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ABSTRACT
The plasma flow in the heliospheric interface is considered. The applicability of hydrodynamic
description for this flow is studied. The effect of the magnetic field on the transport properties
in the interface plasma is discussed and the dimensionless parameters related to the plasma
flow are estimated. It is found that both resistivity and Hall effect can be neglected in Ohm’s
law, so that the classical induction equation of the ideal magnetohydrodynamic can be used.
The Reynolds number is moderately large, so the approximation of inviscid plasma is fairly
good. The most important dissipative process is thermal conduction along the magnetic field
lines. This effect has to be definitely taken into account. The results obtained in the paper are
used to outline the ways for advancing the existing models of the heliospheric interface.
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1 IN T RO D U C T I O N : M O D E L O F SO L A R
W I N D – I N T E R S T E L L A R M E D I U M
I N T E R AC T I O N W I T H T WO SH O C K S

The Solar system is surrounded by a mixture of charged and neutral
particles called the local interstellar cloud (LIC). The Sun is moving
with a supersonic velocity with respect to LIC, so that there is a
supersonic flow of the interstellar medium in the solar reference
frame. Colliding this flow with the supersonic solar wind results in
the interaction region called the heliospheric interface. It consists
of the termination shock at which the solar wind is decelerated, the
bow shock at which the interstellar medium flow is decelerated and
the heliopause separating the two decelerated flows. A qualitative
picture of interaction of the solar wind with the interstellar medium
is shown in Fig. 1.

The model of the heliospheric interface with two shocks was first
developed by Baranov, Krasnobaev & Kulikovski (1971). In this
pioneering paper the heliospheric interface was considered as an
infinitely thin layer. Baranov, Krasnobaev & Ruderman (1976) cal-
culated the structure of the heliospheric interface using the method
of asymptotic expansions, while Baranov, Lebedev & Ruderman
(1979) studied the heliospheric interface structure using the direct
numerical modelling.

In the first models of the heliospheric interface only the inter-
action of the solar wind with the plasma component of LIC was
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considered. The neutral component (which mainly consists of the
H atoms) was ignored. After the importance of the charge exchange
was realized, Baranov, Ermakov & Lebedev (1981) carried out the
numerical study of the structure of the heliospheric interface tak-
ing the neutral particles into account. In their model Baranov et al.
used the two-fluid description of the interstellar medium, one fluid
consisting of charged and the other of neutral particles. This model
has been then extended to the multifluid description (see e.g. Fahr,
Kausch & Scherer 2000).

The multifluid models substantially advanced the study of the
heliospheric interface structure. However they still do not provide
its adequate description. The reason is that the fluid description
of particle motion is applicable only when the mean free path is
much smaller than the characteristic spatial scale of a problem.
This condition is definitely violated for the neutrals. Baranov &
Malama (1993) developed a model with the mixed description,
hydrodynamic for the solar wind and the plasma component of
LIC, and kinetic for the interstellar neutral atoms.

The self-consistent model developed by Baranov & Malama
(1993) gave the estimate of the correct distance from the Sun to
the termination shock. It also predicted many physical phenom-
ena like the existence of the hydrogen wall near the heliospheric
boundary and the presence of a few sorts of hydrogen atoms and,
as a consequence, the existence of charge exchange in various re-
gions of the heliosphere. These predictions were later confirmed
by the observations onboard Voyager 1 and 2, Hubble Space Tele-
scope (HST), Ulysses and Interstellar Boundary Explorer (IBEX).
However further development of the kinetic-gasdynamic model be-
came necessary for the interpretation of new observational data.
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Figure 1. A qualitative picture of interaction of the solar wind with the
interstellar medium.

One particular improvement of this model is related to the account
of the magnetic field. The recent progress in the development of
the kinetic-gasdynamic model is described in the review papers by
Baranov (2009) and Izmodenov et al. (2009).

