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Abstract: Cryptococcus sp. are basidiomycete yeasts which can be found widely, free-living in the
environment. Interactions with natural predators, such as amoebae in the soil, are thought to
have promoted the development of adaptations enabling the organism to survive inside human
macrophages. Infection with Cryptococcus in humans occurs following inhalation of desiccated
yeast cells or spore particles and may result in fatal meningoencephalitis. Human disease is caused
almost exclusively by the Cryptococcus neoformans species complex, which predominantly infects
immunocompromised patients, and the Cryptococcus gattii species complex, which is capable of
infecting immunocompetent individuals. The nutritional requirements of Cryptococcus are critical for
its virulence in animals. Cryptococcus has evolved a broad range of nutrient acquisition strategies,
many if not most of which also appear to contribute to its virulence, enabling infection of animal hosts.
In this review, we summarise the current understanding of nutritional requirements and acquisition
in Cryptococcus and offer perspectives to its evolution as a significant pathogen of humans.

Keywords: Cryptococcus neoformans; Cryptococcus gattii; basidiomycete; fungal pathogens; evolution
of virulence; host pathogen interactions; nutrition acquisition; nutritional restriction

1. Introduction

Cryptococcus is an environmental basidiomycete yeast that can cause meningitis and death in
humans, mainly in the severely immunocompromised. The two major pathogenic groups of cryptococci
are the C. neoformans species complex and C. gattii species complex. C. gattii are associated with primary
infection in immunocompetent individuals but there is increasing evidence for C. gattii infection
in the immunocompromised. In contrast, C. neoformans infection occurs in immunocompromised
individuals e.g., HIV infection associated T cell depletion or immunosuppression following solid organ
transplant [1–3].

Infective particles, such as spores and yeast cells are inhaled into the lungs [4–6]. In most
immunocompetent hosts, these are thought to be either cleared by macrophages or contained in
granulomas, leading to a period of latency or subclinical infection [7,8]. These focal lung lesions can be
treated through antifungal drug therapy, or surgical excision [2,9]. However, if the infective organism
is successful, an asymptomatic primary pulmonary infection can develop, which can be associated
with the hilar lymph nodes [9].

Meningoencephalitis is the most common severe clinical manifestation of cryptococcal
infection [10,11]. Early symptoms include headache, fever, confusion, or drowsiness. Seizures
occasionally occur with C. gattii infection [2]. Symptoms of lung infection include fever, chest pain,
and cough; chest X-ray often shows nodules or lesions in the lung. The presentation varies
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from asymptomatic infection to severe pneumonia with acute respiratory failure, and may signify
reactivation of a latent infection [7] or progression of a primary infection [12].

The third most common site of cryptococcal infection is the skin. Although Cryptococcus can
cause direct skin infection, the manifestation of disease in the skin usually indicates disseminated
disease [13]. Other organs may also be affected in disseminated disease, such as the prostate gland,
eyes or mouth [13]. Infection with C. neoformans is certainly not unique to humans and cases have been
reported in a wide range of wild and domestic animals [14–17].

The transmission of cryptococcosis is rarely zoonotic [18–20] but may be iatrogenic [1,21];
most cases of this disease are most likely initiated by inhalation of airborne dry fungal cells
or spores from an environmental source [4–6]. Isolates of Cryptococcus neoformans consisting
of desiccated yeast cells or spores, measuring 0.6–3.5 µm in diameter, a size ideal for alveolar
deposition after inhalation, have been described from aerosols generated from infected soil and pigeon
droppings [4,22,23]. This supports the hypothesis that both desiccated yeast cells and basidiospores
are pathogenic infectious forms of C. neoformans [6,14]. Air samples taken underneath flowering
Eucalyptus camaldulensis trees have also captured cells of C. gattii [24,25]. During active growth,
cryptococcal cells are too large to penetrate the human lung parenchyma. Whether derived from
spores or from yeast cells, once inside a mammalian host all cryptococci transition to or maintain the
yeast form [26] and are ingested by host phagocytes. Eventually, Cryptococcus may rupture phagocytes
by lysis or it may escape via vomocytosis, leaving the host cell intact, before spreading to the central
nervous system [27–30]. The ability of C. neoformans to exit cells non-lytically, without causing
macrophage damage or death, avoids stimulation of the immune response and allows dissemination
of the pathogen [28]. C. neoformans can also proliferate within immune cells and show remarkable
adaptation during infection, including modulation of virulence mechanisms such as polysaccharide
capsule expansion [31].

