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Abstract

Social structure evolves from a trade-off between the costs and benefits of group-living, which are in turn dependent upon
the distribution of key resources such as food and shelter. Males and females, or juveniles and adults, may have different
priorities when selecting habitat due to differences in physiological or behavioural imperatives, leading to complex patterns
in group composition. We studied social structure and mating behaviour in the insectivorous bat Myotis daubentonii along
an altitudinal gradient, combining field studies with molecular genetics. With increasing altitude the proportion of males in
summer roosts increased and only males were present in the highest roosts. With increasing altitude environmental
temperature decreased, nightly variation in temperature increased, and bat foraging activity decreased, supporting the
hypothesis that the harsher, high elevation sites cannot support breeding females. We found that offspring in female-
dominated lowland roosts had a very high probability of being fathered by bats caught during autumn swarming at
hibernation sites, in contrast to those in intermediate roosts, which had a high probability of being fathered by males
sharing the nursery roost with the females. Whilst females normally appear to exclude males from nursery colonies, for
those in marginal habitats, one explanation for the presence of males is that the thermoregulatory benefits to the females
may outweigh disadvantages, such as competition for food, and give some males an opportunity to increase their breeding
success. We suggest that the environment, and its effects on resource distribution, thus determine social structure, which in
turn determines the mating pattern that has evolved.
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Introduction

Social structure evolves from a trade-off between the costs and

benefits of group-living, which are in turn dependent upon the

distribution of key resources such as food and shelter. Males and

females, or juveniles and adults, may have different priorities when

selecting habitat due to differences in physiological or behavioural

imperatives, leading to complex patterns in group composition

[1][2][3]. Senior et al. [4] showed that sexual segregation in the bat

Myotis daubentonii along an altitudinal gradient also led to

segregation among groups of males. At high elevations only males

were present in habitat unable to support the high energetic

demands of nursing females. At mid elevations males shared

nursery roosts with females and had a much greater chance of

fathering offspring from these roosts than the males at higher

elevations. These males were presumed, on the balance of

evidence, to exclude other males from habitat and roosts occupied

by females. The excluded males were, however, able to mate

during autumn swarming, but with a much lower probability of

fathering the young from mid elevation roosts. Swarming occurs

during the typically brief visits bats make to hibernation sites in

late summer and autumn to mate. As the swarming season

progresses into hibernation an increasing proportion of the visiting

bats, of both sexes, remain in the hibernation sites e.g. [5][6]

where it is possible that mating continues through the winter.

Here, we address three questions raised by Senior et al. [4]: (1)

Other studies suggest that mating during swarming, not summer in

roosts, is the primary sexual behaviour in Myotis species. Can these

apparently conflicting results be reconciled? (2) Myotis daubentonii

nursery colonies in the lowlands comprise almost exclusively adult

females and their young. In the absence of a dominant male group

in the roost, what is the mating behaviour, as assessed by patterns

of paternity? (3) Can this variation in roosting and mating

behaviour be explained on the basis of habitat and resources?

Daubenton’s bat, Myotis daubentonii, is a small insectivorous

species that feeds over smooth water, catching insects from the air

or the water surface. In summer it roosts in trees, buildings and

bridges close to water. In late summer and autumn, prior to

hibernation, Myotis species swarm at caves and other underground

sites e.g. [7,6,8] and swarming is believed to be the primary mating

behaviour of most Myotis species e.g. [9][10][5][11]. We studied

the same ringed population in the Yorkshire Dales National Park,

UK, investigated by Senior et al. [4]. Full details can be found in

the earlier paper. The absence of females at high elevations, a

widely observed phenomenon in temperate bats e.g. [12][13], can

be explained by the high energetic demands of reproduction which

cannot be met by sub-optimal foraging conditions [12]. Males

have lower energy requirements and the ability to use facultative
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heterothermy (torpor) to make substantial energy savings e.g. [14],

an option not open to breeding females since it reduces foetal

growth rates and possibly milk production [15]. To address the

three questions posed above, we extended the study downstream

of the sites studied by Senior et al. [4], investigating the changing

patterns of roost composition, social structure and paternity, in

relation to environment. Lowland nurseries typically have few

resident males, suggesting that the higher proportion of mating in

summer roosts compared to swarming observed by Senior et al. [4]

may be a feature only of populations at mid elevations. Our

hypothesis was that a flexible mating pattern has evolved to fit the

prevailing social structure, itself a result of varying environmental

conditions. We predicted that swarming would be the dominant

sexual behaviour of lowland populations.