Up to now the ideal magnetohydrodynamic (MHD) equations
have been used to describe the solar wind flow and the flow of
changed component of LIC. Hence, all dissipative processes in the
solar wind and LIC plasmas are neglected. In this paper we discuss
the correctness of this approach and estimate various dimension-
less parameters characterizing the plasma flow in the heliospheric
interface. We also outline possible directions of improvement of ex-
isting models. The paper is organized as follows. In the next section
we discuss the applicability of the hydrodynamic description to the
plasma flow in the heliospheric interface. In Section 3 we present
the equations of anisotropic MHD, discuss the magnetic field effect
on the transport in the interface plasma and estimate various terms
in the MHD equations. Section 4 contains the summary and our
conclusions.

2 CRITERIA OF APPLICABILITY
O F H Y D RO DY NA M I C D E S C R I P T I O N

It is well known that the hydrodynamic equations can be obtained
from the Boltzmann equation for the distribution function using
the Chapman–Enskog method (Chapman & Cowling 1953). This
method is based on using the asymptotic expansions with the Knud-
sen number Kn as a small parameter. Hence, the hydrodynamic
description is only valid when

Kn = �/L � 1, (1)

where � is the mean free path of particles and L is the charac-
teristic spatial scale of the problem. In the first approximation of
the Chapman–Enskog method the distribution function is locally
Maxwellian, and the macroscopic equations are ideal, i.e. they do
not describe any dissipative processes. The transport coefficients
related to viscosity, thermal condition and finite resistivity are cal-
culated in the next order approximation of the Chapman–Enskog
method.

The inequality (1) is not satisfied for the solar wind plasma com-
pressed at the termination shock. Hence, strictly speaking, we can-
not use the hydrodynamic description for the plasma flow in the
inner heliospheric interface, which is the region between the termi-
nation shock and heliopause. Nevertheless in all studies of the solar

wind–interstellar medium interaction, including the gasdynamic-
kinetic modelling, the hydrodynamic description is used in this
region. The standard justification of this approach is as follows.
The classical mean free path of charged particles in plasmas is
calculated on the basis of their Coulomb collisions. Observations
onboard space missions show that space plasmas are subject to vari-
ous microinstabilities. As a result, there is a random wave ensemble
in the plasma. Charged particle are scattered by waves. This scat-
tering introduces the effective mean free path of charged particles.
It is assumed that this effective mean free path, �eff, is much smaller
than both the classical mean free path and the characteristic scale
of a problem, so that

Kneff = �eff/L � 1. (2)

It is worth noting that, at present, there is no rigorous theory
of ‘hydrodynamization’ of collisionless plasmas due to charged
particle scattering by waves. An attempt to describe this process
has been made in the framework of quasi-linear theory (see e.g.
Vedenov 1963). However, this theory failed to describe the full evo-
lution of the distribution function. Hence, the possibility to use the
hydrodynamic description of collisionless plasmas due to charged
particle scattering by waves should be considered only as a conjec-
ture.

The situation is quite different in the outer heliospheric interface,
which is the region between the bow shock and heliopause. The
mean free path of ions calculated using the Coulomb collisions is
given by (e.g. Priest 1982)

� ≈ 109 T 2

ne ln �
m, (3)

where T is the plasma temperature (measured in Kelvin), ne the
electron number density (measured in m−3) and ln � the Coulomb
logarithm with the typical values between 10 and 20. Since the
typical values in the outer heliospheric interface are T = 104 K and
ne = 105 m−3, we obtain that the typical value for the ion mean free
path is � = 1011 m ∼ 1 au. Since L ∼ 100 au, we obtain Kn ∼ 0.01,
so the hydrodynamic description of the plasma component in the
outer heliospheric interface is perfectly correct.