In this review, we summarise the current understanding of Cryptococcus nutritional requirements
and acquisition in its life cycle and during infection. We first describe the biology of cryptococci,
before discussing the varied nutritional requirements of cryptococci in the context of virulence and
pathogenesis. Finally, we comment on the environmental niche of Cryptococcus and offer perspectives
to its evolution as a significant pathogen of humans.

2. Description and Ecology

Cryptococcus neoformans is abundant in the environment with a saprophytic existence, yet uncommonly
for a fungus, it can be highly pathogenic in animals and humans. Cryptococcus neoformans
has a global distribution and exists as four antigenic serotypes A, B, C, and D [32]. Since its
identification in 1894, the disease of cryptococcosis had been attributed to just one single fungal species,
Cryptococcus neoformans, but in 1982 C. neoformans was subdivided into two varieties: C. neoformans var.
neoformans (consisting of serotypes A and D) and C. neoformans var. gattii (serotypes B and C) [33];
further, using molecular techniques, Cryptococcus neoformans var. gattii was re-classified as a separate
species, Cryptococcus gattii [34]. These two species, Cryptococcus neoformans and Cryptococcus gattii have
different ecological and geographical distributions, with different virulence properties towards humans
and are believed to have diverged from one another 37–40 million years ago [35]. Characterization of
cryptococcal strains from around the world has since clarified the further subdivision of C. neoformans
and C. gattii [36] although the suggested new nomenclature and classification may have some
incongruities as, for example, many isolates from different lineages are capable of fusion with others
during sexual reproduction [37]. It has therefore been suggested to refer to the “Cryptococcus neoformans
species complex” and “C. gattii species complex” as an alternative, rather than creating more labels to
define the species and the many strains therein [38]. In this review, when we refer to C. neoformans and
C. gattii we are referring to the C. neoformans species complex and C. gattii species complex, respectively.

Study of the ecology of C. gattii and C. neoformans demonstrates that they can be found in distinct
environments. Cryptococcus gattii is associated with the wood, bark, flowers, and leaves of Eucalyptus
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trees (E. camaldulensis), and is known to causes infection in Australian aborigines [39]. It is also found
on other trees such as Douglas fir (Pseudotsuga menziesii) in California [40], carob (Ceratonia silique)
and pine (Pinus halepensis) in the Mediterranean [41], or the mopane tree (Colophospermum mopane)
in southern Africa [42]. Cryptococcus neoformans is found in soil and bird excreta [25]. The fungus
may colonise the guano of birds in part due to the relatively low competition from bacteria [23].
C. neoformans and C. gattii both grow on pigeon guano but C. gattii is unable to mate efficiently in
this environment, unlike C. neoformans, and suggest that pigeon guano is a realised ecological niche
for C. neoformans but not for C. gattii [43]. Whilst birds may act as vectors for the dispersion of
Cryptococcus they do not succumb to cryptococcosis as avian body temperature of 40–42 ◦C is too
high to allow for disease progression [26,44,45]. Recent data has demonstrated that C. neoformans is in
fact able to grow at bird body temperature but, unlike the case with mammalian phagocytes alone,
when internalised by avian macrophages the yeast does not survive. [20]. Study of C. neoformans
in Africa identified that most C. neoformans clinical infections were of the VNI genotype and were
found in urban environments, where it would be expected that pigeon guano was common [46].
In contrast, rural sites were overwhelmingly positive for the VNB genotype and showed much greater
genetic diversity. This finding is of significant interest as it suggests that the increased competition
in the environment results in higher genetic diversity, while C. neoformans in the urban environment
is not under the same selective pressure (see Section 5 below). However, our understanding of the
natural environment of Cryptococcus is generally poor and there have been few in depth ecological
sampling studies. A recent comparison of the location of C. neoformans and C. gattii in Columbia
found C. neoformans commonly in arboreal sampling and found no sampling differences between
C. neoformans and C. gattii [47]. Given the pivotal role of the ecology of environmental opportunistic
pathogens in their virulence, this should be a focus of further research.

3. Life Cycle

Cryptococcus neoformans can reproduce asexually by budding, by monokaryotic fruiting, or by
mating sexually. Although C. neoformans can survive in the mammalian host, where it causes infection,
it is naturally found in soil and arboreal environments [24,25,48]. The fungus has several morphological
forms in nature but C. neoformans is usually isolated from patients, from laboratory cultures and from
the environment as a budding yeast [40].

