to that of Sarazin & White (1987)
at higher temperatures, with � = 0 for T < 10 K. This
cooling function is denoted by WSW in the text (and
in the labels of our numerical models).

Tk (K) �k (erg g−2 s−1 cm3 K−βk ) βk

10 3.70 × 1016 2.12
141 9.46 × 1018 1.00
313 1.18 × 1020 0.56
6102 1.10 × 1010 3.21
105 1.24 × 1027 − 0.20

2.88 × 105 2.39 × 1042 − 3.00
4.73 × 105 4.00 × 1026 − 0.22
2.11 × 106 1.53 × 1044 − 3.00
3.98 × 106 1.61 × 1022 0.33
2.00 × 107 9.23 × 1020 0.50

Table 2. The cooling function of Rosen et al.
(1993), labelled RBN in the text (and in the la-
bels of our numerical models), with � = 0 for
T < 10 K.

Tk (K) �k (erg g−2 s−1 cm3 K−βk ) βk

10 9.88 × 105 6.000
300 8.36 × 1015 2.000

2000 3.80 × 1017 1.500
8000 1.76 × 1012 2.867
105 6.76 × 1029 − 0.650
106 8.51 × 1022 0.500
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Figure 1. The cooling functions WSW (solid black) and RBN (red dash–
dotted), with parameters given in Tables 1 and 2, respectively.

Results obtained with the WSW cooling function are compared
with those using the cooling function of Rosen et al. (1993), labelled
RBN, whose parameters are shown in Table 2. This cooling function
has a thermally unstable part only above 105 K. Rosen et al. (1993)
truncated their cooling function at T = 300 K. Instead of abrupt trun-
cation, we have smoothly extended the cooling function down to
10 K. This has no palpable physical consequences as the radiative
cooling time at these low temperatures becomes longer (10 Myr)
than other time-scales in the model, so that adiabatic cooling dom-
inates. The minimum temperature reported in the model of Rosen
et al. (1993) is about 100 K. Here, with better spatial resolution, the
lowest temperature is typically below 50 K.

We took special care to accurately ensure the continuity of the
cooling functions, as small discontinuities may affect the perfor-
mance of the code; hence, the values of �k in Table 1 differ slightly
from those given by Sánchez-Salcedo et al. (2002). The two cooling
functions are shown in Fig. 1. The cooling function used in each
numerical model is identified with a prefix RBN or WSW in the
model label (see Table 3). The purpose of models RBN and WSWb
is to assess the impact of the choice of the cooling function on
the results (Section 8.1). Other models employ the WSW cooling
function.

We also include photoelectric heating in equation (3) via the
stellar far-ultraviolet (UV) radiation, �, following Wolfire et al.
(1995) and allowing for its decline away from the Galactic mid-
plane with a length scale comparable to the scale height of the
stellar disc near the Sun (cf. Joung & Mac Low 2006):

�(z) = �0 exp (−|z|/300 pc) , �0 = 0.0147 erg g−1 s−1.

This heating mechanism is smoothly suppressed at T > 2 × 104 K,
since the photoelectric effect due to UV photon impact on polycyclic
aromatic hydrocarbons and small dust grains is impeded at high
temperatures (cf. Wolfire et al. 1995).

2.4 Numerical methods

2.4.1 The computational domain

We model a relatively small region within the galactic disc and lower
halo with parameters typical of the solar neighbourhood. Using a
three-dimensional Cartesian grid, our results have been obtained
for a region 1.024 × 1.024 × 2.24 kpc3 in size, with 1.024 kpc in
the radial and azimuthal directions and 1.12 kpc vertically on either
side of the galactic mid-plane. Assuming that the correlation length
of the interstellar turbulence is l0 � 0.1 kpc (see Section 6), the
computational domain encompasses about 2000 turbulent cells, so
the statistical properties of the ISM can be reliably captured. We
are confident that our computational domain is sufficiently broad
to accommodate comfortably even the largest SN remnants at large
heights, so as to exclude any self-interaction of expanding remnants
through the periodic boundaries.

Vertically, our reference model accommodates ten scale heights
of the cold H I gas, two scale heights of diffuse H I (the Lock-
man layer) and one scale height of ionized hydrogen (the Reynolds
layer). The vertical size of the domain in the reference model is
insufficient to include the scale height of the hot gas, and it would
be preferable to consider a computational box of a larger vertical
size, 2Lz. Indeed, some similar ISM models use a vertically elon-
gated computational box with the horizontal size of 1 kpc × 1 kpc
but the top and bottom boundaries at Lz = 10 kpc (e.g. de Avillez &
Breitschwerdt 2007, and references therein). However, the horizon-
tal size of the domain L⊥ in a taller box may need to be increased to
keep its aspect ratio of order unity, so as to avoid introducing other
unphysical behaviour at |z| � L⊥.

This constraint arises mainly from the periodic (or sliding peri-
odic) boundary conditions in the horizontal planes as they preclude
divergent flows at scales comparable to L⊥. However, the scale of
the gas flow unavoidably increases with |z| because of the density
stratification. The steady-state continuity equation for a gas strati-
fied in z, ∇ · u = −uz∂ ln ρ/∂z, leads to the following estimate of
the horizontal perturbation velocity arising due to the stratification:

u⊥ � uz

l⊥
H

, (8)

where H is the density scale height, ∂ ln ρ/∂z � −H−1, and l⊥ is the
horizontal scale of the flow, introduced via |∂ux/∂x|, |∂uy/∂y| �

Table 3. Selected parameters of the numerical models explored in this paper, named in column (1). Columns (2) and (3) give input parameters: numerical
resolution � and initial mid-plane gas number density n0. The remaining columns give output parameters: (4) time span over which the models have been
in steady state [in the units of τ = Lx/u0, rms, the typical horizontal crossing time based on the root-mean-square (rms) random speed u0 given in column
(9) and Lx ≈ 1 kpc]; (5) average kinematic viscosity 〈ν〉; (6) average sound speed 〈cs〉; (7) and (8) average Reynolds numbers defined at the grid spacing,
�, and based on the correlation scale of the random flow, l0 � 100 pc; (9) and (10) rms perturbation velocity urms and rms random velocity u0, rms; (11)
thermal energy density eth; (12) kinetic energy density ekin; and (13) volume fractions fV of cold (C), warm (W) and hot (H) gas at |z| ≤ 200 pc.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Model � n0 �t 〈ν〉 〈cs〉 〈Re� 〉 〈Re〉 urms u0, rms eth ekin fV, C:W:H
(pc) (cm−3) (τ ) (km kpc s−1) ( km s−1) ( km s−1) ( km s−1) (ESN kpc−3) (ESN kpc−3) (per cent)

WSWa 4 1.8 3.9 0.44 108 0.88 22 76 26 30 13 2 : 60 : 38
WSWah 2 1.8 0.5 0.77 186 0.85 43 103 34 19 10 3 : 51 : 46
RBN 4 2.1 2.7 0.24 58 1.18 30 37 18 25 9 3 : 82 : 15
WSWb 4 2.1 4.0 0.27 65 0.97 24 45 20 29 13 3 : 70 : 27
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u⊥/l⊥. Here we have neglected the vertical variation of uz, so that
∇ · u � ∂ux/∂x + ∂uy/∂y: this is justified for the hot and warm
gas, since their vertical velocities vary weakly with z at |z| � 0.3 kpc
(see Fig. 12). Assuming for the sake of simplicity that u⊥ is a
constant, in equation (8), where l⊥0 is the horizontal correlation
length of u⊥ at z = 0, we obtain the following estimate of the
horizontal correlation length at |z| = Lz, the top of the domain:

l⊥
∣∣|z|=Lz � l0 + u⊥t � l0(1 + Lz/H ),

where the time available for the expansion is taken as t = Lz/uz and
l0 is the horizontal correlation length of u⊥ at z = 0. We find l0 �
0.1 kpc (Table 5) and H � 0.5 kpc (Fig. 19), so that the correlation
scale of the velocity perturbation at the top and bottom boundaries
of our domain, Lz ≈ 1 kpc, is as follows

l⊥||z|=Lz � 3l0 � 0.3 kpc.

Indeed, we find that the correlation scale of the random flow in-
creases to 200–300 pc at z = 0.8 kpc (Table 5), so that the diameter
of the correlation cell, 400–600 pc, becomes comparable to the
horizontal size of the domain, L⊥ = 1 kpc. At larger heights, the
periodic boundary conditions would suppress the horizontal flows,
so that the continuity equation could only be satisfied via an un-
physical increase in the vertical velocity with |z|. In addition, the
size of SN remnants also increases with |z| as the ambient pressure
decreases. Thus, the gas velocity field (and other results) obtained
in a model with periodic boundary conditions in x and y becomes
unreliable at heights significantly exceeding the horizontal size of
the computational domain.

The lack of a feedback of the halo on the gas dynamics in the
disc can, potentially, affect our results. However, we believe that
this is not a serious problem and, anyway, it would not necessarily
be resolved by using a taller box of a horizontal size of only 1–2 kpc.
The gas flow from the halo is expected to be in the form of relatively
cool, dense clouds, formed at large heights via thermal instability or
accreted from the intergalactic space (e.g. Wakker & van Woerden
1997; Putman, Peek & Joung 2012). A strong direct (as opposed
to a long-term) effect of this gas on the multiphase gas structure in
the disc is questionable, as it provides just a fraction of the disc’s
star formation rate, 0.1–0.2 versus 0.5–5 M	 yr−1 (Putman et al.
2012). Anyway, a taller computational domain would not help to
include the accreted intergalactic gas in simulations of this type. In a
galactic fountain, gas returns to the disc at a galactocentric distance
at least 3 kpc away from where it starts (Bregman 1980), and this
could not be accounted for in models with tall computational boxes
that are only 1–2 kpc big horizontally.

In light of these concerns, and since it is not yet possible to
expand our domain significantly in all three dimensions, we prefer
to restrict ourselves to a box of height Lz ≈ 1 kpc, thus retaining an
aspect ratio of order unity. This choice of a short box requires great
care in the choice of vertical boundary conditions (which might
also introduce unphysical behaviour). We discuss our boundary
conditions in detail in Appendix C, but briefly note here that we
use modified open boundary conditions on the velocity at z = ±Lz.
These conditions allow for both inflow and outflow, and so are to
some extent capable of simulating gas exchange between the disc
and the halo, driven by processes within the disc. More specifically,
matter and energy are free to flow out of and into the computational
domain across the top and bottom surfaces if the internal dynamics
so require. (An inflow occurs when pressure beneath the surface is
lower than at the surface or in the ghost zones).

2.4.2 Numerical resolution

For our standard resolution (numerical grid spacing) �x = �y =
�z =�= 4 pc, we use a grid of 256 × 256 × 560 (excluding ‘ghost’
boundary zones). We apply a sixth-order finite difference scheme for
spatial vector operations and a third-order Runge–Kutta scheme for
time stepping. We also investigate one model at doubled resolution,
� = 2 pc, labelled WSWah in Table 3; the starting state for this
model is obtained by remapping a snapshot from the standard-
resolution model WSWa at t = 600 Myr (when the system has
settled to a statistical steady state) on to a grid 512 × 512 × 1120
in size.

Given the statistically homogeneous structure of the ISM in
the horizontal directions at the scales of interest (neglecting arm–
interarm variations), we apply periodic boundary conditions in the
azimuthal (y) direction. Differential rotation is modelled using the
shearing-sheet approximation with sliding periodic boundary con-
ditions (Wisdom & Tremaine 1988) in x, the local analogue of
cylindrical radius. We apply slightly modified open vertical bound-
ary conditions, described in some detail in Appendix C, to allow
for the free movement of gas to the halo without preventing inward
flows at the upper and lower boundaries. In the calculations reported
here, outflow exceeds inflow on average, and there is a net loss of
mass from our domain, of the order of 15 per cent of the total mass
per Gyr. We do not believe that this slow loss of mass significantly
affects our results.

2.4.3 Transport coefficients

The spatial and temporal resolutions attainable impose lower limits
on the kinematic viscosity ν and thermal diffusivity χ , which are,
unavoidably, much higher than any realistic values. These limits
result from the Courant–Friedrichs–Lewy (CFL) condition which
requires that the numerical time step must be shorter than the cross-
ing time over the mesh length � for each of the transport processes
involved. It is desirable to avoid unnecessarily high viscosity and
thermal diffusivity. The cold and warm phases have relatively small
perturbation gas speeds (of the order of 10 km s−1), so we prescribe
ν and χ to be proportional to the local speed of sound, ν = ν1cs/c1

and χ = χ1cs/c1. We ensure that the maximum Reynolds and Péclet
numbers based on the mesh separation � are always close to unity
throughout the computational domain (see Appendix C): ν1 ≈ 4.2 ×
10−3 km s−1 kpc, χ1 ≈ 4.1 × 10−4 km s−1 kpc and c1 = 1 km s−1.
This gives, for example, χ = 0.019 km s−1 kpc at T = 105 K and
0.6 km s−1 kpc at T = 108 K. Thus, transport coefficients are larger
in the hot gas where typical temperature and perturbation velocity
are of the order of 106 K and 100 km s−1, respectively. In all models,
χ � 0.1ν, i.e. the Prandtl number Pr � 10. The corresponding fluid
Reynolds and Péclet numbers, based on the correlation scale of the
flow, fall in the range 20–40 in the models presented here.