3 T H E E F F E C T O F M AG N E T I C FI E L D
AND ANI SOTROPI C TRANSPORT
I N T H E IN T E R FAC E P L A S M A S

The effect of the interstellar magnetic field on the heliospheric
interface has been studied by many authors (e.g. Aleksashov et al.
2000; Izmodenov, Alexashov & Myasnkov 2005; Izmodenov &
Alexashov 2006; Izmodenov et al. 2009). Recently Izmodenov &
Alexashov (2013) studied the effect of the solar wind magnetic field
on the heliospheric interface. All these studies concentrated on the
effect of the magnetic field on such properties of the interface as
its shape and size, and they used the ideal MHD equations for the
plasma flow description.

In contrast, our aim is to study the effect of the magnetic field
on the transport processes in the plasma. The MHD equations for
collisional plasmas in the one-fluid approximation can be written
as (e.g. Cowling 1960; Kulikovsky & Lyubimov 1965; Priest 1982;
Landau, Lifshitz & Pitaevskii 1984; Goedbloed & Poedts 2004)

∂ρ

∂t
+ ∇ · (ρv) = 0, (4)

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p + j × B + ∇ · � + Q1, (5)
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∂p

∂t
+ v · ∇p + γp∇ · v = −(γ − 1)(L − Q2), (6)

p = kB

m
ρT , (7)

∂B
∂t

= −∇ × E, (8)

∇ × B = μ0 j , (9)

E = j
σ

− v × B − 1

ene
(∇pe − j × B). (10)

Here ρ is the plasma density, p the pressure, T the temperature
(assumed the same for electrons and protons), v the velocity, B
the magnetic field, E the electrical field, j the electrical current,
� the viscosity tensor and L the energy loss function; pe is the
electron pressure, ne the electron number density, γ ( = 5/3) the
ratio of specific heats, kB the Boltzmann constant, m the mean mass
per particle, μ0 the magnetic permeability of free space, e the el-
ementary charge and σ the plasma electrical conductivity. When
writing down equations (4)–(10) we have assumed that the plasma
consists of electrons and protons with the same temperatures.
Hence,

ρ ≈ mpne, m = 1

2
mp pe = 1

2
p, (11)

where mp is the proton mass.
The quantities Q1 and Q2 on the right-hand sides of expressions

(5) and (6) represent the sources of momentum and energy due to
charge exchange of H atoms and protons. The expressions for these
quantities are given by (Baranov & Malama 1993)

Q1 = mH

∫ ∫
uσ Hp

ex (u)(wH − wp)

×fH(wH)fp(wp) dwH dwp, (12)

Q2 = mH

2

∫ ∫
uσ Hp

ex (u)
(
w2

H − w2
p

)
×fH(wH)fp(wp) dwH dwp − v · Q1. (13)

Here mH is the atom mass, nH the atom number density,
u = |wp − wH| the relative atom–proton velocity and σ Hp

ex (u) the
charge exchange cross-section of an H atom with a proton. The
proton velocity distribution function fp is locally Maxwellian. It is
given by

fp(wp) = np

π3/2c3
p

exp

(
− (wp − v)2

c2
p

)
, c2

p = 2kBT

mp
, (14)

where np is the proton number density and cp the proton thermal
speed. The atom distribution function fH is determined by the ki-
netic equation which we do not write down because it is not used
in what follows.

The expression for the viscosity tensor can be written as a sum
of five terms (Braginskii 1965),

� = η0�0 + η1�1 + η2�2 − η3�3 − η4�4. (15)

The ratios of the second and third terms on the right-hand side of
this equation to the first one are of the order of (ωpτ p)−2, while the

Table 1. Plasma and magnetic field parameters in inner
interface.