3.1. Asexual Reproduction

Mitotic reproduction by budding during yeast growth results in two independent cells per
mitosis and provides the fastest mode of population increase [49]. The regulation of cell cycle is well
conserved with the evolutionarily distant yeast Saccharomyces cerevisiae. Exposure to the antifungal
drug fluconazole can cause defects in cytokinesis, resulting in multimeric cells that are better able to
proliferate in the presence of fluconazole [50].

3.2. Sexual Reproduction and Monokaryotic Fruiting

Cryptococcus exhibits multi-cellular filamentous growth form as a result of sexual reproduction
or by monokaryotic fruiting. Filamentation, where contiguous cells are partitioned by septa to form
hyphae or pseudo-hyphae, confers wider nutrient scavenging and the ability to produce spores.
Hyphal forms are not found in human infections [51] perhaps as the production of hyphae is strongly
antigenic, stimulating clearance by the host [52].

The sexual cycle for C. neoformans involves fusion of haploid cells of opposite mating type
(MATa and MATα) to produce dikaryotic filaments [53]. When cells of opposite mating type are
in close proximity, MATα cells respond to a MATa peptide pheromone by developing conjugation
tubes, while MATa cells enlarge [54]. The conjugation tubes fuse to the swollen MATa cells, forming
heterokaryotic hyphae that subsequently develop basidia at their tips. MATα and MATa nuclei
fuse in the basidia, and undergo meiosis to produce haploid spores. Clinical and environmental
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isolates are usually haploid, possessing one of two mating type alleles, MATa or MATα, although
most clinical isolates are of the MATα mating type. Congenic MATa and MATα strains are equally
virulent [53] yet in co-infections with both mating types, the α strain is the more likely to enter the
central nervous system [55], potentially explaining its clinical prevalence. Besides the stimulus of
mating pheromone, several other factors are known to encourage hyphal growth, including ambient
temperatures, nitrogen starvation, dehydrated substrates, darkness, and the presence of metals such as
copper [56,57]. High concentration of CO2 and temperatures above 37 ◦C, characteristic of human host
conditions, inhibit filamentous growth and may therefore suppress the transition from yeast to hyphal
forms in infection [58]. Sexual reproduction in this fungus has been shown to generate short-term
variation by increasing the incidence of aneuploidy, which can result in rapid adaptive phenotypic
and genotypic evolution, such as the development of antifungal drug resistance [59].

C. neoformans strains can also reproduce through monokaryotic fruiting. In response to nutrient
limitation, α cells in particular, can generate filaments by asexual fruiting and produce spores.
The hyphal cells from monokaryotic fruiting differ from those produced through sexual reproduction
by being mononucleate and diploid with unfused clamp connections; in sexual reproduction the
hyphal cells are binucleate and haploid, joined by fused clamp connections [40].

3.3. Phenotypic Switching and Titan Cells

Phenotypic switching is reversible and occurs in adaptation to a new environment such as to
escape recognition by the host immune system [60]. For example, Candida albicans is a dimorphic
fungus, and the morphological switch between the yeast phase and the hyphal phase is considered to
be its main virulence factor [61]. During infection, C. neoformans is almost always observed in the yeast
form and is only occasionally found as the filamentous form. The host environment induces metabolic
alterations in C. neoformans, as well as changes in the size and structure of the capsule [62–64] that
may help also in evading the host immune response. Phenotypic switching in Cryptococcus has been
demonstrated in vivo following serial passage through mice, revealing an increase in virulence caused
by changes to the structure of the cell wall and/or the capsule [65,66].

A dramatic adaptation to the host is the formation of vastly enlarged yeast cells by Cryptococcus,
first described in human infection and subsequently studied in the lungs of infected mice [64,67].
Titan cells have several characteristics that differentiate them from normal-size cells and promote
disease by preventing clearance from the lung. Titan cells can be as large as 50 µm to 100 µm [68] and
are thus too large to be phagocytosed by lung phagocytes and inhibit the phagocytosis of normal sized
cryptococcal cells [68,69], with highly cross-linked capsules [64]. Titan cell walls are 30 to 50 times
thicker than the normal Cryptococcus cell wall and are highly resistant to oxidative and nitrosative
stress [64,67]. The polyploidy observed in titan cells is also reported to enhance their genetic adaptation
to the stressful host environment, resulting in increased within-host survival [70]. In addition to the
large titan cells, unusually small cryptococcal cells have also been observed [71,72]. These so-called
micro cells are only 2–4 µm in size, with a thickened cell wall. They may be adapted for growth in
macrophages but there is little information available about this form.