Materials and Methods

Ethics statement
All bats are protected under UK and EU law. Bats were caught

and ringed (banded) under licence from Natural England, the

statutory nature conservation organisation and wing biopsies taken

under licence from both Natural England and the UK Home

Office. Full methods are given below.

Study site
The study area was a 40 km stretch of the River Wharfe in the

Yorkshire Dales National Park, UK (latitude 54uN) (Figure 1). The

river falls from 260 m to 70 m a.s.l. along the study site. The

upper-elevation site, (.200 m a.s.l.) is a narrow post-glaciation

valley with steep sides. The river is ,5 m wide, frequently shallow

and turbulent, with rocks breaking the surface. The mid-elevation

site (100–200 m a.s.l.) is wider and the river is broader, deeper and

smoother. At the low-elevation site (,100 m a.s.l.) the river is

typically 20 m wide and smooth. Land-use bordering the river is

pasture with some broadleaved woodland.

Acoustic surveys and environmental monitoring
Temperature loggers (TinyTag TGP-4500, www.

geminidataloggers.com) were placed in upper-, mid- and low-

elevation sites (Kettlewell Bridge, Grassington Bridge and

Addingham Low Mill, see Figure 1) 1 m from the ground and

2 m from the river, sheltered from sun and rain. Temperature was

recorded every 30 minutes from 6 pm to 6 am, June–August 2005.

Acoustic surveys were conducted on 1861 km walked transects

along riverside footpaths. Each transect was walked (at approx-

imately 3.5 km h21) upstream and downstream on the same night

starting one hour after sunset. Time-expanded recordings were

made from Pettersson D240x bat detectors to Edirol R-09 digital

recorders. Detectors were directed to pick up calls from bats flying

over the water surface, maximising the chance of Myotis calls being

from M. daubentonii. Transects were carried out over two weeks in

July 2007 on warm, dry evenings (.8uC) with little or no wind.

Sonograms were viewed using BatSound (www.BatSound.com).

All Myotis calls were assumed to be M. daubentonii. Of 272 Myotis

bats caught over rivers in the area between 1996 and 2006, 87%

were M. daubentonii. Results were expressed as bat passes or feeding

buzzes km21.

Bat capture
Bats were caught and ringed (banded) under licence from

Natural England, the statutory nature conservation organisation

and wing biopsies taken under licence from both Natural England

and the UK Home Office. Bats were captured at summer roosts

with static hand nets and at swarming and foraging sites using

harp traps and mist nets. Genetic data are from bats captured

between July 2004 and August 2007, other data were collected

between 1996 and 2007. Mist nets were monitored continuously

and bats removed immediately on entry. Harp traps were

inspected at least every 15 min and all bats removed at each

inspection. Bats were hung in a safe place in cotton bags prior to

processing. All bats were processed and released at the site of

capture within 1 h. Bats were weighed, forearm length was

measured, and a numbered aluminium ring (supplied by the

Mammal Society, UK) was placed on the right forearm of each

bat. A 3 mm biopsy was taken from each outstretched wing using

a sterile biopsy punch over a sterilised plastic board. Biopsies were

stored in 100% ethanol prior to analysis. Age was classed as either

juvenile (born that year) or adult (born the previous year or earlier)

[16]. The ‘chin-spot’ [17] was not used to distinguish between

adults and juveniles as some individuals retained it for up to at

least four years.

Genotyping
Data were from individuals caught between 2004 and 2006 and

independent of those used by Senior et al. [4]. Genomic DNA

extraction and PCR methods are given in Methods S1. Ten

polymorphic microsatellite loci were used in DNA amplification

and samples were genotyped using GeneMapper 3.7 (Applied

Biosystems). Locus and allele information is provided in Methods

S1.

Paternity assignment
Two methods of paternity assignment were used. The first

method determined the likelihood of paternity of individual males,

based on comparisons of genotypes of offspring and putative

parents [18] (see Methods S1). This works well for closed

populations where mothers are known, candidate numbers of

fathers are known and it is possible to genotype a high proportion

of candidate fathers. However, in this study mothers were not

known and there was a large and unknown number of potential

fathers resulting in only a small number of confident parentage

assignments. The second method used a Bayesian approach to

assign probabilities of parentage to male groups, rather than

individuals. This allows more effective use of all data available to

test hypotheses concerning the prevalent mating pattern.