Plasma speed V 105 m s−1

Electron number density ne 2 × 103 m−3

Proton temperature T 105 K

Magnetic field B 1.5 × 10−10 T =
1.5 × 10−6 G

Electron cyclotron frequency 30 s−1

ωe = eB/me

Electron collisional time 2 × 108 s
τe ≈ 1.4 × 104n−1

e T 3/2

Electron mean free path 3 × 1014 m
�e ≈ 4 × 103T1/2τ e

Hall parameter ωeτ e 7.5 × 109

Proton cyclotron frequency 0.02 s−1

ωp = eB/mp

Proton collisional time 1010 s
τp ≈ 6 × 105n−1

e T 3/2

ωpτ p 2 × 108

ratios of the third and fourth terms to the first one are of the order
of (ωpτ p)−1, where ωp is the proton gyrofrequency given by

ωp = eB

mp
, (16)

and τ p is the proton collisional time given by (e.g. Goedbloed &
Poedts 2004)

τp = 6π
√

2π ε2
0

m1/2
p (kBT )3/2

e4ne ln �
≈ 6 × 105n−1

e T 3/2, (17)

where ε0 is the permittivity of free space, ne and T are measured
in m−3 and K and we have taken ln � = 20. In Tables 1 and 2 the
typical plasma and magnetic field parameters in the inner and outer
heliospheric interface are given. We see that (ωpτ p)−1 � 10−5 in

Table 2. Plasma and magnetic field parameters in outer
interface.

Plasma speed V 2.5 × 104 m s−1

Electron number density ne 105 m−3

Proton temperature T 104 K

Magnetic field B 2 × 10−10 T =
2 × 10−6 G

Electron cyclotron frequency 40 s−1

ωe = eB/me

Electron collisional time 1.4 × 105 s
τe ≈ 1.4 × 104n−1

e T 3/2

Electron mean free path 8 × 1010 m
�e ≈ 4 × 103T1/2τ e

Hall parameter ωeτ e 6 × 106

Proton cyclotron frequency 0.03 s−1

ωp = eB/mp

Proton collisional time 6 × 106 s
τp ≈ 6 × 105n−1

e T 3/2

ωpτ p 2 × 105
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the outer interface, so the first term on the right-hand side of equa-
tion (15) strongly dominates all other terms, and we can take

� ≈ η0�0 = η0

(
bb − 1

3
I
)

[3b · ∇(b · v) − ∇ · v], (18)

where b = B/B is the unit vector in the magnetic field direction, bb
is the dyadic product of two vectors, I is the unit tensor and we have
used the expression for �0 obtained by Braginskii (1965) (see also
Goedbloed & Poedts 2004). As for the inner interface, as we have
already mentioned, its MHD description is based on the conjecture
that the scattering of charged particles by waves dramatically re-
duces the collision time and mean free path. The MHD description
is possible if �eff � 10 au. Even if we take �eff = 1 au, we ob-
tain τp,eff ≈ 3 × 106 s and (ωpτp,eff )−1 � 10−5, so the approximate
expression (18) can be also used in the inner interface.

The ratio of the last term on the right-hand side of equa-
tion (5) to the left-hand side of this equation is of the order of the
inverse Reynolds number Re = ρLV/η0, where V is the characteris-
tic plasma speed. The dynamic viscosity η0 is given by (Braginskii
1965)

η0 ≈ nekBT τp ≈ 1.4 × 10−23neT τp. (19)

Then, once again taking L ∼ 100 au, we obtain Re ≈ 750 in the outer
interface. Taking �eff between 1 and 10 au in the inner interface gives
Re between 35 and 350. Hence, although the Reynolds number is
not very large, it seems to be reasonable to neglect viscosity when
studying the plasma flow in the heliospheric interface.