The mechanisms of titan cell induction are still poorly understood but they form in response to
activation of mating pheromone receptor Ste3a, and host temperature seems to be important in the
generation of titan cells [67,73]. Due to their immense size, titan cells appear to be unable to pass
to the brain [67,68]. However, the generation of titan cells promotes the spread of the normal-sized
cryptococcal cells from the lungs to other tissues [68] and it has been estimated that the dissemination
of C. neoformans to the CNS is increased by up to three hundred-fold by the production of titan cells [68].
In addition, mouse strain alters titan cell formation and correlates with a higher titre in IgE, although
the mechanism of this effect is unknown [74]. Therefore, while titan cells use multiple mechanisms to
avoid capture and killing by immune cells, how titan cell formation has evolved is an intriguing and
unanswered question. While several nutritional factors have been implicated in titan cell formation
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(described in the corresponding sections below), how widespread titan cell formation is among yeasts
and how the environmental niche of Cryptococcus contributes to regulation is not known.

4. Nutrition in the Environment and Virulence in the Host

In this section, we relate nutrition with virulence separately for carbon, amino acid, melanin,
lipid, metal ion, and phosphate metabolism. We will not dwell on the signal transduction systems in
C. neoformans as they are generally well-conserved with those of other fungi, but the C. neoformans
genome has revealed missing components in several signalling cascades, identified in non-pathogenic
fungi. This is likely due to sequence divergence and many alternative signalling proteins have been
identified but are yet to be placed within specific signalling cascades [49]. Growth at mammalian
body temperature is independently controlled by the Ras (Ras1/2) and Ca2+-calcineurin pathways and
the Mpk1 MAPK pathway is believed to regulate cell-wall integrity and growth at high temperature
(37 ◦C) and therefore virulence [75]. The cyclic AMP (cAMP)/protein kinase A (PKA) pathway controls
mating, as well as capsule and melanin production [56,76–78].

4.1. Carbon Utilisation and Metabolism

The carbon sources of C. neoformans and C. gattii in the environment are not known but due to
its apparent saprophytic existence like other Cryptococcus sp. it is likely due to the breakdown of
complex polysaccharides from decaying matter. C. neoformans appears unable to grow on cellulose or
lignin as a carbon source despite its association with decaying plant matter and may therefore rely
on the action of other microbes to release usable carbon sources [79]. C. neoformans grows well on
fructose, glucose, and mannan monosaccharides but with an unusual requirement for peroxisome
function [80]. Creatinine is not used as a source of carbon by C. neoformans, but is used as a source
of nitrogen [81]. C. neoformans can use xylose, mannose, and mannitol as a sole carbon source [82].
Cherniak et al. used nuclear magnetic resonance spectroscopy (NMR) to study the assimilation of
radiolabelled [1-13C]Xyl, [1-13C]Man, and [1-13C]mannitol mannose and their incorporation into
capsular glucuronoxylomannan (GXM) [82]. The carbon chains of both mannose and mannitol are
incorporated into capsular polysaccharide whilst the carbon chain of xylose was not incorporated
intact by the yeast and it was suggested that xylose is assimilated through the pentophosphate pathway
(hexose monophosphate shunt). Deletion of the two C. neoformans mannan transporters is not lethal
but results in avirulence [83]. How C. neoformans is tolerant of the lack of specific mannan transporters
is not known but it is possible that other sugar transporters may be able to transport sufficient
mannose for survival. Metabolism of the C2 carboxylic acid glyoxylate by isocitrate lyase and malate
synthase are required for growth on acetate but are dispensable for growth in animal infections [79].
Isolation of conditional mutants in essential genes of C. neoformans identified an enzyme (isopentenyl
diphosphate:dimethylallyl diphosphate isomerase) in the isoprenoid pathway [84]. Isoprenoids are
associated with stress responses and the mutant showed reduced stress tolerances.