Numerical handling of the strong shocks widespread in the ISM
needs special care. To ensure that they are always resolved, we
include shock-capturing diffusion of heat and momentum, with the
diffusivities ζ χ and ζ ν , respectively, defined as

ζχ =
{

cχ�x2 max5 |∇ · u| if ∇ · u < 0,

0 otherwise
(9)

(and similarly for ζ ν , but with a coefficient cν), where max5 denotes
the maximum value occurring at any of the five nearest mesh points
(in each coordinate). Thus, the shock-capturing diffusivities are pro-
portional to the maximum divergence of the velocity in the local

Downloaded from https://academic.oup.com/mnras/article-abstract/432/2/1396/1027020/The-supernova-regulated-ISM-I-The-multiphase
by University of Sheffield user
on 18 October 2017



1402 F. A. Gent et al.

neighbourhood and are confined to the regions of convergent flow.
Here, cχ = cν is a dimensionless coefficient which we have adjusted
empirically to 10. This prescription spreads a shock front over suf-
ficiently many (usually, four) grid points. Detailed test simulations
of an isolated expanding SN remnant in Appendix B confirm that
this prescription produces quite accurate results, particularly those
which are relevant to our goals: most importantly, the conversion of
thermal to kinetic energy in SN remnants.

With a cooling function susceptible to thermal instability, thermal
diffusivity χ has to be large enough as to allow us to resolve its most
unstable normal modes:

χ ≥ 1 − β

γ τ cool

(
�

2π

)2

,

where β is the cooling function exponent in the thermally unstable
range, τ cool is the radiative cooling time and γ = 5/3 is the adiabatic
index. Fig. 4 makes it evident that, in our models, τ cool typically
exceeds 1 Myr in the thermally unstable regime. Further details
can be found in Appendix D where we demonstrate that, with the
parameters chosen in our models, thermal instability is well resolved
by the numerical grid.

The shock-capturing diffusion broadens the shocks and increases
the spatial spread of density around them. An undesirable effect of
this is that the gas inside SN remnants cools faster than it should,
thus reducing the maximum temperature and affecting the abun-
dance of the hot phase. Having considered various approaches while
modelling individual SN remnants in Appendix B, we adopt a pre-
scription which is numerically stable, reduces gas cooling within
SN remnants and confines extreme cooling to the shock fronts.
Specifically, we multiply the term (� − ρ�)T−1 in equation (3) by

ξ = exp(−C|∇ζχ |2), (10)

where ζ χ is the shock diffusivity defined in equation (9). Thus, ξ ≈
1 almost anywhere in the domain but reduces towards zero in strong
shocks, where |∇ζ χ |2 is large. The value of the additional empirical
parameter, C ≈ 0.01, was chosen to ensure numerical stability with
minimum change to the basic physics. We have verified that, acting
together with other artificial diffusion terms, this does not prevent
accurate modelling of individual SN remnants (see Appendix B).

2.4.4 Initial conditions

We adopt an initial density distribution corresponding to isothermal
hydrostatic equilibrium in the gravity field of equation (7):

ρ(z) = ρ0 exp

[
a1

(
z1 −

√
z2

1 + z2 − a2

2a1

z2

z2

)]
. (11)

Since our present model does not contain magnetic fields or cosmic
rays, which provide roughly half of the total pressure in the ISM (the
remainder coming from thermal and turbulent pressures), we expect
the gas scale height to be smaller than that observed. Given the
limited spatial resolution of our simulations, the correspondingly
weakened thermal instability and neglected self-gravity, it is not
quite clear in advance whether the gas density used in our model
should include molecular hydrogen or, alternatively, include only
diffuse gas.

We used ρ0 = 3.5 × 10−24 g cm−3 for models RBN and WSWb,
corresponding to the gas number density n0 = 2.1 cm−3 at the mid-
plane. This is the total interstellar gas density, including the part
confined to molecular clouds. These models, discussed in Section
8.2, exhibit unrealistically strong cooling. Therefore, the subsequent
models WSWa and WSWah have a smaller amount of matter in the

computational domain (a 17 per cent reduction), with ρ0 = 3.0 ×
10−24 g cm−3, or n0 = 1.8 cm−3, accounting only for the atomic gas
(see also Joung & Mac Low 2006).

As soon as the simulation starts, density-dependent heating and
cooling affect the gas temperature, so it is no longer isothermal,
and ρ(z) given in equation (11) is not a hydrostatic distribution. To
avoid unnecessarily long initial transients, we impose a non-uniform
initial temperature distribution so as to be near static equilibrium:

T (z) = T0

z1

(√
z2

1 + z2 + a2

2a1

z2

z2

)
, (12)

where T0 is obtained from

�(0) = ρ0�(T0) ≈ 0.0147 erg g−1 s−1.

The value of T0 therefore depends on ρ0 and the choice of the
cooling function.

2.5 Models explored

We considered four numerical models, with relevant input parame-
ters listed in Table 3, along with some output parameters describing
the results. The models are labelled with prefix RBN or WSW ac-
cording to the cooling function used. Angular brackets in Table 3
denote averages over the whole volume, taken from 11 snapshots
(10 for WSWah) within the statistical steady state. The time span,
�t, is given in column 4, normalized by τ = Lx/u0,rms, where u0,rms

is the root-mean-square random velocity and Lx ≈ 1 kpc is the hori-
zontal size of the computational domain (e.g. τ ≈ 38 Myr in model
WSWa). As ν is set proportional to the speed of sound cs, it is
variable and the table presents its average value 〈ν〉 = ν1〈cs〉/c1,
where ν1 = 0.004 km s−1 kpc and c1 = 1 km s−1 in all models. The
numerical resolution is adequate when the mesh Reynolds number,
Re� = u �/ν, does not exceed a certain value (typically between
1 and 10) anywhere in the domain, where � is the grid spacing
(4 pc for all models, except for model WSWah, where � = 2 pc).
Therefore, we ensure that umax �/ν < 5, where umax is the max-
imum perturbation velocity at any time and any grid point. The
indicative values in Table 3 are averages of the mesh Reynolds
number, 〈Re�〉 = 〈u0/cs〉�c1/ν1, and the Reynolds number, 〈Re〉 =
〈u0/cs〉l0c1/ν1. The Reynolds number based on the correlation scale
of the random flow, l0 � 100 pc, is thus 25 times larger than Re�

in all models explored here except for model WSWah, where the
difference is a factor of 50.

The quantities shown in Table 3 have been calculated as follows.
In column 9, the rms perturbation velocity urms is derived from the
total perturbation velocity field u, which excludes only the overall
galactic rotation U . In column 10, the rms random velocity u0,rms is
obtained with the mean flows 〈u〉�, defined in equation (6), deducted
from u. In columns 11 and 12, eth = 〈ρe〉 and ekin = 〈 1

2 ρu2〉 are the
average thermal and kinetic energy densities, respectively; the latter
includes the perturbation velocity u and both are normalized to the
SN energy ESN. The values of the volume fractions of the cold,
warm and hot phases (defined in Section 4) near the mid-plane are
given in column 13.

The reference model, WSWa, uses the WSW cooling function but
with lower gas density than WSWb, to exclude molecular hydrogen
(see Section 3). Model WSWah, which differs from WSWa only in
its spatial resolution, is designed to clarify the effects of resolution
on the results. We also analyse two models which differ only in the
cooling function, RBN and WSWb, to assess the sensitivity of the
results to this choice.
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3 TH E R E F E R E N C E M O D E L

Model WSWa is taken as a reference model; it has rotation corre-
sponding to a flat rotation curve with the solar angular velocity and
gas density reduced to exclude that part which would have entered
molecular clouds. Results for this model were obtained by the con-
tinuation of the model WSWb, in which the mass from molecular
hydrogen had been included: at t ≈ 400 Myr, the mass of gas in
the domain was changed to that of model WSWa by reducing gas
density by 15 per cent at every mesh point. The effect of this change
of the total mass is discussed in Section 8.2.

Fig. 2 shows typical temperature and density distributions in this
model at t = 551 Myr (i.e. 151 Myr after the restart from model

Figure 2. A 3D rendering of (a) temperature T and (b) density n in model
WSWa at t = 551 Myr. Cold, dense gas is mostly restricted to near the mid-
plane, whereas hot gas extends towards the boundaries. To aid visualization
of 3D structure, warm gas (103 < T < 106 K) in panel (a) and diffuse
(n < 10−2 cm−3) in panel (b) have high transparency. Thus, the extreme
temperatures or dense structures are emphasized.

Figure 3. Horizontal (xy) averages of (a) the vertical velocity, (b) temper-
ature and (c) gas density as functions of time for model WSWa (model
WSWb up to 0.4 Gyr).

WSWb with reduced density). SN remnants appear as irregularly
shaped regions of hot, dilute gas. A hot bubble breaking through
the cold gas layer extends from the mid-plane towards the lower
boundary, visible as a vertically stretched region in the temperature
snapshot near the (x, z)-face. Another, smaller one can be seen
below the mid-plane near the (y, z)-face. Cold, dense structures are
restricted to the mid-plane and occupy a small part of the volume.
Very hot and cold regions exist in close proximity.

Horizontally averaged quantities are shown in Fig. 3 as functions
of z and time for model WSWb at t < 400 Myr, and WSWa at
later times, showing the effect of reducing the total mass of gas at
the transition time. Average quantities may have limited physical
significance because the multiphase gas has an extremely wide
range of velocities, temperatures and densities. For example, panel
(b) shows that the average temperature near the mid-plane, |z| �
0.35 pc, is, perhaps unexpectedly, generally higher than that at the
larger heights. This is due to Type II SN remnants, which contain
very hot gas with T � 108 K and are concentrated near the mid-
plane; even though their total volume is small, they significantly
affect the average temperature.

Nevertheless, these help to illustrate some global properties of
the multiphase structure. Before the system settles into a quasi-
stationary state at about t = 250 Myr, it undergoes a few large-scale
transient oscillations involving quasi-periodic vertical motions. The
period of approximately 100 Myris consistent with the breathing
modes identified by Walters & Cox (2001) and attributed to oscilla-
tions in the gravity field. Gas falling from high altitude overshoots
the mid-plane and thus oscillates around it. Turbulent and molecular
viscosities dampen these modes. At later times, a systematic outflow
develops with an average speed of about 100 km s−1; we note that
the vertical velocity increases very rapidly near the mid-plane and
varies much less at larger heights. The result of the reduction of gas
density at t ≈ 400 Myr is clearly visible, as it leads to higher mean
temperatures and a stronger and more regular outflow, together with
a less pronounced and more disturbed layer of cold gas.

4 T H E M U LT I P H A S E S T RU C T U R E

All models discussed here have a well-developed multiphase struc-
ture apparently similar to that observed in the ISM. Since the
ISM phases are not genuine, thermodynamically distinct phases
(e.g. Vázquez-Semadeni 2012), their definition is tentative, with
the typical temperatures of the cold, warm and hot phases usually
adopted as T � 102, 104–105 and 106 K, respectively. However, the
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Figure 4. The joint probability density of the gas number density and
temperature, shown for the whole computational domain using 11 snapshots
of model WSWa in a statistically steady state for 634 ≤ t ≤ 644 Myr.
Contours of constant cooling times τ cool = 105, 106 and 108 yr are shown
to clarify the importance of radiative cooling in the model.

borderline temperatures (and even the number of distinct phases)
can be model dependent, and they are preferably determined by
considering the results, rather than a priori. Inspection of the proba-
bility distribution of gas number density and temperature, displayed
in Fig. 4, reveals three distinct concentrations at (T[ K], n[cm−3]) =
(102, 10), (104, 10−1) and (106, 10−3). Thus, we can confirm that
the gas structure in this model can be reasonably well described
in terms of three distinct phases. Moreover, we can identify the
boundaries between them as the temperatures corresponding to the
minima of the joint probability distribution at about 500 and 5 ×
105 K.

The curves of constant cooling time, also shown in Fig. 4, suggest
that the distinction between the warm and hot gas is due to the
maximum of the cooling rate near T = 105 K (see also Fig. 1),
whereas the cold, dense gas, mainly formed by compression (see
below), closely follows the curve τ cool ≈ 108 yr.

In Fig. 5, we show the probability distributions of gas number
density, random velocity, Mach number, and thermal and total pres-
sures within each phase in model WSWa. The overlap in the gas
density distributions (Fig. 5a) is small (at the probability densities
of the order of P = 0.1). The ratios of the probability densities
near the maximum for each phase (mode) are about 100; the modal
densities, n ≈ 10−3, 10−1 and 10 cm−3, thus typify the hot, warm
and cold gas, respectively.

The velocity probability distributions in Fig. 5(b) reveal a clear
connection between the magnitude of the random velocity of gas
and its temperature: the rms velocity in each phase scales with its
speed of sound. This is confirmed by the Mach number distribu-
tions in Fig. 5(c): both warm and hot phases are transonic with
respect to their sound speeds. The cold gas is mostly supersonic,
having speeds typically below 10 km s−1. The double peak in the
probability density for the cold gas velocity (Fig. 5b) (and the corre-
sponding extension of the Mach number distribution to M � 1) is
a robust feature, not dependent on the temperature boundary of the
cold gas. This plausibly includes ballistic gas motion in the shells
of SN remnants, as well as bulk motions of cold clouds at subsonic
or transonic speed with respect to the ambient warm gas.