(a) Paternity assignment to individual males. Direct

paternity assignment of lower dale and lowland offspring to

individual males was carried out using CERVUS 3.0 [18]. Data for

each year and area were analysed twice: Full analyses with males

from Wharfedale and Wensleydale summer sites and Yorkshire

Dales swarming sites, to determine where the paternity assign-

ments were most likely to lie; and Wharfedale analyses with males

from Wharfedale summer sites only to reduce candidate number

and increase likelihood ratio, gaining a clearer picture of where

fathers were most likely to be within Wharfedale. Full details are

provided in Methods S1.

(b) Paternity assignment to male group. Burland et al.

[19] used a Bayesian approach to assign probabilities of parentage

to groups, rather than individuals. Senior et al. [4] modified their

program to estimate the mating success of males from four groups

in relation to offspring born at a single mid-elevation nursery

colony. We adapted the program further to estimate the mating

success of males from four groups in relation to offspring born in

the low-elevation roosts. Observed genotypes were used to

calculate the probability that a low-elevation offspring was the

product of a mating between any one of the sampled or unsampled

females from a low-elevation roost, and any one of the sampled or

unsampled males from any of four groups (upper-, mid- and
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low-elevation roosts and swarming). The main modifications were

the redefinition of male groups, incorporating the effect of

sampling offspring in three years and adjusting mutation rates.

Full details are in Methods S1. In brief, the likelihood of the data

(the probability of seeing the observed genotypes, given the model)

is the product of the likelihood of observing the offspring genotypes

given the genotypes of potential parents (the probability of

offspring genotypes, given the parental groups), and the likelihood

of each possible pairwise combination of male and female parents

from specified groups (the probability of parents, given the model).

The latter is a function of a set of model parameters (h) consisting

of the numbers of males and females in each group (typed and

untyped individuals) and the probabilities of the father and mother

being from the groups in question. The posterior distributions of h
were estimated using the Metropolis algorithm, a Markov chain

Monte Carlo method. The prior distributions of the parameters (h)

are specified in Methods S1. All ten microsatellite loci were used in

the analysis and the program took account of the sex-linkage, error

rates and mutation rates specific to loci. The program was run for

100,000 iterations, including a 10,000 sample burn-in period.

Additional runs were made from different starting points and with

relaxed prior distributions, to ensure the results were robust, and a

null model was run with equal probability of paternity per male,

regardless of group. Full details are in the Methods S1.

Results

Temperature change down the dale
Mean summer night time temperature increased with decreas-

ing altitude (one-way ANOVA; F(2,183) = 9.017; P,0.001), with

the low-elevation site being on average 1uC warmer than the mid-

(Tukey test; P = 0.006) and upper- (Tukey test; P,0.001) elevation

sites. The upper-elevation site experienced significantly greater

average nightly temperature variation (4uC) than the mid- (2uC)

(Kruskal-Wallis test; Z = 25.91; P,0.001) and low- (2.3uC)

elevation sites (Kruskal-Wallis test; Z = 24.75; P,0.001).

Bat activity
The number of bat passes was highly correlated with the

number of feeding buzzes when all transects were pooled

Figure 1. Map of the Yorkshire Dales National Park, UK. Study area with locations of summer roost, foraging and swarming sites.
doi:10.1371/journal.pone.0054194.g001
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(Spearman’s Rank test; n = 18; r = 0.834; P,0.001), justifying the

use of bat passes as a measure of foraging activity (pass:buzz ratio

approx. 10). Bat activity declined significantly with increasing

altitude (df = 16; R2 = 0.2378; P = 0.04, see Figure S1).

Bat morphology
Pairwise comparisons with Bonferroni adjustment for multiple

comparisons following ANCOVA (with area and month as fixed

factors and forearm length as a covariate; F(2,106) = 6.094;

P = 0.003) showed upper-elevation males were significantly lighter

than mid- (P = 0.001) and low- (P = 0.035) elevation males.