It is also instructive to compare the term describing the viscosity
on the right-hand side of equation (5) with the term describing the
effect of charge exchange with atoms. Although, in general, the
atom distribution function can substantially deviate from locally
Maxwellian, to obtain the estimate for Q1 we take it to be locally
Maxwellian. Hence, we assume that it is given by equation (14)
with nH substituted for np and cH substituted for cp. We also sub-
stitute σ Hp

ex (u) by its typical value. Then, making a proper variable
substitution in the integral in equation (12), we obtain

| Q1| � mHnHnp

π3
σ Hp

ex

∫
e−y2

d y
∫

|cHx − cp y|2e−x2
dx

= 2mHnHnpσ
Hp
ex

(
c2

p + c2
H

)
. (20)

For nH and cH we take their values in the interstellar medium before
the bow shock. Then nH ≈ 2 × 105 m−3 and, taking the temperature
of H atoms equal to 6500 K, we obtain cH ≈ 10 km s−1. The typical
value for the charge exchange cross-section is σ Hp

ex = 5 × 10−19 m2.
Using the values given in Tables 1 and 2 we get cp ≈ 40 km s−1 in
the inner interface and cp ≈ 13 km s−1 in the outer interface. Then
we obtain | Q1| � 6 × 10−28 kg m−2 s−2 in the inner interface and
| Q1| � 4.5 × 10−27 kg m−2 s−2 in the outer interface. The ratio of
the term describing viscosity to the term related to the effect of
charge exchange with atoms in equation (5) is

|∇ · �|
| Q1|

� ρV 2

L Re| Q1|
. (21)

Substituting the numbers in this formula we obtain that this ratio
is approximately between 0.01 and 0.1 in the inner interface, and
it is approximately equal to 0.002 in the outer interface. Hence,
the momentum exchange between the plasma and atoms due to
charge exchange strongly dominates viscosity. This result gives an
additional reason to neglect viscosity.

The energy loss function is given by (e.g. Priest 1982)

L = −∇ · q + ρ2Q(T ) − j 2

σ
− � : ∇v. (22)

Here q is the heat flux, Q(T) the optically thin radiative loss func-
tion and the colon indicates the double contraction of two tensors.
The third and fourth terms on the right-hand side of equation (22)
describe the resistive and viscous heating, respectively. The heat
flux is given by

q = −κ‖b(b · ∇T ) − κ⊥[∇T − b(b · ∇T )] − κ∧b × ∇T . (23)

The electron gyrofrequency is given by

ωe = eB

me
, (24)

and the electron collisional time by (e.g. Goedbloed & Poedts 2004)

τe = 6π
√

2π ε2
0

m1/2
e (kBT )3/2

e4ne ln �
≈ 1.4 × 104n−1

e T 3/2, (25)

where me is the electron mass. For ωeτ e � 1 we have the estimates
κ⊥/κ‖ ∼ (ωeτ e)−2 and κ∧/κ‖ ∼ (ωeτ e)−1. Since, in accordance
with Table 2, (ωeτ e)−1 < 10−6, it follows that we can neglect the
second and third term on the right-hand side of equation (23) in the
outer interface. A similar result is valid in the inner interface.

For the typical plasma temperature in the heliospheric interface
the main radiative losses are related to the emission in resonance
lines of ionized heavy atoms (bound–bound emission), and the ra-
diative recombinations (free–bound radiation). There are practically
no heavy atoms in the interface plasma, and the process of the re-
combination of electrons with protons is very weak. Hence, the term
ρ2Q(T) in equation (22) can be safely neglected.

The coefficient of the parallel thermal conduction is given by
(Spitzer 1962; Priest 1982)

κ‖ ≈ 10−11T 5/2 W m−1 K−1. (26)

However, we can use this expression only in the outer interface. The
point is that κ‖ is proportional to τ e. Since we use τe,eff instead of
τ e in the inner interface, we have to use κ‖eff = (τe,eff/τe)κ‖ instead
of κ‖. The plasma electrical conductivity is given by (e.g. Priest
1982)

σ = e2neτe

me
≈ 3 × 10−8neτe. (27)

Using equations (9), (23) and (26) we obtain that, in the outer
interface, the ratio of the third term on the right-hand side of equa-
tion (22) to the first one is of the order of

B2

μ2
0σκ‖T

≈ 2 × 1022 B2

neτeT 7/2
. (28)

To obtain this ratio in the inner interface we have to multiply this
expression by τe/τe,eff and substitute τe,eff for τ e. This ratio is ap-
proximately equal to 6 × 10−22 in the outer interface, and it is
approximately between 10−19 and 10−17 in the inner interface for
�eff between 1 and 10 au. Hence, it is obvious that we can neglect
the third term on the right-hand side of equation (22) in comparison
with the first one.