Probability densities of thermal pressure, shown in Fig. 5(d),
are notable for the relatively narrow spread: one order of magni-
tude, compared to a spread of six orders of magnitude in gas den-
sity. Moreover, the three phases have overlapping thermal pressure
distributions, suggesting that the system is in a statistical thermal
pressure balance. However, thermal pressure is not the only part

Figure 5. The probability distributions of (a) density, (b) random velocity,
u0 (c) Mach number of random motions u0 (defined with respect to the
local speed of sound), (d) thermal pressure and (e) total pressure, for each
phase of model WSWa, using 11 snapshots spanning t = 634–644 Myr and
presented for each phase: cold T < 500 K (black solid line), warm 500 ≤
T < 5 × 105 K (blue dashed) and hot T ≥ 5 × 105 K (red dash–dotted).

of the total pressure in the gas, which here includes the turbulent
pressure 1

3 ρ|u − 〈u〉�|2, where 〈u〉�, defined in equation (6), is the
mean fluctuation velocity. As shown in Fig. 13, total kinetic energy
within the computational domain, associated with random flows,
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Figure 6. The probability distributions of gas density in model WSWa
for the cold (black solid), warm and hot gas. The warm/hot gas has been
divided into regions |z| ≤ 200 pc (purple/red dashed/triple dot–dashed) and
|z| > 200 pc (light blue/orange dash–dotted/long-dashed). The best-fitting
lognormal distributions are shown as dotted in matching colour.

is about a third of the thermal pressure. Correspondingly, the total
pressure distributions in Fig. 5(e) peak at about 4 × 10−13 dyn cm−2

(or erg cm−3), for both the warm and hot gas. The cold gas ap-
pears somewhat overpressured, with the modal pressure at 2 ×
10−12 dyn cm−2, and with some regions under pressure as high as
10−11 dyn cm−2. It becomes apparent (see the discussion of Fig. 7,
below) that this is due to both compression by transonic random
flows and the vertical pressure gradient. All the cold gas occupies
the higher pressure mid-plane, while the warm and hot gas distri-
butions mainly include lower pressure regions away from the disc.

Cold, dense clouds are formed through radiative cooling facili-
tated by compression, which has more importance than in the other,
hotter phases. The compression is, however, truncated at the grid
scale of 4 pc, preventing the emergence of higher densities in excess
of about 102 cm−3.

The probability distributions of gas density in Fig. 5(a) can be
reasonably approximated by the lognormal distributions of the form

P(n) = �(μn, sn) ≡ 1

nsn

√
2π

exp

(
− (ln n − μn)2

2s2
n

)
. (13)

The quality of the fits is illustrated in Fig. 6, using 500 data bins in
the range 10−4.8 < n < 102.5 cm−3; the best-fitting parameters are
given in Table 4. Note that, in making these fits, we have subdivided
the hot and warm gas into that near the mid-plane (|z| ≤ 200 pc) and
that at greater heights (|z| > 200 pc); the former is located in the SN
active region, strongly shocked with a broad range of density and
pressure fluctuations, whereas the latter is predominantly the more
diffuse and homogeneous gas in the halo. As can be seen in Fig. 6,
the shape of the probability distribution of the warm gas (rather than
the position of its maximum) does not vary much with |z|. Table 4
thus shows the parameters for the warm gas in the whole volume.
The lognormal fits satisfy the Kolmogorov–Smirnov (KS) test at or
above the 95 per cent level of significance. For the hot gas fit, the

Table 4. Parameters of the lognormal fits to the dis-
tribution of gas number density n in various phases,
where μn and sn are defined in equation (13).

Phase μn (ln cm−3) sn (ln cm−3)

Cold 2.02 0.92
Warm (|z| ≤ 200 pc) − 1.64 1.47
Warm (|z| > 200 pc) − 3.29 1.47

Warm (total) − 3.03 1.47
Hot (|z| ≤ 200 pc) − 5.78 1.20
Hot (|z| > 200 pc) − 6.96 0.77

Figure 7. Probability distributions for (a) thermal pressure p and (b) total
pressure P in model WSWa, for different gas phases: cold (black solid),
warm (blue dashed) and hot (red triple dot–dashed) at |z| ≤ 200 pc; warm
(light blue dotted) and hot (orange dotted) at |z| > 200 pc.

KS test fails for the total volume. So only the fits for the hot gas
split by height are included in Table 4.

The probability densities of thermal and total pressures, displayed
in Fig. 7, show that although the thermal pressure of the cold gas near
the mid-plane is lower than in the other phases, the total pressures
are much closer to balance. The broad probability distribution of the
cold gas density is consistent with multiple compressions in shocks.
The hot and warm gas pressure distributions are also approximately
lognormal. The gas at |z| > 200 pc (dotted lines) appears to be in
both thermal and total pressure balance.

In summary, we conclude that the system is close to the state of
statistical pressure equilibrium: the total pressure has similar values
and similar probability distributions in each phase. Joung et al.
(2009) also conclude from their simulations that the gas is in both
thermal and total pressure balance. This could be expected, since the
only significant deviation from the statistical dynamic equilibrium
of the system is the vertical outflow of the hot gas and entrained
warm clouds (see Section 7).

5 TH E F I L L I N G FAC TO R A N D F R AC T I O NA L
VO L U M E

5.1 Filling factors: basic ideas

The fractional volume of the ISM occupied by the phase i is given
by

fV ,i = Vi

V
, (14)

where Vi is the volume occupied by gas in the temperature range
defining phase i and V is the total volume. How the gas is distributed
within a particular phase is described by the phase filling factor

φi = ni
2

n2
i

, (15)

where the overbar denotes a phase average, i.e. an average only
taken over the volume occupied by the phase i. φi describes whether
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the gas density of a phase is homogeneous (φi = 1) or clumpy (φi <

1). Both of these quantities are clearly important parameters of the
ISM, allowing one to characterize, as a function of position, both
the relative distribution of the phases and their internal structure. As
discussed below, the phase filling factor is also directly related to
the idea of an ensemble average, an important concept in the theory
of random functions and so φi provides a useful connection between
turbulence theory and the astrophysics of the ISM. Both fV, i and φi

are easy to calculate in a simulated ISM by simply counting mesh
points.

In the real ISM, however, neither fV nor φi can be directly mea-
sured. Instead, the volume filling factor can be derived (Reynolds
1977; Kulkarni & Heiles 1988; Reynolds 1991),

i = 〈ni〉2

〈n2
i 〉

, (16)

for a given phase i, where the angular brackets denote a volume
average, i.e. taken over the total volume.2

Most work in this area to date has concentrated on the diffuse
ionized gas (DIG; or warm ionized medium) since the emission
measure of the free electrons EM ∝ n2

e and the dispersion mea-
sure of pulsars DM ∝ ne, allowing  to be estimated along many
lines of sight (e.g. Reynolds 1977, 1991; Kulkarni & Heiles 1988;
Berkhuijsen, Mitra & Mueller 2006; Gaensler et al. 2008; Hill et al.
2008). It is useful to generalize the tools derived to interpret the
properties of a single ISM phase for the case of the multiphase ISM,
as this can help to avoid potential pitfalls when combining data from
different sources with similar-sounding names (filling factor, filling
fraction, fractional volume, etc.) but subtly different meanings. In
particular, only under the very specific conditions explained below,
do the volume filling factors i of the different phases of the ISM
sum to unity.

In terms of the volume Vi occupied by phase i,

ni = 1

Vi

∫
Vi

ni dV , (17)

whilst

〈ni〉 = 1

V

∫
V

ni dV = 1

V

∫
Vi

ni dV , (18)

the final equality holding because ni = 0 outside the volume Vi by
definition. Since the two types of averages differ only in the volume
over which they are averaged, they are related by the fractional
volume

〈ni〉 = Vi

V
ni = fV ,ini, (19)

and

〈n2
i 〉 = Vi

V
n2

i = fV ,in
2
i . (20)

Consequently, the volume filling factor n, i and the phase filling
factor φn, i are similarly related,

i = 〈ni〉2

〈n2
i 〉

= fV ,i

ni
2

n2
i

= fV ,iφi . (21)

Thus, the parameters of most interest, fV, i and φn, i, character-
izing the fractional volume and the degree of homogeneity of a

2 As with the density filling factors introduced here, filling factors of tem-
perature and other variables can be defined similarly to equations (15) and

(16), for example φT ,i = Ti
2
/T 2

i , etc.

phase, respectively, are related to the observable quantity n, i by
equation (21). This relation is only straightforward when the ISM
phase can be assumed to be homogeneous or if one has additional
statistical knowledge, such as the probability density function, of
the phase. In the next subsection, we use two simple examples to
illustrate how the ideas developed here can be applied to the real
ISM; we then use them to develop a new interpretation of exist-
ing observational data and finally discuss how the properties of our
simulated ISM compare to observations. But first a brief note about
different methods of averaging is necessary.

5.1.1 Averaging methods for observations and theory

An important feature of the definition of the volume filling factor
given by equation (16) is that the averaging involved is inconsistent
with that used in theory of random functions. In the latter, the
calculation of volume (or time) averages is usually complicated or
impossible and, instead, ensemble averages (i.e. averages over the
relevant probability distribution functions) are used; the ergodicity
of the random functions is relied upon to ensure that the two averages
are identical to each other (Tennekes & Lumley 1972; section 3.3
in Monin & Yaglom 2007). But the volume filling factors i are not
compatible with such a comparison, as they are based on averaging
over the total volume, despite the fact that each phase occupies only
a fraction of it. In contrast, the phase averaging used to derive φi

is performed only over the volume of each phase, and so should
correspond better to results from the theory of random functions.

5.2 Filling factors: applications

5.2.1 Assumption of homogeneous phases

The simplest way to interpret an observation of the volume filling
factor i is to assume that each ISM phase has a constant density.
Consider equations (14)–(16) for an idealized two-phase system,
where each phase is homogeneous. (These arguments can easily be
generalized to an arbitrary number of homogeneous phases.) For
example, a set of discrete clouds of one phase, of constant density
and temperature, embedded within the other phase, with different
(but also constant) density and temperature. Let one phase have
(constant) gas number density N1 and occupy volume V1, and the
other N2 and V2, respectively. The total volume of the system is
V = V1 + V2.

The volume-averaged density of each phase, as required for equa-
tion (16), is given by

〈ni〉 = NiVi

V
= fV ,iNi, (22)

where i = 1, 2. Similarly, the volume average of the squared density
is

〈n2
i 〉 = N2

i Vi

V
= fV ,iN

2
i . (23)

The fractional volume of each phase can then be written as

fV ,i = 〈ni〉2

〈n2
i 〉

= 〈ni〉
Ni

= i, (24)

with fV, 1 + fV, 2 = 1 and 1 + 2 = 1. The volume-averaged
quantities satisfy 〈n〉 = 〈n1〉 + 〈n2〉 = fV, 1N1 + fV, 2N2 and 〈n2〉 =
〈n2

1〉 + 〈n2
2〉 = fV ,1N

2
1 + fV ,2N

2
2 , with the density variance σ 2 ≡

〈n2〉 − 〈n〉2 = fV, 1fV, 2(N1 − N2)2.
In contrast, the phase-averaged density of each phase, used to

calculate the phase filling factor, equation (15), is simply ni = Ni ,
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and the phase average of the squared density is n2
i = N2

i , so that the
phase filling factor is φi = 1, as must be the case for a homogeneous
phase.

Thus, for homogeneous phases, the volume filling factor and the
fractional volume of each phase are identical to each other, i =
fV, i, and both sum to unity when considering all phases; in contrast,
the phase-averaged filling factor is unity for each phase, φi = 1. If a
given phase occupies the whole volume (i.e. we have a single-phase
medium), then all three quantities are simply unity: φi = i = fV, i =
1.

Whilst an assumption of homogeneous phases may be justified
for some ISM phases, perhaps in specific regions of the galactic
disc, in the case of the simulated ISM discussed in this paper such
an assumption would lead to significant underestimates of fV, i for
all phases, by a factor of 2 for the cold and hot gas and by an order
of magnitude for the warm gas.

5.2.2 Assumption of lognormal phases

For the more realistic case of an inhomogeneous ISM, where each
phase consists of gas with a range of densities, the interpretation of
i requires additional knowledge about the statistical properties of
a phase.

For electrons in the DIG, Reynolds (1977) derived the correction
factor σ 2

c /n2
c , where nc is the average density of electron clouds and

σ 2
c the density variance within clouds, to allow for clumpiness in

the electron distribution when calculating the fraction of the total
path length occupied by the clouds. More generally, the probability
distribution function of the gas in a phase allows φi to be calcu-
lated directly, as we now illustrate for the case of the lognormal
probability density functions (PDFs) identified in Section 4.

For a lognormal distribution P(ni) ∼ �(μi, si), equation (13),
the mean and mean-square densities are given by the following
phase (‘ensemble’) averages:

ni = eμi+s2
i /2, σ 2

i = (ni − ni)2 = ni
2
(

es2
i − 1

)
, (25)

where σ 2
i is the density variance around the mean ni , so that

φn,i = ni
2

n2
i

= ni
2

σ 2
i + ni

2 = exp(−s2
i ). (26)

So the phase filling factor φn, i = 1 only for a homogeneous density
distribution, σ i = 0 (or equivalently, si = 0). This makes it clear
that this filling factor, defined in terms of the phase average, is quite
distinct from the fractional volume, fV, i, but rather quantifies the
degree of homogeneity of the gas distribution within a given phase.
Both describe distinct characteristics of the multiphase ISM, and, if
properly interpreted, can yield rich information about the structure
of the ISM.