The endogenous carbohydrates of fungi comprise several monosaccharides such as glucose,
acyclic sugar alcohols, or polyols and disaccharides, including trehalose [85]. Trehalose is produced by
bacteria, fungi, protists, plants and invertebrates but has not been isolated from mammals. Trehalose
may be used as an energy source but has primarily been described as a thermotolerance factor,
protecting against protein denaturation. However, in C. neoformans mutations in the trehalose synthesis
pathways have been shown to be essential for virulence in animals and while thermotolerance
is a critical factor in C. neoformans and C. gattii pathogenesis, trehelose synthesis is likely to be
of broader importance for tolerating the stress of animal infection [86]. Fungi also produce an
assortment of storage, structural, and interactive polysaccharides, such as glycogen and various
glucans; the glycol-proteins chitin, chitosan, mannans, and lectins [85]. Chitin is major component
of the cell wall while mannan is required for, in addition to the cell wall, polysaccharide capsule,
glycan lipids, and GPI anchor production [83]. Polyols such as glycerol and mannitol are widespread
throughout the fungal kingdom and are multifunctional, acting as energy stores, as translocatory
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substances, or as intracellular reducing and osmoregulatory agents [87,88]. C. neoformans produces
large amounts of mannitol in culture and in infected animals [89] yet its significance is uncertain.
Wong et al. suggested that mannitol may protect the pathogen from free radicals and oxidative
destruction by phagocytes [88]. It is also possible that mannitol could increase the tonicity of
heavily infected tissues and, in the brain, may contribute to the development of cerebral oedema.
An irradiated C. neoformans strain, producing low levels of mannitol (Cn MLP) was more susceptible
to growth inhibition and killing by heat and high NaCl concentrations than a wild type C. neoformans
strain [89]. Virulence in mice was also seen to be reduced in low mannitol producing strains and it was
hypothesised that high intracellular mannitol levels may protect C. neoformans from the deleterious
effects of heat and osmotic stresses, in the same way as high intracellular glycerol or D-arabinitol levels
protect other fungi from similar stresses [87,89].

Arguably the most important and defining aspect of carbon metabolism in pathogenic cryptococci
is the production and regulation of its polysaccharide capsule. The polysaccharide capsule surrounds
the cell body of Cryptococcus neoformans and is comprised of 90–95% glucuronoxylomannan (GXM)
and 5–8% galactoxylomannan (GalXM), together with a small amount (< 1%) of mannoproteins
(MP) [63,82,90–94]. C. neoformans acapsular mutants are avirulent in mice [95]. In the external
environment, the polysaccharide capsule of Cryptococcus might serve to prevent dehydration of
the cells [96] but the capsule is recognised as one of the key virulence factors of pathogenic cryptococci.
GXM is synthesised intracellularly and is secreted via exocytosis [97]. Capsule growth closely follows
the cell cycle [98,99]. Cryptococcus neoformans can modify the size and structure of its capsule in
response to various stimuli. Iron concentration, CO2, and serum are important signals affecting
capsule growth. Iron limitation results in capsule growth [100] and a CO2-enriched atmosphere
was shown to significantly increase the capsule size [101]. Both iron limitation and CO2 availability
influence capsule size and these conditions may be encountered by the fungus during lung colonization.
Serum or serum with CO2 encourages capsule enlargement [102], a phenomenon also observed during
animal infection. Conversely, a dramatic decrease in capsule size is stimulated by high osmotic pressure,
high salt (NaCl) concentration or the binding of a large quantity of antibody to the capsule [103,104].
Capsule enlargement can be observed after a few hours of infection in mice [72] and is also known
to be stimulated in the presence of mannitol [105]. The structure of the capsule is very variable,
depending on the strain and environmental conditions and it can also change during the course of
an infection [106]. That various capsule phenotypes are observed in different organs indicates that
this plasticity in C. neoformans to alter its capsule is biologically important; progress is being made in
deciphering the signal transduction networks regulating the C. neoformans capsule [107]. Many of the
capsule inducing factors found in in vitro and in vivo infection are likely to occur in the environment
(e.g., salt stress/osmotic pressure/iron limitation) but cryptococci isolated from the environment
typically have very small capsules. However, in vitro recapitulation of environmental biotic stress
with incubation of amoebae and Cryptococcus neoformans results in increased capsule size [108].