Now we compare the last and first term on the right-hand side
of equation (22). Using equations (15), (18), (19), (23) and (26) we
obtain that, in the inner interface, this ratio is of the order of

η0 V 2

κ‖T
≈ 1.4 × 10−12neτpV

2T −5/2. (29)
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Once again, to obtain this ratio in the inner interface we have to
multiply this expression by τe/τe,eff and substitute τp,eff for τ p. Then
we obtain that this quantity is approximately equal to 0.05 in the
outer interface, and to 0.075 in the inner interface for �eff between
1 and 10 au. While the ratio of these two terms is not very small,
the first term still dominates. Hence, we conclude that we can use
the approximate expression

L = ∇ · [κ‖b(b · ∇T )] (30)

in the whole heliospheric interface.
The ratio of the right-hand side of equation (6) to its left-hand

side is of the order of the inverse Peclet number given by

Pe = kBneLV

κ‖
≈ 1.4 × 10−12neLV T −5/2 (31)

in the outer interface. To obtain the expression for the Peclet number
in the inner interface we have to multiply this expression by τe/τe,eff .
We obtain Pe ≈ 5 in the outer interface, and Pe is approximately
between 0.4 and 4 in the inner interface for �eff between 1 and 10 au.
These results imply that the account of plasma thermal conduction
in the heliospheric interface is very important.

Now we compare the term describing the heat conduction in
equation (6) with that related to the energy exchange between the
plasma and atoms due to charge exchange. To estimate Q2 we, for the
sake of simplicity, assume that the two terms on the right-hand side
of equation (13) are of the same order. As we do not know the angle
between v and Q1, we now use as an estimate |Q2| � |v · Q1|/2.
Then we obtain | Q2| � 3 × 10−23 kg m−1 s−1 in the inner interface
and | Q2| � 5 × 10−23 kg m−1 s−1 in the outer interface. The ratio
of the energy loss function to the term related to the energy flux due
to the charge exchange with atoms in equation (6) is

|L|
|Q2| � kBneT V

L Pe|Q1| . (32)

Substituting the numbers in this formula we obtain that this ratio
is approximately between 0.2 and 2 in the inner interface, and it is
approximately equal to 0.1 in the outer interface. These estimates
show that the energy flux due to thermal conduction is not small in
comparison with that due to charge exchange.

Finally, we compare the terms on the right-hand side of equa-
tion (10). The ratio of the first term on the right-hand side of this
equation to the second one is of the order of the inverse magnetic
Reynolds number given by

Rm = μ0σV L ≈ 4 × 10−14neτeV L. (33)

We obtain Rm ≈ 2 × 1014 in the outer interface, while Rm is approx-
imately between 1.3 × 1013 and 1.3 × 1014 in the inner interface.
We see that we can neglect the first term on the right-hand side of
equation (10) in comparison with the second one. The ratio of last
term on the right-hand side of equation (10), which describes the
Hall effect, to the second one is of the order of ωeτ e/Rm. Hence, it
is of the order of 3 × 10−8 in the outer interface, and of the order
of 2 × 10−7 in the inner interface, which implies that the Hall term
also can be neglected. Then, eliminating E from equations (8) and
(10), we obtain the induction equation of the ideal MHD:

∂B
∂t

= ∇ × (v × B). (34)

Note, however, that this conclusion may be incorrect if we take
the effect of charge exchange into account. We do not discuss this
problem here because it has been already addressed by Baranov &
Fahr (2003, 2006).

Table 3. Dimensionless parameters in inner interface.

