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Abstract

Many important intermetallic compounds display a faceted morphology during solidification

close to equilibrium but adopt a more continuous, dendritic like morphology with increasing

departure from equilibrium. We present a phase-field model of solidification that is able to

both reproduce the Wulff shape at low driving force and to simulate a continuous transition

from faceted to dendritic growth as the driving force is increased. A scaled ratio of the

(perimeter)
2
to the area is used to quantify the extent of departure from the equilibrium shape.
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Introduction

Phase-field modelling is widely used to simulate continuous (non-faceted) crystal

morphologies, such as dendrites, during growth from the melt. Much less attention has been

paid to the growth of faceted crystals as the phase-field rationale of approximating the sharp

solid-liquid interface with one that is diffuse does not immediately lend itself to the

solidification of such faceted crystals. Despite this, a number of methodologies for simulating

faceted morphologies have been proposed [e.g. 1, 2, 3, 4, 5, 6].

Much of the interest in simulating faceted crystal growth has been stimulated by the study of

Si and Ge due to their importance in the electronics industry. However, the growth of faceted

crystals is also important within the light metals industry with regard to structural

components. This is not only because Si is used extensively in Al casting alloys, producing a

faceted/non-faceted eutectic but also because many of the most deleterious intermetallics

formed due to impurity elements within Al-alloys are strongly faceted (e.g. -Al13Fe4 [7]).

It is well established that crystals that grow with faceted morphologies close to equilibrium

progressively take on more continuous interface shapes with increasing departures from

equilibrium, eventually adopting fully dendritic morphologies. This has been shown for the

growth of pure semiconductors [8, 9], the Si phase in Al-Si eutectics [10] and for

intermetallic phases [11]. Simulation of this particular aspect of faceted growth has however

received very little attention.

Within phase-field the strong anisotropy required to produce faceted growth can be

incorporated into the interfacial surface energy [1, 2, 3], the kinetic mobility [4, 5] or both

[6]. Recent work has tended to favour the kinetic approach, but when considering the faceted

to non-faceted transition mediated by high growth velocity this approach is problematic as

the tendency towards faceting becomes stronger, rather than weaker, with increasing growth



velocity. There is a further problem in that, in the limit of vanishing growth velocity the

kinetic anisotropy vanishes, giving rise to isotropic growth. In contrast, faceting introduced

via the surface energy has the desirable properties that the faceted morphology is most

pronounced at equilibrium and is progressively lost with increasing growth velocity. As such,

this approach is a computationally expedient means of studying the faceted to non-faceted

growth transition.

In this paper we use a phase-field model of faceted crystal growth mediated by a strong

anisotropy in the interfacial surface energy in order to study the transition from faceted to

dendritic growth with increasing growth velocity. As far as we are aware, the only previous

work to simulate this type of transition using phase-field is [3], and then in the case of

thermal growth only.

Phase-field Model

The equations for the evolution of the phase- () and solute- (c) fields are given by:
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where D and M are the solute diffusivity and kinetic mobility respectively. F is the total free

energy for the system, given by:

 xdGF
3

(3)

with G being the free energy density given by:
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Here, g() = 2(3 - 2) is a polynomial that interpolates between the bulk free energies for the

liquid (Gliq) and solid (Gsol) phase respectively at concentration c and temperature T,  is a

scalar that governs the barrier height associated with the double well potential 82(1 - )2 and
A is a function that governs the anisotropy. The most common model for weakly anisotropic

materials displaying four-fold symmetry is:
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where  is a measure of the width of the diffuse interface and  controls the strength of the

anisotropy.  is the angle of the outward pointing normal to the solid-liquid interface, given

by:
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In the simulations reported here we consider the growth of Si crystals from hypereutectic Al-

Si at c = 0.6 (60 at.% Si). The bulk free energies for the solid and liquid phases are given by:
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Here j labels the phase (either liquid or solid), R is the gas constant and m the molar volume.

G
i
(i = Al, Si) are the free energy of the pure elements while G

xs
is the excess free energy on

mixing, which are given respectively by:
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Equations (7)-(9) are the standard way of representing the thermodynamics of solution phases

in CALPHAD. The coefficients a-h and p-q are obtained from version 5.0 of the SGTE

solutions database and are based on the thermodynamic assessment contained within [12].

The phase diagram is shown in Figure 1.

Figure 1. Phase diagram for the Al-Si system. Simulations here conducted at c = 0.6.

The solution to the above set of equations is obtained using a finite difference implicit

scheme with a geometric multigrid solver on an adaptive mesh to achieve high a density of

mesh elements at the interface. Full details of the computational scheme, applied to the

growth of continuous (non-faceted) crystals, are given in [13].



Anisotropy and Modelling of Facets

The effect of the anisotropy function, , on the equilibrium shape of the crystal is shown in

Figure 2. Figure 2a shows a polar plot of  for several values of the anisotropy strength, .
The corresponding Frank diagram is a contour of  in [x, y] space, where x and y are the

partial derivative of  with respect to x and y respectively. An example Frank diagram,

corresponding to values of  used in Figure 2a is shown in Figure 2b. From this we can

calculate the function W(t) = [x(t), y(t)], where [x = cos(t), y = sin(t)] and:
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W(t) is shown in Figure 2c and is in fact the well-known Wulff shape giving the equilibrium

shape of the crystal. For high values of  it can be seen from Figure 2c that W(t) develops

cusps or ‘ears’ aligned with the principal anisotropy directions. These correspond to

disallowed crystal orientations and indicate that the resulting solidification morphology will

develop a sharp vertex during growth. For n-fold symmetry this will occur for  > 1/(n
2
– 1),

 > 1/15 for four-fold growth. However, it is clear from Figure 2c that the Wulff shape still

has curved sides even for  > 1/15, that is high anisotropy strength per se does not yield a

faceted crystal with flat faces.