In the case of the simulated ISM, using the lognormal description
of the phases given in Table 4 gives reasonable agreement between
the actual and estimated fV, i and φi for all phases, with the biggest
discrepancy being an underestimate of fV, warm ≈ 0.4 against a true
value of fV, warm ≈ 0.6.

5.2.3 Application to observations

Observations can be used to estimate the volume-averaged filling
factor i, defined in equation (16), for a given ISM phase. On its
own, this quantity is of limited value in understanding how the
phases of the ISM are distributed: of more use are the fractional

volume occupied by the phase fV, i, defined in equation (14), and
its degree of homogeneity which is quantified by φi, defined by
equation (15). Knowing i and φi, fV, i follows via equation (21):

fV ,i = n,i

φn,i

. (27)

This formula is exact, but its applicability in practice is limited if φi

is unknown. However, φi can be deduced from the probability dis-
tribution of ni: for example if the density probability distribution of
the phase can be approximated by the lognormal, as is expected
for a turbulent compressible gas (Vázquez-Semadeni & Garcia
2001; Elmegreen & Scalo 2004), then φi can be estimated from
equation (26).

To illustrate how these quantities may be related, let us con-
sider some observations reported for the DIG (the general approach
suggested can be applied to any observable or computed quan-
tity). Berkhuijsen et al. (2006) and Berkhuijsen & Müller (2008)
estimated DIG for the DIG in the Milky Way using dispersion mea-
sures of pulsars and emission measure maps. In particular, Berkhui-
jsen et al. (2006) obtain DIG � 0.24 towards |z| = 1 kpc, and
Berkhuijsen & Müller (2008) find the smaller value DIG � 0.08
for a selection of pulsars that are closer to the Sun than the sam-
ple of Berkhuijsen et al. (2006). On the other hand, Berkhuijsen &
Fletcher (2008, 2012) used the same data for pulsars with known
distances to derive PDFs of the distribution of average DIG cloud
densities which are well described by a lognormal distribution;
the fitted lognormals have sDIG � 0.32 (table 1 in Berkhuijsen &
Fletcher 2012). Using equations (26) and (27), this implies that the
fractional volume of DIG with allowance for its inhomogeneity is
about

fV ,DIG � 0.1–0.3.

In other words, the combination of DIG and sDIG from these results
implies that the DIG is approximately homogeneous. This value of
fV ,DIG is in good agreement with the earlier estimates of Reynolds
(1977, 1991) who obtained fV ,DIG ≥ 0.1–0.2 and close to that of
Hill et al. (2008) who obtained fV ,DIG ≈ 0.25 for a vertically strati-
fied ISM, by comparing observed emission and dispersion measures
to simulations of isothermal MHD turbulence.

Volume density PDFs derived from observations are still rare.
However, PDFs of the column density (and similar observables
such as emission measure and dispersion measure) are more easily
derived. The applicability of the method outlined in this section, of
deriving the fractional volume occupied by different ISM phases
from the (observable) volume filling factor and the PDF of the
density distribution, would improve as the relation between the
statistical parameters of volume and column density distributions
becomes better understood.

5.2.4 Simulation results

The filling factors and fractional volumes from equations (14)–
(16) have been computed for the phases identified in Section 4 for
the reference model WSWa and presented in Fig. 8. Volumes are
considered as discrete horizontal slices. To isolate the z-dependence
we averaged over slices of single-cell thickness (4 pc thick).

The hot gas (Fig. 8c) accounts for about 70 per cent of the volume
at |z| � 1 kpc and about 40 per cent near the mid-plane. The local
maximum of the fractional volume of the hot gas at |z| � 200 pc
is due to the highest concentration of SN remnants there, filled
with the very hot gas. Regarding its contribution to integrated gas
parameters, it should perhaps be considered as a separate phase.
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Figure 8. Vertical profiles of (a) the phase-averaged density filling factors

φi = ni
2/n2

i of the gas phases identified in the text: cold (black solid line,
T < 500 K), warm (blue dashed, 5 × 102 ≤ T < 5 × 105 K) and hot (red
dash–dotted, T ≥ 5 × 105 K); (b) the volume-averaged density filling factors
i = 〈ni〉2/〈n2

i 〉, and (c) the fractional volumes fV, i with the same line style
for each phase. The various filling factors are defined and discussed in
Section 5. These results are from 21 snapshots in the interval 636 ≤ t ≤
646 Myr for model WSWa.

At |z| � 0.7 kpc, the warm gas accounts for over 50 per cent of the
volume. The cold gas occupies a negligible volume, even in the mid-
plane where it is concentrated. It is, however, quite homogeneous at
low |z| compared to the warm and hot phases, which only become
relatively homogeneous at |z| � 0.3 kpc (Fig. 8a).

6 T H E C O R R E L AT I O N S C A L E O F TH E
R A N D O M FL OW S

We have estimated the correlation length of the random velocity u at
a single time step of model WSWa, by calculating the second-order
structure functions D(l) of the velocity components ux, uy and uz,
where

D(l) = 〈[u(x + l) − u(x)]2〉, (28)

with x the position in the (x, y)-plane and l a horizontal offset. We
did not include offsets in the z-direction and aggregated the squared
differences by |l| only. Since the flow is expected to be statistically
homogeneous horizontally, the correlation length is expected to

Figure 9. The second-order structure functions calculated using
equation (28), for the layer −10 < z < 10 pc, of the velocity compo-
nents ux (black solid line), uy (blue dashed) and uz (red dash–dotted). The
offset l is confined to the (x, y)-plane only.

vary with z. A future paper will analyse in more detail the three-
dimensional properties of the random flows, including its anisotropy
and dependence on height. We measured D(l) for five different
heights, z = 0, 100, −100, 200 and 800 pc, averaging over six
adjacent slices in the (x, y)-plane at each position, corresponding
to a layer thickness of 20 pc. The averaging took advantage of the
periodic boundaries in x and y; for simplicity we chose a simulation
snapshot at a time for which the offset in the y-boundary, due to the
shearing boundary condition, was zero. The structure function for
the mid-plane (−10 < z < 10 pc) is shown in Fig. 9.

The correlation scale can be estimated from the form of the
structure function since velocities are uncorrelated if l exceeds the
correlation length l0, so that D becomes independent of l, D(l) ≈
2u2

rms for l � l0. Precisely which value of D(l) should be chosen to
estimate l0 in a finite domain is not always clear; for example, the
structure function of uy in Fig. 9 allows one to make a case for either
the value at which D(l) is maximum or the value at the greatest l.
Alternatively, and more conveniently, one can estimate l0 via the
autocorrelation function C(l), related to D(l) by

C(l) = 1 − D(l)

2u2
rms

. (29)

In terms of the autocorrelation function, the correlation scale l0 is
defined as

l0 =
∫ ∞

0
C(l) dl, (30)

and this provides a more robust method of deriving l0 in a finite
domain. Of course, the domain must be large enough to make C(l)
negligible at scales of the order of the domain size; this is a non-
trivial requirement, since even an exponentially weak tail can make
a finite contribution to l0. In our estimates, we are, of course, limited
to the range of C(l) within our computational domain, so that the
upper limit in the integral of equation (30) is equal to Lx = Ly, the
horizontal box size.

Fig. 10 shows C(l) for five different heights in the disc, where urms

was taken to correspond to the absolute maximum of the structure
function, u2

rms = 1
2 max(D), from equation (29) at each height.

The autocorrelation function of the vertical velocity varies with z

more strongly than, and differently from, the autocorrelation func-
tions of the horizontal velocity components; it broadens as |z| in-
creases, meaning that the vertical velocity is correlated over pro-
gressively greater horizontal distances. Already at |z| ≈ 200 pc, uz
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Figure 10. Autocorrelation functions for the velocity components ux (black
solid line), uy (blue dashed) and uz (red dash–dotted) for 20 pc thick layers
centred on four different heights, from top to bottom: −10 < z < 10, 90 <

z < 110, −110 < z < −90, 190 < z < 210 and 790 < z < 810 pc.

Table 5. The correlation scale l0 and rms velocity
urms at various distances from the mid-plane.

urms ( km s−1) l0 ( pc)

z ux uy uz ux uy uz

0 45 40 37 99 98 94
100 36 33 43 102 69 124

−100 39 50 46 95 87 171
200 27 20 63 119 105 186
800 51 21 107 320 158 277

is coherent across a significant horizontal cross-section of the do-
main, and at |z| ≈ 800 pc so is ux. An obvious explanation for this
behaviour is the expansion of the hot gas streaming away from the
mid-plane, which thus occupies a progressively larger part of the
volume as it flows towards the halo.

Table 5 shows the rms velocities derived from the structure func-
tions for each component of the velocity at each height, and the
correlation lengths obtained from the autocorrelation functions.
Note that these are obtained without separation into phases. The
uncertainties in urms due to the choices of local maxima in D(l)
are less than 2 km s−1. However, these can produce quite large sys-
tematic uncertainties in l0, as small changes in urms can lead to
C(l) becoming negative in some range of l (i.e. a weak anticorre-
lation), and this can significantly alter the value of the integral in
equation (30). Such an anticorrelation at moderate values of l is
natural for incompressible flows; the choice of urms and the estimate
of l0 are thus not straightforward. Other choices of urms in Fig. 9
can lead to a reduction in l0 by as much as 30 pc. Better statistics,
derived from data cubes for a number of different time steps, will
allow for a more thorough exploration of the uncertainties, but we
defer this analysis to a later paper.

The rms velocities given in Table 5 are compatible with the
global values of urms and u0 for the reference model WSWa shown
in Table 3. The increase in the rms value of uz with height, from
about 40 km s−1 at z = 0 to about 60 km s−1 at z = 200 pc, reflects
the systematic net outflow with a speed increasing with |z|. There
is also an apparent marginal tendency for the rms values of ux and
uy to decrease with increasing distance from the mid-plane.

The correlation scale of the random flow is very close to 100 pc in
the mid-plane, and we have adopted this value for l0 elsewhere in the
paper. This estimate is in good agreement with the hydrodynamic
ISM simulations of Joung & Mac Low (2006), who found that most
kinetic energy is contained by fluctuations with a wavelength (i.e.
2l0 in our notation) of 190 pc. In the MHD simulations of Korpi
et al. (1999b), l0 for the warm gas was 30 pc at all heights, but
that of the hot gas increased from 20 pc in the mid-plane to 60 pc
at |z| = 150 pc. de Avillez & Breitschwerdt (2007) found l0 =
73 pc on average, with strong fluctuations in time. As in Korpi et al.
(1999b), there is a weak tendency for l0 of the horizontal velocity
components to increase with |z| in our simulations, but this tendency
remains tentative, and must be examined more carefully to confirm
its robustness.

7 G A S F L OW TO A N D F RO M T H E MI D - P L A N E

Fig. 11 illustrates the 3D structure of the perturbation velocity
field for the reference model WSWa. Shades of red show the re-
gions of high speed, whereas regions moving at speeds below about
300 km s−1 are transparent to aid visualization. Velocity vectors are
shown in panel (a) using arrows, with size indicating the speed and
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Figure 11. The perturbation velocity field u in model WSWa at t = 550 Myr.
The colour bar indicates the magnitude of the velocity field depicted in the
volume shading, with rapidly moving regions highlighted with shades of
red. The low-velocity regions, shaded blue, have reduced opacity to assist
visualization. Arrow length of vectors (a) is proportional to the magnitude of
u, with red (blue) arrows corresponding to uz > 0 (uz < 0) and independent
of the colour bar. Trajectories of fluid elements (b) are also shown, indicating
the complexity of the flow and its pronounced vortical structure.

colour indicating the sign of the z-component of the velocity (in-
dicating preferential outflow from the mid-plane). Red patches are
indicative of recent SN explosions, and there is a strongly divergent
flow close to the middle of the xz-face. In addition, stream lines in
panel (b) display the presence of considerable small-scale vortical
flow near the mid-plane.

The mean vertical flow is dominated by the high-velocity hot gas,
so it is instructive to consider the velocity structure of each phase
separately. Fig. 12 shows the probability distributions P(z, uz) as

Figure 12. Contours of the probability density of the vertical velocity uz

as a function of z in model WSWa from 11 snapshots at t = 634–644 Myr.
The cold (T < 500 K), warm (500 ≤ T < 5 × 105 K) and hot (T ≥ 5 ×
105 K) are shown in panels (a)–(c), respectively. The horizontal averages of
the vertical velocity uz in each case are shown (red dashed) in each panel as
well as the mid-plane position (black dotted).

functions of uz in the (z, uz)-plane from 11 snapshots of model
WSWa, separately for the cold (a), warm (b) and hot gas (c). The
cold gas is mainly restricted to |z| < 300 pc and its vertical velocity
varies within ±20 km s−1. As indicated by the red dashed curve
in panel (a), on average, the cold gas moves towards the mid-
plane, presumably after cooling at larger heights. The warm gas
is involved in a weak net vertical outflow above |z| = 100 pc, of
the order of ±10 km s−1. This might be an entrained flow within
the hot gas. However, due to its skewed distribution, the modal
flow and thus mass transfer are typically towards the mid-plane.
The hot gas has large net outflow speeds, accelerating to about
100 km s−1 within |z| ± 200 pc, but with small amounts of inward
flowing gas at all heights. The mean hot gas outflow speed increases
at an approximately constant rate to somewhat over 100 km s−1

within ±100 pc of the mid-plane, and then decreases with further
distance from the mid-plane, at a rate that gradually decreases with
height for |z| � 0.5 kpc. This is below the escape velocity in the
gravitational potential adopted. The structure of the velocity field
shall be investigated further elsewhere.
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8 SE N S I T I V I T Y TO M O D E L PA R A M E T E R S

8.1 The cooling function

We consider two models, RBN and WSWb, with parameters given
in Table 3, to assess the effects of the specific choice of the cool-
ing function. Apart from different parametrizations of the radia-
tive cooling, the two models share identical parameters, except
that the value of T0 was slightly higher in model RBN, because
of the sensitivity of the initial conditions to the cooling function
(Section 2.4.4).