Reynolds number Re = ρVL/η0 35/350

Peclet number Pe = kBneV L/κ‖ 0.4/4

Magnetic Reynolds number Rm = μ0σVL T 1.3 × (1013/1014)

ωeτ e/Rm 2 × 10−7

Table 4. Dimensionless parameters in outer interface.

Reynolds number Re = ρVL/η0 750

Peclet number Pe = kBneV L/κ‖ 5

Magnetic Reynolds number Rm = μ0σVL T 2 × 1014

ωeτ e/Rm 3 × 10−8

The main dimensionless parameters related to the plasma flow
in the heliospheric interface are presented in Tables 3 and 4. In
Table 3 for each dimensionless parameter a range of its variation
corresponding to �eff between 1 and 10 au is given. There is only
one value for ωeτ e/Rm in the inner interface because this quantity
is independent of �eff.

4 SU M M A RY A N D C O N C L U S I O N S

In this paper we considered the plasma flow in the heliospheric
interface. We discussed the applicability of the hydrodynamic de-
scription for the plasma flow in the interface. We found that the
Knudsen number Kn is small in the outer interface, which is the
region between the bow shock and the heliopause. This warranties
the applicability of the hydrodynamic description for the plasma
flow in the outer interface. However, in the inner interface, which is
the region between the termination shock and the heliopause, Kn �
1, at least if we calculate the mean free path � of charged parti-
cles using Coulomb collisions. Hence, to approve the application
of the hydrodynamic description to the plasma flow in the inner
interface we assumed that there is scattering on charged particles
on plasma waves which reduces the effective mean free part, so that
the effective mean free path �eff becomes of the order or smaller
than 10 au. We noted that, at present, there is no rigorous derivation
of the hydrodynamic equations for plasmas based on the charged
particle scattering by waves. Hence, we conclude that there is also
no firm mathematical ground for the application of hydrodynamic
description of the plasma flow in the inner interface. Even if the
charged particle scattering by waves can result in a kind of hydro-
dynamization of the plasma flow, the distribution functions of the
ions and electrons in this flow can be quite different from the local
Maxwellian. Recently Chalov & Fahr (2013) have shown that, in
order to explain the properties of the solar wind flow behind the ter-
mination shock one needs to assume that the electron temperature
is about 10 times higher than the ion temperature. Hence, even if
the plasma flow in the inner interface can be described by the MHD
equations, it should be a modified hydrodynamics with different
temperatures of the ion and electron gases.

We presented the MHD equations with anisotropic transport co-
efficients and estimated various terms in these equations. The es-
timates for the inner interface are based on the assumption that
�eff is between 1 and 10 au. We found that the first term in the
Braginskii viscosity tensor strongly dominates all other terms. The
Reynolds number is moderate, however, it is still sufficiently large
to enable neglecting viscosity. The resistive and Hall term in Ohm’s
equation can be safely neglected, so that the classical induction
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equation of the ideal MHD can be used. The dominant term in the
energy loss function is the one describing thermal conduction, and
thermal conduction along the magnetic field is by far larger than
that in the directions orthogonal to the magnetic field. The Peclet
number determining the importance of thermal conduction is quite
small, which means that the account of thermal conduction along
the magnetic field lines in the energy equation is very important.

On the basis of the results obtained in the paper we can suggest
how to advance the existing models of the heliospheric interface. It is
obvious that using the approximation of ideal MHD is inappropriate,
and the thermal conduction along the magnetic field lines should
definitely be included in the energy equation. Since the magnetic
field lines cross both the termination and bow shock, these shocks
are not classical shocks considered in the ideal MHD, but isothermal
shocks with the temperature not changing across the shock.

The model can be advanced further by using the kinetic descrip-
tion of plasma flow in the inner interface. The charged particle
gyroradius is much smaller than the characteristic spatial scale of
the problem. This makes possible mixed description of the plasma
flow in the inner interface, hydrodynamic in the directions perpen-
dicular to the magnetic field and kinetic along the magnetic field.
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