Figure 2. (a) Polar plot, (b) Frank diagram and (c) Wulff shape for a weak 4-fold anisotropy.

In fact, as shown in Figure 3, the condition for flat, i.e. faceted, faces is that polar plot of 
should have concave regions. For six-fold symmetry, as we might require for growth of Si

crystals, this is achieved using an anisotropy of the form (1 + cos(3)) and has been

adopted within the phase-field code for the simulations reported here. However, the sharp

vertices also associated with the Wulff shape for this anisotropy can cause numerical

problems, wherein to avoid this we approximate )3cos(  by q2)3(cos  , where q is a

small quantity. The effect is to introduce vertices which have a small, but constant curvature.

Noting that:
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we have the final form of the anisotropy functional as:
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Figure 3. (a) Polar plot, (b) Frank diagram and (c) Wulff shape for a faceted hexagonal

crystal.

Results and Discussion

Figure 4 illustrates the crystal morphologies simulated at four different nucleation

temperatures; TN = 1300 K, 1200 K, 1100 K and 1000 K. These are relative to a liquidus

temperature at c = 0.6 of 1430 K. The progression from essentially flat faceted hexagonal

crystal at the lowest undercooling to almost fully continuous six-fold dendrite at the highest

undercooling is clear, showing that the proposed model provides an appropriate framework

for simulating a faceted to continuous growth transition with increasing driving force. Further

detail is given in Figure 5 in which we show the growth of the crystal at TN = 1000 K at three

different instances in time. A pseudo-3D contouring is used in Figure 5 as this is particularly

effective in picking out the solute rich cores evident within the dendrite arms.

Figure 4. Crystal morphologies for nucleation temperatures of (a) 1300 K, (b) 1200 K, (c)

1100 K and (d) 1000 K. All have the same anisotropy function as shown in Figure 3.



In order to evaluate the evolution of the crystal morphology quantitatively as a function of

time and undercooling we define  as:
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This measure is invariant under scaling and is normalised so as to equal unity for a circle.

Any other closed shape will have  > 1, with a regular hexagon having the value

10.1)3/(6   . Figure 6 plots (a)  and (b) the rate of change of ,  , both as a

function of the maximum extent of growth. Larger values of  indicate increasing departure

from the hexagonal morphology and hence a crystal with a more dendritic character.

Figure 5. Three snapshots at different stages in the growth of a crystal with nucleation

temperature of 1000 K.

With reference to Figure 6a it is clear that  increases as growth progresses at all

undercoolings studied here. From Figure 6b it can be seen that in all cases  is initially

positive but decreasing. This initial transient is as a result of the model using a circular seed

to nucleate solidification. This is a deliberate choice so that any subsequent growth of an

hexagonal morphology is unambiguously the result of the system selecting such a

morphology, not being forced by the initial condition. In the case of the growth of a solid

hexagon,  will increase from 1.00 to 1.10 and  will decrease monotonically tending

asymptotically towards zero. This appears to be the behaviour observed at the highest

nucleation temperature (lowest undercooling) of TN = 1300 K. At nucleation temperatures of

1200 K and below,  passes through a local minimum, thereafter increasing rapidly. This

corresponds to the point at which  initially exceeds 1.10 and as such is the first indication

that the resulting crystal morphology will not be a simple regular hexagon. It can be seen

from Figure 6b that all of the minima for different nucleation temperatures lie on a single

straight line (in log-linear co-ordinates). Consequently, it would appear that the size of the

crystal when it first begins to depart from simple hexagonal can be easily predicted for any

given nucleation temperature. It is also clear that the curve for TN = 1300 K has become

asymptotic to the line and, as such, is unlikely to display a minimum. This would indicate tha

for TN = 1300 K a simple hexagonal crystal will be preserved indefinitely during growth, in

line with expectation that close to equilibrium the Wulff shape is recovered.



Figure 6. (a) Scaled ratio of (Perimeter)
2
/Area as a function of crystal size for various

nucleation tmperatures. (b) Rate of change of ratio of (Perimeter)
2
/Area.

With continued growth, at all nucleation temperatures except TN = 1300 K,  subsequently

passes through a local maximum. Irrespective of undercooling, this occurs for   1.75 and

corresponds to a morphology which we might loosely describe as a faceted hexagonal star, of

which Figure 4b is an example. This rapid change in  (maximum in  ) seems to be related

to the formation of arms along the original locations of the vertices. Thereafter,  mostly

decreases smoothly, possibly with subsequent local minima, as evident in the curve for TN =

1000 K. These probably correspond to the formation of the faceted kinks in the dendrite

arms, as evident in Figure 5c.



Summary and Conclusions

A phase-field model for the binary alloy solidification of faceted crystal morphologies has

been proposed. It has been demonstrated that not only can the model reproduce the Wulff

shape for near equilibrium solidification, but that faceted to dendritic transitions can be

simulated at large departures from equilibrium, in agreement with rapid solidification

experiments. A scaled ratio of the (perimeter)
2
to the area of the crystal, denoted by , is

used as a measure of the departure of the morphology from the equilibrium Wulff shape. The

evolution of , and of its rate of change,  , as a function of crystal size and undercooling,

provides a framework in which the evolution of non-equilibrium crystal shapes may be

understood.
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