The volume-averaged thermal and kinetic energy densities, the
latter excluding the imposed shear flow U , are shown in Fig. 13 as
functions of time. The averages for each are shown in columns (11)
and (12), respectively, of Table 3, using the appropriate steady-state
time intervals given in column (4). Models reach a statistical steady
state, with mild fluctuations around a well-defined mean value, very
soon (within 60 Myr of the start of the simulations). The effect of the
cooling function is evident: both the thermal and kinetic energies in
model RBN are about 60 per cent of those in model WSWb. This
is understandable as model RBN has a stronger cooling rate than
model WSWb, only dropping below the WSW rate in the range T <

103 K (see Fig. 1). Interestingly, both models are similar in that the
thermal energy is about 2.5 times the kinetic energy.

These results are also remarkably consistent with the results by
Balsara et al. (2004, their fig. 6) and Gressel (2008, fig. 3.1). Gres-
sel (2008) applies WSW cooling and has a model very similar to
model WSWa, with half the resolution and |z| ≤ 2 kpc. He re-
ports average energy densities of 24 and 10ESN kpc−3 (thermal and
kinetic, respectively) with SN rate = σ̇SN, comparable to 30 and
13ESN kpc−3 obtained here for model WSWa.

Balsara et al. (2004) simulate an unstratified cubic region 200 pc
in size, driven at SN rates of 8, 12 and 40 times the Galactic rate,
with resolution more than double that of model WSWa. For SN rates
12σ̇SN and 8σ̇SN, they obtain average thermal energy densities of
about 225 and 160 ESN kpc−3, and average kinetic energy densities
of 95 and 60 ESN kpc−3, respectively (derived from their energy
totals divided by the [200 pc]3 volume).

To allow comparison with our models, where the SN energy in-
jection rate is 1σ̇SN, if we divide their energy densities by 12 and
8, respectively, the energy densities would be 19 and 20 ESN kpc−3

(thermal), and 8 and 7.5ESN kpc−3 (kinetic). These are slightly lower

Figure 13. Evolution of the volume-averaged thermal energy density
(black: model WSWb; blue: model WSWa; purple: model WSWah; red:
model RBN) and kinetic energy density (as above; lower lines) in the statis-
tical steady regime, normalized to the SN energy ESN kpc−3. Models WSWb
(black) and RBN (red) essentially differ only in the choice of the radiative
cooling function.

Figure 14. Probability density distributions in the whole computational
domain, obtained without separation into distinct phases, for (a) gas density,
(b) temperature and (c) thermal pressure, for model RBN (blue dashed)
and model WSWb (black solid), in a statistical steady state, each averaged
over 21 snapshots spanning 20 Myr (RBN: 266–286 Myr and WSWb: 305–
325 Myr) and the total simulation domain |z| ≤ 1.12 kpc. The smaller frames
to the right display the same information but near the mid-plane, |z| < 20 pc,
only.

than our results with RBN cooling (25 and 9ESN kpc−3), but are be-
low those with WSW (30 and 13ESN kpc−3 for WSWa, as given
above). Balsara et al. (2004) used an alternative cooling function
(Raymond & Smith 1977), so allowing for some additional un-
certainty over the net radiative energy losses, the results appear
remarkably consistent.

While cooling and resolution may marginally affect the magni-
tudes, it appears that thermal energy density may consistently be
expected to be about 2.5 times the kinetic energy density in these
models. It also appears, by comparing the stratified and unstratified
models, that the ratio of thermal to kinetic energy is not strongly
dependent on height over the range included in our model.

The two models are further compared in Fig. 14, where we show
probability distributions for the gas density, temperature and ther-
mal pressure. With both cooling functions, the most probable gas
number density is around 3 × 10−2 cm−3; the most probable temper-
atures are also similar, at around 3 × 104 K. With the RBN cooling
function, the density range extends to smaller densities than with
WSWb, and yet the temperature range for WSWb extends to lower
values than for RBN. It is evident that the isobarically unstable part
of the WSW cooling function does significantly reduce the amount
of gas at T = 313–6102 K (the temperature range corresponding to
the thermally unstable regime of the WSW cooling), and increase
the amount of gas below 100 K. However, this is not associated
with higher densities than when using the RBN cooling function.
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Figure 15. Probability densities for various variables in individual phases, for model WSWb (left-hand column of panels) and model RBN (right-hand
column): (a) and (f) for gas density; (b) and (g) for random velocity u0; (c) and (h) for the Mach number of the random velocity defined with respect to the
local sound speed; (d) and (i) for thermal pressure; and (e) and (j) for the total pressure. The cold phase spans T < 500 K (black solid), the warm gas has 500 <

T < 5 × 105 K (blue dashed) and the hot gas is at T ≥ 5 × 105 K (red dash–dotted). 11 snapshots have been used for averaging, spanning t = 200–300 Myr for
model RBN and t = 300–400 Myr for model WSWb.

This may indicate that multiple compressions, rather than thermal
instability, dominate the formation of dense clouds.

The most probable thermal pressure is lower in model RBN than
in WSWb, consistent with the lower thermal energy content of the
former.

The probability distributions of various quantities, shown in
Fig. 15, confirm the clear phase separation in terms of gas den-
sity and perturbation velocity. Here we used the same borderline
temperatures for individual phases as for model WSWa (Fig. 5).
Despite minor differences between the corresponding panels in

Figs 5 and 15, the peaks in the gas density probability distribu-
tions are close to 101, 3 × 10−2 and 10−3 cm−3 in all models. Given
the extra cooling of hot gas and reduced cooling of cold gas with
the RBN cooling function, more of the gas resides in the warm
phase in model RBN. The thermal pressure distribution in the hot
gas reveals the two ‘types’ (see the end of Section 4), which are
mostly found within |z| � 200 pc (high-pressure hot gas within SN
remnants) and outside this layer (diffuse, lower pressure hot gas).
The probability distribution for the Mach number in the warm gas
extends to higher values with the RBN cooling function, perhaps
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because more shocks reside in the more widespread warm gas, at
the expense of the cold phase. It is useful to remember that, al-
though each distribution is normalized to unit underlying area, the
fractional volume of the warm gas is about a hundred times that of
the cold phase.

The probability distributions of density and pressure without pre-
liminary separation into phases, presented in Fig. 14, do not show
clear separations into phases (cf. e.g. de Avillez & Breitschwerdt
2004; Joung & Mac Low 2006), such that division into three phases
would arguably only be conventional, if based on these alone. The
probability distributions near the mid-plane, |z| < 20 pc (Fig. 14),
exhibit a marginally better phase separation for the gas density
(smaller frames in Fig. 14) (see also Korpi et al. 1999a; Hill et al.
2012, their figs 1 and 6, respectively). However, our analysis in
terms of phase-wise PDFs confirms that the trimodal structure evi-
dent in the temperature distribution (Fig. 14b) has a complementary
structure in the gas density.

Stratification of the thermal structure is clarified in Fig. 16, where
we introduce narrower temperature bands specified in Table 6. The

Figure 16. Vertical profiles of the fractional volumes occupied by the var-
ious temperature ranges, with the key shown in Table 6. (a) Model RBN,
using 21 snapshots spanning 266–286 Myr. (b) Model WSWb, using 21
snapshots spanning 305–325 Myr.

Table 6. Key to Figs 16 and 17, defining the gas
temperature bands used there, and the classifica-
tion within three phases.

Temperature band Line style Phase

T < 5 × 101 K Cold
5 × 101 ≤ T < 5 × 102 K ·-·-·-·-· Cold
5 × 102 ≤ T < 5 × 103 K - - - - - Warm
5 × 103 ≤ T < 5 × 104 K – – – - Warm
5 × 104 ≤ T < 5 × 105 K — ·- ·- – Warm
5 × 105 ≤ T < 5 × 106 K –···–· Hot

T ≥ 5 × 106 K ······ Hot

fractional volume of gas in each temperature range i at a height z is
given by

fV ,i(z) = Vi(z)

V (z)
= Ni(z)

N (z)
, (31)

similarly to equation (14), where Ni(z) is the number of grid points
in the temperature range Ti, min ≤ T < Ti, max, with Ti, min and Ti, max

given in Table 6, and N(z) is the total number of grid points at that
height.

The fractional volumes in column (13) of Table 3 show that near
the mid-plane, cold gas forms in similar abundances, independent
of the cooling function. However, much less hot gas is achieved for
model RBN. Fig. 16 also helps show how the thermal gas structure
depends on the cooling function. Model WSWb, panel (b), has
significantly more very cold gas (T < 50 K) than RBN, panel (a),
but slightly warmer cold gas (T < 500 K) is more abundant in
RBN. The warm and hot phases (T > 5 × 103 K) have roughly
similar distributions in both models, although model RBN has less
of both phases. Apart from relatively minor details, the effect of the
form of the cooling function thus appears to be straightforward and
predictable: stronger cooling means more cold gas and vice versa.
What is less obvious, however, is that the very hot gas is more
abundant near ±1 kpc in model RBN than in WSWb, indicating
that the typical densities must be much lower. This, together with
the greater abundance of cooler gas near the mid-plane, suggests
that there is less stirring with RBN cooling.

Altogether, we conclude that the properties of the cold and warm
phases are not strongly affected by the choice of the cooling func-
tion. The main effect is that the RBN cooling function produces
less hot gas with significantly lower pressures. This can readily be
understood, as this function provides significantly stronger cooling
at T � 103 K.

8.2 The total gas mass

Models RBN and WSWb have about 17 per cent more mass of gas
than the reference model WSWa, where we have removed that part
of the gas mass which should be confined to molecular clouds unre-
solved in our simulations (as described in Section 3). The difference
is apparent in comparing Fig. 16(b) with Fig. 17(b) (or Fig. 17a).
Higher gas mass causes the abundance of hot gas to reduce with
height, contrary to observations, and to the behaviour of model
WSWa. Otherwise, the fractional volumes within ±200 pc of the
mid-plane appear independent of the gas mass.

8.3 Numerical resolution

Models WSWa and WSWah differ only in their resolution, using 2
and 4 pc, respectively. Model WSWah is a continuation of the state
of WSWa after 600 Myr of evolution.

The most obvious effect of increased resolution is the increase
in the magnitude of the perturbed velocity and temperatures;
〈urms 〉 = 76 km s−1 in model WSWa increasing to 103 km s−1 in
model WSWah (Table 3, column 9) and 〈cs〉 from 150 to 230 km s−1

(column 6). Both 〈urms 〉 and the random velocity 〈u0,rms 〉 are in-
creased by a similar factor of about 1.3. However, the thermal energy
eth is reduced by a factor of 0.6 with the higher resolution, while
kinetic energy eK remains about the same. This suggests that in the
higher resolution model, the higher velocities and temperatures are
associated with lower gas densities.

The vertical distribution of the fractional volume in each tem-
perature range (defined in Table 6) is shown in Fig. 17 for
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Figure 17. Vertical profiles of the fractional volumes (equation 14) for
model WSWah (a), which differs only in its doubled spatial resolution from
the reference model WSWa (c) and the fractional mass (equation 32) from
model WSWa (b). These are calculated for the temperature ranges given,
along with the figure legend, in Table 6. The former uses 10 snapshots and
the latter 6 spanning 633–638 Myr.

model WSWah (panel a) for comparison with model WSWa in
panel (c). The fractional mass (panel b) is calculated similarly to
equation (31),

fM,i(z) = Mi(z)

M(z)
, (32)

where Mi(z) is the mass of gas within a temperature range i at a
given z and M(z) is the total gas mass at that height.

Note that the relative abundances of the various phases in these
models might be affected by the unrealistically high thermal con-
ductivity adopted. The coldest gas (black solid), with T < 50 K, is
largely confined within about 200 pc of the mid-plane. Its fractional
volume (Figs 17a and c) is small even at the mid-plane, but it pro-
vides more than half of the gas mass at z = 0 (Fig. 17b). Gas in the
next temperature range, 50 < T < 500 K (purple dash–dotted), is
similarly distributed in z. Models WSWa and WSWah differ only
in their resolution, using 2 and 4 pc, respectively. Model WSWah
is a continuation of the state of WSWa after 600 Myr of evolution.
With higher resolution the volume fraction of the coldest gas is
significantly enhanced (Fig. 17c compared to a), but it is similarly
distributed.

Gas in the range 5 × 102 < T < 5 × 103 K (dark blue dashed) has
a similar profile to the cold gas for both the fractional mass and the
fractional volume, and this is insensitive to the model resolution.
This is identified with the warm phase, but exists in the thermally
unstable temperature range. It accounts for about 10 per cent by
volume and 20 per cent by mass of the gas near the mid-plane,
which is consistent with observational evidence. It is negligible
away from the SN active regions.