Roost composition down the dale
Roosts were in tree holes close to the riverbank, in gaps in the

stonework of the many old bridges that cross the river, and in old

stone buildings close to the river. Colonies used more than one

roost. Roost composition (data from bats caught 1996–2007)

changed markedly down the valley (Figure 2). Upper-elevation

roosts were almost exclusively composed of males. Mid-elevation

roosts had a sex ratio closer to unity with a small proportion of

juveniles. Low-elevation roosts consisted almost equally of females

and juveniles with few males. Significantly more males than

females were caught at roosts (m:f = 169:2, x2 = 161, P,0.001) in

the upper-elevation sites. At mid-elevation differences at roost sites

(50:71, x2 = 3.31, ns) were not significant. Significantly more

females were caught at roosts (25:168, x2 = 104, P,0.001) at low

elevations. All Chi-squared tests were with Yates’ correction for

continuity (df = 1). Qualitatively similar patterns were observed in

foraging bats, but too few were captured for meaningful analysis.

Philopatry
Approximately half of adults (both males and females) ringed at

a particular roost were recaptured there in subsequent years. Only

4% of adult males and ,2% of adult females were recaptured at a

different roost. Only 2% of adult males and no adult females were

ever recaptured outside the area (i.e. upper-, mid or low-elevation

sites) in which they were ringed. Half (50%) of ringed juvenile

males that were recaptured had left their natal area, but no

juvenile females were observed to have moved (full details in Table

S1).

Paternity assignment to individual males
Sample sizes of genotyped individuals were as follows. 138

offspring: 10 from the mid-elevation roost for comparison with

Senior et al. [4] and 128 from the low-elevation site. 163 females:

14 from mid-elevation and 149 from the low-elevation roosts. The

‘full’ analyses used 341 males from all roosts and swarming sites.

The ‘Wharfedale’ analyses used 133 males from the intensively

studied valley of the River Wharfe alone. Full details are given in

Methods S1.

Of 10 mid-elevation offspring, two could be assigned fathers

(one with strict confidence (95%), one relaxed (80%)). Both fathers

had previously been caught at roosts outside the area (one in an

upper-elevation roost and low-elevation roosts, the other at a roost

in an adjacent valley, Wensleydale (Figure 1)). For the 128 low-

elevation offspring, 10 fathers were assigned with strict confidence,

six with relaxed confidence and 12 as part of parent pairs with

relaxed confidence. These males had been caught at upper-, mid-

and low-elevation roosts and swarming sites. Full details are

provided in Methods S1.

Paternity assignment to male group
Sample sizes and population sizes used in the analysis are given

in Methods S1. In summary the analysis included genotypes of 307

males (209 swarming, 63 upper-, 19 mid- and 16 low-elevation),

together with data from 149 females and 128 offspring from low-

elevation sites. Group assignment results indicated that swarming

males were responsible for fathering most of the low-elevation

offspring (Figure 3a). The probabilities that fathers of low-

elevation offspring were from Wharfedale summer roosts were

all ,5%, the probabilities that fathers were from the swarming

group were all .95%. In contrast, Figure 3b (adapted from [4])

shows that fathers of mid-elevation offspring were more likely to be

from the mid-elevation roost, not from swarming sites.

Swarming males (model estimate N = 2,500) greatly outnum-

bered those in the upper- (90), mid- (31) and low-elevation (25)

summer roosts. Although the analysis inferred that most fathers of

low-elevation offspring were swarming males, individual low-

elevation roost males may actually have had the highest chance of

fathering one of these offspring because there were so few of them.

This is illustrated in Figure 4, which shows the probabilities of

paternity per male from each group. Swarming and roost groups

are not mutually exclusive: the swarming group includes males

from our focal roosts and many males from other roosts

throughout Wharfedale and neighbouring valleys. However, the

mating probabilities reported for swarming males exclude the

contribution from males in our sampled roosts.

The results were robust to starting conditions and independent

of the width of the prior distributions. The definitive model was

favoured over the null model, with invariant probability of

paternity per male, (Bayes factor = 3.1 based on the harmonic

means of post burn-in log likelihoods, see Results S1 for further

details). Individual assignment patterns (Results S1) did not

contradict the group assignment results, but individual assign-

ments were too few to deduce relative paternity patterns.

Discussion

We show that offspring from low-elevation nursery roosts are

fathered primarily during autumn swarming. Using the same

approach Senior et al. [4] showed that offspring from the mid-

elevation nursery roost (the highest elevation nursery) were

primarily fathered by resident males. This difference suggests that

mating strategy adapts to fit social structure and this in turn has

evolved in response to environmental differences.