The two bands with T > 5 × 105 K (red dotted and orange
triple dot–dashed) behave similarly to each other (Figs 17a and c),
occupying similar fractional volumes for |z| � 0.75 kpc, and with
fV, i increasing above this height (more rapidly for the hotter gas). In
contrast, the fractional masses (Fig. 17b) in these temperature bands
are negligible for |z| � 0.75 kpc, and increase above this height (less
rapidly for the hotter gas). The temperature band 5 × 104 < T <

5 × 105 K (green/black triple dot–dashed) is similarly distributed
to the hotter gas (orange) in all profiles. It is however identified
with the warm phase, indicating that this is mainly hot gas cooling,
a transitional state, which accounts for a relatively small volume
fraction of the warm gas and especially a small mass fraction. The
dramatic effect of increased resolution (Fig. 17a compared to c) is
the significant increase in the very hot gas (red dotted), particularly
displacing the hotter gases (orange and green) but also to some
degree the bulk warm gas (blue dashed). This reflects the reduced
cooling due to the better density contrasts resolved, associating the
hottest temperatures with the most diffuse gas.

The middle temperature range 5 × 103 < T < 5 × 104 K has
a distinctive profile in both fractional volume and fractional mass,
with minima near the mid-plane and maxima at about |z| � 400 pc,
being replaced as the dominant component by hotter gas above this
height. The fractional volume and vertical distribution of this gas are
quite insensitive to the resolution. The distribution of the warm gas
(5 × 103 ≤ T < 5 × 104 K; blue long-dashed) does not change much
with increased resolution. However, the higher resolution model has
more of the cold phase (T < 500 K; black solid and dash–dotted)
and, especially, of the very hottest gas (T ≥ 5 × 106 K; red dotted),
at the expense of the intermediate temperature ranges.

This can also be seen in the gas density and temperature proba-
bility distributions shown in Figs 18(a) and (b): increased resolution
modestly increases the abundance of cold gas and significantly en-
hances the amount of very hot gas. The minima in the distributions
(at density 10−2 cm−3, and at temperatures 102 and 3 × 105 K)
appear independent of resolution, suggesting that the phase separa-
tion is physical, rather than numerical. The distributions are most
consistent in the thermally unstable range 313–6102 K. Higher res-
olution also reduces the minimum further about the unstable range
above 105 K, as the highest temperature gas has lower losses to
thermal conduction. The mean temperatures of the cold gas (60 K)
warm gas (104 K) and the mean warm gas density (0.14 cm−3) also
appear to be independent of the resolution. However, the natural log
mean μn is about −8 for the hot gas, both within and without 2 pc
of the mid-plane (with larger standard deviation for the gas near
the mid-plane). This compares with values of −6.97 and −5.78 in
our model with 4 pc resolution, i.e. a factor of about 1/3. This
reflects the improved resolution of low density in the remnant
interiors.

The density and temperature probability distributions for WSWa
are similar to those obtained by Joung & Mac Low (2006, their
fig. 7), who used a similar cooling function, despite the difference
in the numerical methods [adaptive mesh refinement (AMR) down
to 1.95 pc in their case]. With slightly different implementation of
the cooling and heating processes, again with AMR down to 1.25 pc,
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Figure 18. Volume-weighted probability distributions of gas number den-
sity (a), temperature (b) and thermal pressure (c) for models WSWa (black
solid) and WSWah (blue dashed) for the total numerical domain |z| ≤
1.12 kpc.

de Avillez & Breitschwerdt (2004, their fig. 3) found significantly
more cool, dense gas. It is noteworthy that the maximum densities
and lowest temperatures obtained in our study with a non-adaptive
grid are of the same order of magnitude as those from AMR models
where the local resolution is up to three times higher. At 4 pc our
mean minimum temperature is 34 K, within the range 15–80 K for
0.625–2.5 pc (de Avillez & Breitschwerdt 2004, their fig. 9). For
the mean maximum gas number, our 122 cm−3 is within their range
288–79 cm−3.

The vertical density profiles obtained under the different numeri-
cal resolutions are shown in Fig. 19(a). Although the density distri-
bution in Fig. 18(a) reveals higher density contrasts with increased
resolution, there is little difference in the z-profiles of the mod-
els. The mean gas number density at the mid-plane, n(0) – which
with our course grid resolution excludes the contribution from H II

– is about 2.2 cm−3: double the observation estimates summarized
in Ferrière (2001). This might be expected in the absence of the
magnetic and cosmic ray components of the ISM pressure, to help
support the gas against the gravitational force.

However, the vertical pressure distributions are consistent with
the models of Boulares & Cox (1990, their figs 1 and 2), which
include the weight of the ISM up to |z| = 5 kpc. The total pressure
P(0) � 2.5(2.0) × 10−12 dyn cm−2 for the standard (high) resolution

Figure 19. Horizontal averages of gas number density, n(z) (a), and to-
tal pressure, P(z) (b), for model WSWa (solid black) and model WSWah
(dashed blue). Each are time-averaged using 6 and 10 snapshots, respec-
tively, spanning 633–638 Myr. The vertical lines indicate standard deviation
within each horizontal slice. The thermal p(z) (dotted) and ram p0(z) (fine
dashed) pressures are also plotted (b).

model is slightly above their estimate of about 1.9 for hot, turbulent
gas. For the turbulent pressure alone, we have p0(0) � 6.3(7.9) ×
10−13 dyn cm−2 falling to 1.0(0.6) at |z| = 500 pc and then remain-
ing reasonably level. The pressures are generally slightly reduced
with increased resolution, except for p0 near the mid-plane. Small
scales are better resolved, so the turbulent structures are a stronger
component of the SN active region. These pressures are consis-
tent with Boulares & Cox (1990), even though our model does not
explicitly include the pressure contributions from the ISM above
1 kpc.

Comparing our thermal pressure distribution (Fig. 18c) with
de Avillez & Breitschwerdt (2004, their fig. 4a) and Joung et al.
(2009, their fig. 2), the three models peak at 3.16, 1.3 and 4.1 ×
10−13 dyn cm−2, respectively. The latter models include |z| = 10 kpc
and resolution up to 1.25 pc. Our data summarize the volume within
z ± 1 kpc, while the comparisons are within 10 kpc and 125 pc, re-
spectively.

We conclude that the main effects of the increased resolution are
confined to the very hot interiors and to the thin shells of SN rem-
nants; the interiors become hotter and the SN shell shocks become
thinner with increased resolution (see Appendix B). Simultaneously,
the higher density of the shocked gas enhances cooling, producing
more cold gas and reducing the total thermal energy. Otherwise, the
overall structure of the diffuse gas is little affected: the probability
distributions of thermal pressure are almost indistinguishable, with
our standard-resolution fractionally higher pressure (Fig. 18c).

We are satisfied that the numerical resolution of the reference
model, � = 4 pc, is sufficient to model the diffuse gas phases
reliably. This choice of the working numerical resolution is further
informed by tests involving the expansion of individual SN remnants
(presented in Appendix B).
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9 D I S C U S S I O N A N D C O N C L U S I O N S

The multiphase gas structure obtained in our simulations appears
to be robust, with overall parameters relatively insensitive to the
physical (Section 4) and numerical (Section 8.3) details, including
the parametrizations of the radiative cooling tested here (Section
8.1). We have identified natural temperature boundaries of the ma-
jor phases using the variation, with height above the mid-plane,
of the fractional volume occupied by the gas in relatively narrow
temperature ranges. This confirms that the system can be satisfacto-
rily described in terms of just three major phases with temperature
ranges T < 5 × 102, 5 × 102 ≤ T < 5 × 105 and 5 × 105 ≤
T < 5 × 106 K. The most probable values of the variables we have
explored (gas density, thermal and total pressure, perturbed veloc-
ity and Mach number) are practically independent of the cooling
function chosen (Fig. 15). Moreover, this is true for the cold, warm
and hot phases separately. A 3D rendering of a snapshot of the
density distribution from the reference model WSWa is illustrated
in Fig. 20, showing the typical location and density composition of
each phase separately.

A conspicuous contribution to various diagnostics – especially
within 200 pc of the mid-plane, where most of the SNe are localized
– comes from the very hot gas within SN remnants. Regarding
its contribution to integrated gas parameters, it should perhaps be
considered as a separate phase.

The fractional volume occupied by each phase is a convenient
diagnostic and an important physical parameter. We have clarified
the relation between the fractional volume and various probabilis-
tic measures of a random distribution of density (or of any other
quantity), and established an exact relation between the fractional
volume and various density averages obtainable observationally
(in Section 5). This represents a significant improvement upon the
assumption of locally homogeneous gas, the only analytical tool
used to date in determinations of the fractional volumes of the
phases.

The correlation scale of the random flows is obtained in Section
6, from the autocorrelation functions of the velocity components.
Within 200 pc of the mid-plane, the horizontal velocity components
have a consistent correlation scale of about 100 pc. In contrast, the

scale of the vertical velocity (which has a systematic part due to
the galactic outflow of hot gas) grows from about 100 pc at the
mid-plane to nearly 200 pc at z = 200 pc, and may do so further at
larger heights (cf. Korpi et al. 1999b). This is due to the increase
of the fractional volume of the hot gas with distance from the mid-
plane. At |z| � 1 kpc, most of the volume is occupied by the hot
gas. As the interstellar gas flows out of the galactic disc into the
halo, it must expand, and the scale of the expanding regions may be
expected to become comparable to 1 kpc at |z| � 1 kpc. It would be
helpful to obtain estimates of the horizontal correlation of the flow
above ±1 kpc, so that modelling of the galactic fountain might be
adequately formulated.

We find a clear indication of cold gas falling back towards the
mid-plane at speeds of a few km s−1, hot gas involved in vigorous
outflow away from the mid-plane and some warm gas entrained
in this outflow (Section 7). The outflow speed of the hot gas in-
creases up to 100 km s−1 within 100 pc of the mid-plane and then
slowly decreases. In contrast, the mean vertical velocity of the warm
gas increases linearly with |z|, up to 20 km s−1 towards the upper
boundaries of our domain.

Given that probability densities for gas temperature and num-
ber density, calculated for individual phases, are clearly separated,
the probability densities for both thermal and total pressures (the
sum of thermal and turbulent) are not segregated at all. Despite
its complex thermal and dynamical structure, the gas is in statis-
tical pressure equilibrium. Since the SN-driven ISM is random in
nature, both total and thermal pressures fluctuate strongly in both
space and time (albeit with significantly smaller relative fluctua-
tions than the gas density, temperature and perturbation velocity),
so the pressure balance is also statistical in nature. These might
appear to be obvious statements, since a statistical steady state
(i.e. not involving systematic expansion or compression) must have
such a pressure balance. Deviations from thermal pressure balance
and observations of significant regions of gas within the classically
forbidden thermally unstable range (300–6000 K), which is also
evident in our probability distributions, may lead to conclusions
of an ISM comprising a broad thermodynamic continuum in pres-
sure disequilibrium (Vázquez-Semadeni 2012, discussion on The

Figure 20. 3D snapshots, from model WSWa, of gas number density in (a) the cold gas, (b) the warm gas and (c) the hot gas. In each plot, regions that are
clear (white space) contain gas belonging to another phase. The phases are separated at temperatures 500 and 5 × 105 K. The colour scale for log n is common
to all three plots.
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controversy). The only systematic deviations from pressure balance
are associated with the systematic outflow of the hot gas (leading
to lower pressures), and with the compression of the cold gas by
shocks and other converging flows (leading to somewhat increased
pressures). Even this can be further reconciled if we allow for the
global vertical pressure gradient (cf. Fig. 7). It is evident that phases
are locally in total pressure equilibrium.

An important technical aspect of simulations of this kind is
the minimum numerical resolution � required to capture the ba-
sic physics of the multiphase ISM. We have shown that � =
4 pc is sufficient with the numerical methods employed here
(Section 8.3). In addition to comparing results obtained for � =
4 and 2 pc with our own code, we have satisfied ourselves that our
results are consistent with those obtained by other authors using
AMR with maximum resolutions of 2 and 1.25 pc.

As with all other simulations of the SN-driven ISM, we employ
a host of numerical tools (such as shock-capturing diffusivity) to
handle the extremely wide dynamical range (102 � T � 108 K and
10−4 � n � 102 cm−3 in terms of gas temperature and number den-
sity in our model) and widespread shocks characteristic of the mul-
tiphase ISM driven by SNe. Their detailed description can be found
in Section 2.4. We have carefully tested our numerical methods by
reproducing, quite accurately, the Sedov–Taylor and snowplough
analytical solutions for individual SN remnants (Appendix B).

The major elements of the ISM missing from the models pre-
sented here are magnetic fields and cosmic rays. Analysis of the
structure of the velocity field and its interaction with the magnetic
field, effects of rotation, shear and SN rates will be the subject of a
future paper.
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APPENDIX A : N OTATION

Table A1 contains most of the symbols used in the text and their
explanation, arranged alphabetically.

Table A1. Most important variables used in the text.

Symbol Meaning

cs Adiabatic speed of sound
cp Heat capacity at constant pressure ( kpc2 Gyr−3 K−1)
C Velocity autocorrelation function, equation (29)
D/Dt Advective derivative, equation (5)
D Velocity structure function, equation (28)
eth Energy density, subscript thermal: ‘th’, kinetic: ‘kin’
ESN Total energy injected into the ISM by a single SN
fM, i Fractional mass of gas in phase i, equation (32)
fV, i Fractional volume occupied by the phase i, equation (14)
gz Vertical acceleration due to the Galactic gravity, equation (7)
hI Scale height of the Type I SN distribution, Section 2.2
hII Scale height of the Type II SN distribution, Section 2.2
kB Boltzmann’s constant
K Thermal conductivity (= cpρχ)
l0 Velocity correlation scale
mp Proton mass
M Mach number
n Gas number density
ni Gas density averaged within a given phase i, equation (17)
〈ni〉 Gas density averaged over volume V of phase i, equation (18)
p Thermal pressure
P Total pressure (thermal plus turbulent)
P Probability density
rSN Characteristic radius of the SN energy injection site, Section 2.2
rms Root mean square
s Specific entropy ( erg g−1 K−1)
sn Parameter of the lognormal probability distribution, equation (13)
S Velocity shear rate due to differential rotation
SN Supernova (also as a subscript)
T Gas temperature
V Total volume of a region in Section 5.1
Vi Volume occupied by an ISM phase labelled i, Section 5.1
u Velocity perturbation: deviation of the gas velocity from the

background rotational flow
u0 Random velocity
U Large-scale shear flow (differential rotation)
W Rate of strain tensor, equation (4)
� Specific rate of photoelectric heating ( erg g−1 s−1)
� Numerical mesh separation (resolution of a simulation)
ζ ν Shock-capturing viscosity
ζ χ Shock-capturing thermal diffusivity
� Radiative cooling rate ( erg g−2 s−1 cm−3)
μ Molecular weight
μn Parameter of the lognormal probability distribution, equation (13)
ν Kinematic viscosity

Table A1 – continued

Symbol Meaning

νI Type I SN rate per unit surface area, Section 2.2
νII Type II SN rate per unit surface area, Section 2.2
� Angular velocity of the Galactic rotation
φi Phase filling factor within the ISM phase i, equation (15)
i Volume filling factor of the ISM phase i, equation (16)
ρ̇SN Rate of mass injection, per unit volume, by SNe, Section 2.2
ρ Gas density
σ̇SN Rate of energy injection by SNe (per unit volume), as kinetic

energy in equation (3), see Section 2.2
σ 2

i Variance of ISM phase i, Section 5
τ cool Radiative cooling time
 Gravitational potential
χ Thermal diffusivity

A P P E N D I X B : E VO L U T I O N O F A N
I N D I V I D UA L S N R E M NA N T

The thermal and kinetic energy supplied by SNe drives, directly or
indirectly, all the processes discussed in this paper. It is therefore
crucial that the model captures correctly the energy conversion in
the SN remnants and its transformation into the thermal and kinetic
energies of the interstellar gas. As discussed in Section 2.2, the size
of the region where the SN energy is injected corresponds to the
adiabatic (Sedov–Taylor) or the snowplough stage. Given the mul-
titude of artificial numerical effects required to model the extreme
conditions in the multiphase ISM, it is important to verify that the
basic physical effects are not affected, while sufficient numerical
control of strong shocks, rapid radiative cooling, supersonic flows,
etc., is properly ensured. Another important parameter to be chosen
is the numerical resolution.

Before starting the simulations of the multiphase ISM reported
in this paper, we have carefully confirmed that the model can repro-
duce, to sufficient accuracy, the known realistic analytical solutions
for the late stages of SN remnant expansion, until merger with the
ISM. The minimum numerical resolution required to achieve this
in our model is � = 4 pc. In this appendix, we consider a single SN
remnant, initialized as described in Section 2.2, that expands into
a homogeneous environment. All the numerical elements of the
model are in place, but here we use periodic boundary conditions
in all dimensions.

The parameters χ1 and ν1 are as applied in model WSWa for
� = 4 pc, but reduced here proportionally for � = 2 and 1 pc.
The constant C ≈ 0.01 used in equation (10) to suppress cooling
around shocks is unchanged. This may allow excess cooling at
higher resolution, evident in the slightly reduced radii in Fig. B1.
For model WSWah, χ1 and ν1 were just as in model WSWa; for
future reference, they should be appropriately adjusted, as should
C, to better optimize higher resolution performance.

B1 The adiabatic and snowplough stages

The Sedov–Taylor solution,

R =
(

κ
ESN

ρ0

)1/5

t2/5, (B1)

is accurately reproduced with our code at the resolution � = 4 pc
or higher. Here R is the remnant radius, ESN the explosion energy,
ρ0 the ambient gas density and κ ≈ 2.026 for γ = 5/3 (Ostriker &
McKee 1988).

Modelling even a single remnant becomes more challenging
when radiative cooling becomes important. Here we compare
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Figure B1. The shell radius R of an SN remnant versus time, shown in (a) linear and (b) logarithmic scales; (c) the corresponding expansion speed Ṙ. Frame
columns 1–3 are for different ambient gas densities, ρ0 × 1024 g cm−3 = 1.0, 0.1, 0.01 from left to right. Numerical results obtained under three numerical
resolutions are shown: � = 4 pc (black solid), 2 pc (green dashed) and 1 pc (orange dash–dotted). The dotted lines are for the standard snowplough solution
(B2) (dark blue) and its modification by Cioffi et al. (1998) (light blue). The horizontal line in panels (c1)–(c3) shows the sound speed in the ambient ISM.

numerical results with two analytic solutions for an SN remnant
expanding into a perfect, homogeneous, monatomic gas at rest. The
standard momentum-conserving snowplough solution for a radia-
tive SN remnant has the form

R = R0

[
1 + 4

Ṙ0

R0
(t − t0)

]1/4

, (B2)

where R0 is the radius of the SN remnant at the time t0 of the
transition from the adiabatic stage and Ṙ0 is the shell expansion
speed at t0. The transition time is determined by Woltjer (1972) as
that when half of the SN energy is lost to radiation; this happens
when

Ṙ0 = 230 km s−1
( n0

1 cm−3

)2/17
(

ESN

1051 erg

)1/17

; (B3)

the transitional expansion speed thus depends very weakly on pa-
rameters.

Cioffi et al. (1998) obtained numerical and analytical solutions
for an expanding SN remnant with special attention to the transition
from the Sedov–Taylor stage to the radiative stage. These authors
adjusted an analytical solution for the pressure-driven snowplough
stage to fit their numerical results to an accuracy of within 2–5 per
cent in terms of R and Ṙ, respectively. (Their numerical resolution
was 0.1 pc in the interstellar gas and 0.01 pc within ejecta.) They
thus obtained

R = Rp

(
4

3

t

tp
− 1

3

)3/10

, (B4)

where the subscript ‘p’ denotes the radius and time for the transition
to the pressure-driven stage. The estimated time of this transition is

tp � 13 Myr

(
ESN

1051 erg

)3/14 ( n0

1 cm−3

)−4/7
.

For ambient densities of ρ0 = (0.01, 0.1, 1) × 10−24 g cm−3,
this yields transition times tp ≈ (25, 6.6, 1.8) × 104 yr and
shell radii Rp ≈ (130, 48, 18) pc, respectively, with speeds Ṙp =
(213, 296, 412) km s−1.

This continues into the momentum-driven stage with(
R

Rp

)4

= 3.63 (t − tm)

tp

[
1.29 −

(
tp

tm

)0.17
]

+
(

Rm

Rp

)4

, (B5)

where the subscript ‘m’ denotes the radius and time for this second
transition,

tm � 61 tp

(
Ṙej

103 km s−1

)3 (
ESN

1051 erg

)−3/14 ( n0

1 cm−3

)−3/7
,

where Ṙej � 5000 km s−1 is the initial velocity of the 4 M	 ejecta.
For each ρ0 = (0.01, 0.1, 1.0) × 10−24 g cm−3, the transitions oc-
cur at tm = (168, 16.8, 1.68) Myr, and Rm = (1014, 281, 78) pc,
respectively. The shell momentum in the latter solution tends to
a constant, and the solution thus converges with the momentum-
conserving snowplough (B2); however, depending on the ambient
density, the expansion may become subsonic and the remnant merge
with the ISM before equation (B2) becomes applicable.

We compare our results with the momentum-conserving snow-
plough solution and those of Cioffi et al. in Fig. B1, testing our
model with numerical resolutions � = 1, 2 and 4 pc for the ambient
gas densities ρ0 = (0.01, 0.1, 1.0, 2.0) × 10−24 g cm−3. Shown in
Fig. B1 are a linear plot of the remnant radius R versus time to check
if its magnitude is accurately reproduced, a double logarithmic plot
of R(t) to confirm that the scaling is right and variation of the ex-
pansion speed with time to help assess more delicate properties of
the solution. We are satisfied to obtain good agreement with the an-
alytical results for all the resolutions investigated when the ambient
gas number density is below 1 cm−3. For � = 4 pc, the remnant
radius is accurate to within about 3 per cent for ρ0 = 10−25 g cm−3

Downloaded from https://academic.oup.com/mnras/article-abstract/432/2/1396/1027020/The-supernova-regulated-ISM-I-The-multiphase
by University of Sheffield user
on 18 October 2017



1420 F. A. Gent et al.

and underestimated by up to 6 per cent for ρ0 = 10−26 g cm−3. At
higher numerical resolutions, the remnant radius is underestimated
by up to 7 and 11 per cent for ρ0 = 10−25 and 10−26 g cm−3, re-
spectively. For ρ0 = 10−24 g cm−3, excellent agreement is obtained
for the higher resolutions, � = 1 and 2 pc; simulations with � =
4 pc overestimate the remnant radius by about 20–25 per cent in
terms of R and Ṙ at t = 2 Myr. We emphasize that a typical SN
explosion site in the models described in the main part of the paper
has an ambient density n0 < 1 cm−3, so that � = 2 or 4 pc produces
a satisfactory fit to the results, despite the much finer resolution of
the simulations, of Cioffi et al.

The higher than expected expansion speeds into dense gas can
be explained by the artificial suppression of the radiative cooling
within and near to the shock front as described by equation (10).
Our model reproduces the low-density explosions more accurately
because the shell density is lower, and radiative cooling is therefore
less important.

B2 The structure of the SN remnant

Cuts through the simulated SN remnant are shown in Fig. B2 for gas
density, temperature and velocity, obtained for resolution � = 4 pc
and with ambient density ρ0 = 10−25 g cm−3. In the temperature and

velocity panels, we also include the profile of the shock viscosity
from equation (9) (black dotted line), scaled to fit each plot. The
temperature panels also show where net cooling is applied to the
remnant, T−1(� − ρ�) < 0 from equation (3) (blue dashed line),
while the velocity panels also show the ambient sound speed (pink
dashed lines). The top panel depicts the initial distributions, at t = 0,
with which the mass of 4 M	 and 5 × 1050 erg each of thermal and
kinetic energy are injected. The other panels are for t = 0.72 and
1.02 after the start of the evolution, from top to bottom, respectively;
the actual simulation continued to t = 1.32 Myr, when the remnant
radius reached 130 pc.

The position of the peak of the density profile is used to deter-
mine the shell radius shown in Fig. B1. The Rankine–Hugoniot
jump conditions are not very well satisfied with the numerical pa-
rameters used here. This is due to our numerical setup, essentially
designed to control the shocks by spreading them sufficiently to be
numerically resolvable in production runs that contain many inter-
acting shocks and colliding SN shells. Better shock front profiles
have been obtained with other choices of parameters and cooling
control, and with better resolution. The density and temperature con-
trasts across the shock fronts are reduced by the shock smoothing,
which inhibits the peak density and enhances gas density behind
the shocks. In an isolated remnant, the peak gas number density

Figure B2. One-dimensional cuts through the origin of an SN remnant expanding into gas of ambient density ρ0 = 10−25 g cm−3, simulated with the numerical
resolution � = 4 pc. The variables shown are (a1)–(c1) gas number density (blue solid), (a2)–(c2) temperature (red solid) and (a3)–(c3) velocity (green solid).
The shock viscosity profile of equation (9) (scaled to fit the frame; black dotted) is shown in the temperature and velocity panels; the net cooling (blue dashed),
log(−T−1(� − ρ�)+), from equation (3) is included in the temperature panel; and the ambient sound speed (pink dotted) is also shown with the velocity.
Panels in the top row (a) show the injection profiles used to initialize the remnant at t = 0; the lower row panels are for the later times (b) t = 0.72 Myr and (c)
t = 1.02 Myr.
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does not exceed 10 cm−3, but in the full ISM simulation we obtain
densities in excess of 100 cm−3, as a result of interacting remnants
and highly supersonic flows.

The interior of the SN remnant, if more dense due to numeri-
cal smoothing about the shock profile, would cool unrealistically
rapidly, so that the SN energy would be lost to radiation rather than
agitating the ambient ISM. The centre panels in Fig. B1 clarify how
the cooling suppression described in equation (10) reduces the cool-
ing rate in the relatively homogeneous interior of the remnant, while
still allowing rapid cooling in the dense shell where the gradient of
the shock viscosity is small. It is evident from the temperature cuts
that the remnant still contains substantial amounts of hot gas when
its radius reaches 100 pc, so it would be merging with the ISM in
the full simulation.

The panels in the right-hand column of Fig. B1 demonstrate that
the interior gas velocity can be more than twice the shell speed.
Due to the high interior temperature, this flow is subsonic, while
the remnant shell expands supersonically with respect to its ambient
sound speed. The enhanced viscosity in the hotter interior (with
viscosity proportional to the sound speed; see Section 2.4) inhibits
numerical instabilities that could arise from the high velocities.
In fact, accurate modelling of the SN interiors is not essential in
the present context (where we are mainly interested in a realistic
description the multiphase ISM), as long as the interaction of the
remnant with the ambient gas is well described, in terms of the
energy conversion and transfer to the ISM, the scales and energy of
turbulence, and the properties of the hot gas.