At low-elevation sites, temperatures are at their highest and

most stable and will support large and stable insect populations,

hence the higher foraging activity we observed. The increasing

Figure 2. Change in roost composition along the River Wharfe.
Data from June–August 1996–2007 (upper-elevation n = 175, mid-
elevation n = 145, low-elevation n = 356). Numbers are for unique
(ringed) bats caught over the period.
doi:10.1371/journal.pone.0054194.g002
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width and smoother surface of the river at low elevations will also

improve foraging conditions. Nursery colonies are large since the

home range can support large numbers of bats. Abundant food

and the thermoregulatory benefits provided by large numbers of

bats in the roosts reduce the need for torpor and facilitate

homeothermy, increasing reproductive success. Males may be

largely excluded from roosts and even foraging sites, since they

compete for food [20]. A few males may be tolerated in the roost,

which increases their opportunity to father offspring, as demon-

strated by the individual paternity estimates and the probabilities

of paternity per male. However, the paternity assignment to male

groups shows that most of the successful mating involves males

caught at swarming sites. This strongly suggests that swarming is

the primary mating behaviour, as it is for other temperate Myotis

species (see below).

In mid-elevation roosts, climatic and habitat conditions are less

favourable (see temperature and bat activity in Results, and [21]

for habitat changes) and food supply is probably more variable.

This is reflected in the smaller size of nursery colonies: the home

range of a nursery colony can support only a limited number of

females. These roosts have a higher proportion of males than the

low-elevation roosts. One explanation is that males may be

tolerated for the thermoregulatory benefits they bring to smaller

colonies in cool roosts in stone bridges and tree holes. Because

these roosts have a large proportion of males, resident males are

able to father a large proportion of the offspring. These males, in

common with all other males, also have the opportunity to mate at

swarming sites later in the season, and this was confirmed by

ringing.

At upper-elevations only males are found, because the

environment is not able to support the energetic demands of

reproductive females e.g. [12]. These males are either excluded

from lower elevations or are avoiding more intense competition for

resources downstream. After correcting for skeletal size, these

Figure 3. Posterior distributions for paternity probabilities at the group level. Posterior distributions for the probabilities that fathers (at
the group level) came from roosts in the (blue) upper-elevation, (yellow) mid-elevation and (green) low-elevation, and from (red) swarming sites. For
(A) low-elevation offspring (the inset graph shows the Wharfedale roost posterior distributions in greater detail), and (B) mid-elevation offspring
(adapted from [4]).
doi:10.1371/journal.pone.0054194.g003
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males are lighter (this study and [4]) and must forage for longer

periods and over greater distances than males at lower elevations

[4], suggesting that they are excluded from more favourable

foraging sites downstream. These males are able to mate at

swarming sites and it is the swarming population, comprising bats

from summer roosts in the valley and beyond, that fathers most of

the offspring from the large low-elevation populations where

nursery colonies are predominantly female.

In summary, we found that most offspring are fathered during

autumn swarming. However, the breeding success of a small

proportion of males is improved because they live with females in

nursery roosts during late summer. Whilst females normally

appear to exclude males from nursery colonies, for those in

marginal habitats, the thermoregulatory benefits may outweigh

disadvantages, such as competition for food.

Swarming is a widespread mating mechanism that facilitates

gene flow and helps maintain genetic diversity among temperate

bats e.g. [22][10][23]. Other studies support the view that mating

occurs outside summer habitat, consistent with mating at

swarming sites e.g. [24][25][19]. However, it is clear that in other

species too, more than one mating strategy may be in operation.

For example, Myotis bechsteinii shows similarities to lowland M.

daubentonii: male M. bechsteinii offspring disperse from their natal

colonies and half the males roosting in close proximity to nursery

colonies are immigrants [26][27][28], but these local males father

,25% of the offspring born at these colonies, implying that the

rest are fathered at swarming sites [22][29]. Although such studies

show inter-specific variation in mating pattern, we believe this

study is the first to explain geographical differences on the basis of

environmental factors. Habitat fragmentation and climate change,

in changing prey distribution and roost microclimate, are likely to

affect these complex, large-scale behavioural patterns. Is behav-

iour sufficiently flexible to deal with such change?
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