A P P E N D I X C : BO U N DA RY C O N D I T I O N S
A N D N U M E R I C A L C O N T RO L O F A DV E C T I O N
A N D D I F F U S I O N

C1 Top and bottom boundaries

Unlike the horizontal boundaries of the computational domain,
where periodic or sliding periodic boundary conditions are ade-
quate (within the constraints of the shearing box approximation),
the boundary conditions at the top and bottom of the domain are
more demanding. The vertical size of the galactic halo is of the
order of 10 kpc, and non-trivial physical processes occur even at
that height, especially when galactic wind and cosmic ray escape
are important. As explained in Section 2.4, we do not attempt to
model the full extent of the halo here. Therefore, it is important to
formulate boundary conditions at the top and bottom of the domain
that admit the flow of matter and energy, while minimizing any
associated artefacts that might affect the interior.

Stress-free, open vertical boundaries would seem to be the most
appropriate, requiring that the horizontal stresses vanish, while gas
density, entropy and vertical velocity have constant first derivatives
on the top and bottom boundaries. These are implemented numer-
ically using ‘ghost’ zones, i.e. three outer grid planes that allow
derivatives at the boundary to be calculated in the same way as at
interior grid points. The interior values of the variables are used to
specify their ghost zone values. When a sharp structure approaches
the boundary, the strong gradients are therefore extrapolated into
the ghost zones. This artificially enhances the prominence of such
a structure, and may cause the code to crash. Here we describe how
we have modified these boundary conditions to ensure the numerical
stability of our model.

To prevent artificial mass sources in the ghost zones, we impose a
weak negative gradient of gas density in the ghost zones. Thus, the

density values are extrapolated to the ghost zones from the boundary
point as

ρ(x, y,±Z ± k�) = (1 − �/0.1 kpc)ρ(x, y,±Z ± (k − 1)�)

for all values of the horizontal coordinates x and y, where the bound-
ary surfaces are at z = ±Z, and the ghost zones are at z = ±Z ± k�
with k = 1, 2, 3. The upper (lower) sign is used at the top (bottom)
boundary. This ensures that gas density gradually declines in the
ghost zones.

To prevent a similar artificial enhancement of temperature spikes
in the ghost zones, gas temperature there is kept equal to its value
at the boundary,

T (x, y, ±Z ± k�) = T (x, y, ±Z) ,

so that temperature is still free to fluctuate in response to the interior
processes. This prescription is implemented in terms of entropy,
given the density variation described above.

Likewise, the vertical velocity in the ghost zones is kept equal to
its boundary value if the latter is directed outwards,

uz(x, y, ±Z ± k�) = uz(x, y,±Z) , uz(x, y, ±Z) ≷ 0 .

However, when gas cools rapidly near the boundary, pressure can
decrease and gas would flow inwards away from the boundary. To
avoid suppressing inward flows, where uz(x, y, ±Z) ≶ 0, we use the
following: if |uz(x, y, ±Z ∓ �)| < |uz(x, y, ±Z)|, we set

uz(x, y, ±Z ± �) = 1
2 [uz(x, y,±Z) + uz(x, y, ±Z ∓ �)] ;

otherwise, we set

uz(x, y, ±Z ± �) = 2uz(x, y,±Z) − uz(x, y, ±Z ∓ �) .

In both cases, in the two outer ghost zones (k = 2, 3), we set

uz(x, y, ±Z ± k�) = 2uz(x, y,±Z ± (k − 1)�)

− uz(x, y,±Z ± (k − 2)�) ,

so that the inward velocity in the ghost zones is always smaller
than its boundary value. This permits gas flow across the boundary
in both directions, but ensures that the flow is dominated by the
interior dynamics, rather than by anything happening in the ghost
zones.

The PENCIL CODE is non-conservative, so that gas mass is not
necessarily conserved; this can be a problem due to extreme den-
sity gradients developing with widespread strong shocks. Solving
equation (1) for ρ, rather than ln ρ, solves this problem for the
snowplough test cases described in Appendix B1, with mass then
being conserved within machine accuracy. However for the full
model, once the ISM becomes highly turbulent, there remains some
numerical mass-loss. A comparison of mass-loss through the ver-
tical boundaries to the total mass-loss in the volume indicates that
numerical dissipation accounts for �1 per cent per Gyr. The rate
of physical loss, from the net vertical outflow, was of the order of
15 per cent per Gyr.

C2 Time step control

To achieve numerical stability with the explicit time stepping used,
the CFL conditions have to be amply satisfied. For example, for
advection terms, the numerical time step should be selected such
that

�t < κ
�

max(cs, u, U )
,

Downloaded from https://academic.oup.com/mnras/article-abstract/432/2/1396/1027020/The-supernova-regulated-ISM-I-The-multiphase
by University of Sheffield user
on 18 October 2017



1422 F. A. Gent et al.

where cs is the speed of sound, u = |u| is the amplitude of the per-
turbed velocity, i.e. the deviation from the imposed azimuthal shear
flow U, and κ is a dimensionless number, determined empirically,
which often must be significantly smaller than unity. Apart from the
velocity field, other variables also affect the maximum time step,
e.g. those associated with diffusion, cooling and heating, so that the
following inequalities also have to be satisfied:

�t <
κ1�

2

max(ν, γ χ, η)
, �t <

κ2

Hmax
,

where κ1 and κ2 are further empirical constants and

Hmax = max

(
2ν|W |2 + ζν(∇ · u)2 + ζχ (∇ · u)2

cV T

)
.

We use κ = κ1 = 0.25 and κ2 = 0.025. The latter, more stringent
constraint has a surprisingly small impact on the typical time step,
but a large positive effect on the numerical accuracy. Whilst the time
step may occasionally decrease to below 0.1 or 0.01 yr following
an SN explosion, the typical time step is more than 100 yr.

C3 Minimum diffusivity

Numerical stability also requires that the Reynolds and Péclet num-
bers defined at the resolution length �, as well as the Field length,
are sufficiently small. These mesh Péclet and Reynolds numbers are
defined as

Pe� = u�

χ
≤ umax�

χ
, Re� = u�

ν
≤ umax�

ν
, (C1)

where umax is the maximum perturbed velocity and � is the mesh
length. For stability these must not exceed some value, typically
between 1 and 10. Note that the Reynolds and Péclet numbers
characterizing the flow are 25 times larger, since � = 0.004 is
replaced by l0 � 0.1 as the relevant turbulent length scale in the
non-mesh quantities.

In numerical modelling of systems with weak diffusivity, ν and
χ are usually set constant, close to the smallest value consistent
with the numerical stability requirements. This level strongly de-
pends on the maximum velocity, and hence is related to the local
sound speed, which can exceed 1500 km s−1 in our model. To avoid
unnecessarily strong diffusion and heat conduction in the cold and
warm phases, we scale the corresponding diffusivity with gas tem-
perature as T1/2. As a result, the diffusive smoothing is strongest in
the hot phase (where it is most required). This may cause reduced
velocity and temperature inhomogeneities within the hot gas, and
may also reduce the temperature difference between the hot gas and
the cooler phases.

The effect of thermal instability is controlled by the Field length

λF �
(

KT

ρ2�

)1/2

� 2.4 pc

(
T

106 K

) 7
4( n

1 cm−3

)−1
(

�

10−23 erg cm3 s−1

)− 1
2

,

where we have neglected any heating. To avoid unresolved den-
sity and temperature structures produced by thermal instability, we
require that λF > �, and so the minimum value of the thermal
conductivity χ is as follows

χmin = 1 − β

γ τ cool

(
�

2π

)2

,

where τ cool is the minimum cooling time and β is the relevant
exponent from the cooling function (e.g. as in Table 1 for WSW
cooling). In the single remnant simulations of Appendix B, τ cool �
0.75 Myr. In the full ISM simulations, minimum cooling times as
low as 0.05 Myr were encountered. χmin has maxima corresponding
to β = 0.56, −0.2, −3, . . . , for T = 313, 105, 2.88 × 105 K, . . . .
All of these, except for that at T = 313 K, result in χmin < 4 ×
10−4 km s−1 kpc at cs = c1 = 1 km s−1, so are satisfied by default
for any χ1 sufficiently high to satisfy the Pe� ≤ 10 requirement.
For T = 313 K, at cs = c1 we have χmin = 6.6 × 10−4 km s−1 kpc >

χ1. Thus, if cooling times as short as 0.05 Myr were to occur in the
cold gas, we would have λF < �, and would be marginally under-
resolved. Our analysis of the combined distribution of density and
temperature, however, indicates that cooling times this short occur
exclusively in the warm gas.

With χ1 ≈ 4.1 × 10−4 km s−1 kpc, as adopted in Section 2.4,
Pe� ≤ 10 is near the limit of numerical stability. (We discuss our
choice of thermal diffusivity further in Appendix D.) As a result, the
code occasionally crashed (notably when hot gas was particularly
abundant), and had to be restarted. When restarting, the position
or timing of the next SN explosion was modified, so that the par-
ticularly troublesome SN that caused the problem was avoided. In
extreme cases, it was necessary to increase χ temporarily (for only
a few hundred time steps), to reduce the value of Pe� during the pe-
riod most prone to instability, before the model could be continued
with the normal parameter values.

APPENDI X D : THERMAL I NSTABI LI TY

One of the two cooling functions employed in this paper, WSW,
supports isobaric thermal instability in the temperature range 313 ≤
T < 6102 K where β < 1. (Otherwise, for the RBN cooling function
or outside this temperature range for WSW cooling, we have β ≥ 1
or � � ρ�, so the gas is either thermally stable or has no unstable
equilibrium.)

Under realistic conditions of the ISM, thermal instability can
produce very small, dense gas clouds which cannot be captured
with the resolution � = 4 pc used here. Although the efficiency
of thermal instability is questionable in the turbulent, magnetized
ISM, where thermal pressure is just a part of the total pressure
(Vázquez-Semadeni et al. 2000; Mac Low & Klessen 2004, and
references therein), we prefer to suppress this instability in the
model. However, we do that not by modifying the cooling function,
but rather by enhancing thermal diffusivity so as to avoid the growth
of perturbations at wavelengths too short to be resolved by our grid.

Following Field (1965), we introduce the characteristic wave
numbers

kρ = μ(γ − 1)ρ0Lρ

RcsT0
, kT = μ(γ − 1)LT

Rcs
, kK = Rcsρ0

μ(γ − 1)K
,

where R is the gas constant, and the derivatives LT ≡ (∂L/∂T )ρ
and Lρ ≡ (∂L/∂ρ)T are calculated for constant ρ and T, respec-
tively. The values of temperature and density in these equations,
T0 and ρ0, are those at thermal equilibrium, L(T0, ρ0) = 0 with
L = ρ� − �. Isothermal and isochoric perturbations have the char-
acteristic wave numbers kρ and kT, respectively, whereas thermal
conductivity K is characterized by kK.

The control parameter of the instability is ϕ = kρ/kK.
The instability is suppressed by heat conduction, with the largest

unstable wave numbers given by (Field 1965)

kcc = [
kK (kρ − kT )

]1/2
, (D1)
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Table D1. The unstable wavelengths of thermal instability, according
to Field (1965), at thermally unstable equilibria (T0, ρ0) with the WSW
cooling function.

T0 ρ0 ϕ λρ λcc λmc λcw λmw

( K) (10−24 g cm−3) (pc) (pc) (pc) (pc) (pc)

313 4.97 1.91 2 5 5 2 4
4000 1.20 0.04 101 32 84 14 74
6102 0.94 0.02 192 44 136 20 120

kcw =
[
−kK

(
kT + kρ

γ − 1

)]1/2

, (D2)

for the condensation and wave modes, respectively, whereas the
most unstable wave numbers are

kmc =
[

(1 − β)2

γ 2
+ β(1 − β)

γ

]1/4

(kρkcc)1/2 , (D3)

kmw =
∣∣∣∣β − 1

γ
kρkcw

∣∣∣∣
1/2

. (D4)

Table D1 contains the values of these quantities for the parameters
of the reference model WSWa, where we present the wavelengths
λ = 2π/k rather than the wave numbers k. The unstable wavelengths
of thermal instability are comfortably resolved at T0 = 6102 and
4000 K, with the maximum unstable wavelengths λcc = 44 and
32 pc, respectively, being much larger than the grid spacing � =
4 pc. The shortest unstable wavelength of the condensation mode in
our model, λcc = 5 pc at T ≈ 313 K, is marginally resolved at � =
4 pc; gas at still lower temperatures is thermally stable. Unstable
sound waves with λcw = 2 pc at T = 4000 K are shorter than the
numerical resolution of the reference model. However, for these
wave modes to be unstable, the isentropic instability criterion must
also be satisfied, which is not the case for β > 0, so these modes
remain thermally stable.

Thus, we are confident that the parameters of our models (most
importantly, the thermal diffusivity) have been chosen so as to avoid
any uncontrolled development of thermal instability, even when
only the bulk thermal conductivity is accounted for. Since much
of the cold gas, which is most unstable, has high Mach numbers,
thermal instability is further suppressed by the shock-capturing dif-
fusivity in the cold phase.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Downloaded from https://academic.oup.com/mnras/article-abstract/432/2/1396/1027020/The-supernova-regulated-ISM-I-The-multiphase
by University of Sheffield user
on 18 October 2017