4.2. Melanin

Melanin is a brown-black pigment and C. neoformans cells are often found melanised in bird
guano [43,109]. C. neoformans and C. gattii can produce melanin from catecholamine precursors amino
phenols, diaminobenzenes, and indoles, using diphenol oxidases with a wide substrate specificity [110].
As a free-radical scavenger, melanin protects C. neoformans against oxidants in vitro [111] and it has
been shown that C. neoformans cells which produce melanin are more resistant to nitrogen- and
oxygen-derived oxidants than non-melanised cells [111]. Melanin protects Cryptococcus from toxic free
radicals that are produced by the host defence system [112,113]; it has also been shown to help defend
the fungus against micro-biocidal proteins and antibiotics [114,115] and to alter the cellular charge of
fungal cells, rendering them more resistant to phagocytosis [116]. Melanin is strongly associated with
virulence and mutants of C. neoformans lacking melanin are less virulent in mice when compared to
wild-type strains [117]. Other studies, inoculating mice with high and low melanin content strains of
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Cryptococcus, demonstrated that melanin inhibited host recognition of the pathogen, down-regulating
the T cell-mediated immunity [118], confirming that melanin is essential for virulence. Interestingly,
melanised forms of fungi, including C. neoformans, are also highly radiation resistant. Irradiated
melanised C. neoformans showed increased metabolic activity, faster growth, and increased dry weight
biomass than irradiated non-melanised cells [119,120]. In addition, melanin is involved in the reduction
of iron prior to its uptake [121] and the synthesis of melanin is also dependent on iron levels [122].

4.3. Amino Acid Assimilation

Amino acids can be acquired by uptake, biosynthesis, or recycling. Although the mechanisms
of amino acid acquisition by membrane bound permeases and recycling remains poorly understood
in C. neoformans, this has been extensively explored in S. cerevisiae [123]. Recently, investigation
of the tryptophan biosynthetic pathways in C. neoformans found eight potential global permeases
and two methionine permease homologues. In other fungi, these global permeases are known to
respond to nutritional status such as the quality of nitrogen and carbon sources, amino acid availability
in the environment, and nutritional deprivation (Global Amino Acid Control) [124]. Interestingly,
in C. neoformans only 8 amino acid permeases have been identified, far fewer than S. cerevisiae that
has 24 permeases [123]. Contrary to the case of S. cerevisiae, C. neoformans thus appears more
dependent upon biosynthesis than uptake [124] and recent reannotation of the C. gattii genome
has demonstrated also that there is strong expression of amino acid synthetic genes during lung
infection in mice [125]. Whilst the methionine pathway is not essential for growth it has a strong
impact on cryptococcal virulence suggesting it is required under nutrient restricted conditions or under
stress [126]. The threonine and tryptophan biosynthetic pathway are essential in C. neoformans [127].

Chang et al. identified three D-amino acid oxidase (DAO) genes in both C. neoformans H99 and
C. gattii R265 strains and showed that each gene has a different role in D-amino acid utilization [128].
In C. gattii R265, the DAO2 gene was reported to have a role on D-amino acid assimilation, as deletion
of this gene resulted in retarded growth on eleven D-amino acids. Although H99 grows only poorly on
D-amino acids, deletion of the DAO1 or DAO3 genes exacerbated this effect, whilst overexpression
of DAO2 or DAO3 enabled robust growth on several D-amino acids, implying that the DAO genes
in H99 are normally insufficiently expressed for growth on D-amino acids. Creatinine can be used as
the sole source of nitrogen by both C. neoformans and C. gattii, but the enzyme, creatinine deiminase,
responsible for creatinine utilization, is regulated differently in the two species [80]. Creatinine
deiminase is repressed by ammonia in C. neoformans but this is not the case in C. gattii. C. neoformans
can use glycine only as a source of nitrogen whilst C. gattii can use glycine as both a carbon and
a nitrogen source [129]. L-canavanine, that competes for L-arginine incorporation, is tolerated and
assimilated by C. gattii while it is inhibitory to C. neoformans and therefore, together with glycine
utilisation, forms the basis for selective media [130] C. neoformans can assimilate uric acid as a nitrogen
source, which requires urease, a nitrogen-scavenging enzyme which is important in central nervous
system invasion [131,132]. Screening of the C. neoformans genome revealed the existence of only one
positively acting nitrogen regulatory GATA factor: Gat1 [133]. Gat1 mediates nitrogen metabolite
repression and is required for utilization of ammonium and most nitrogen sources. This gene is also
involved in capsule synthesis and the regulation of mating, melanin production, and growth [133].

4.4. Metal Homeostasis in Cryptococci

The regulation of essential metals such as iron, zinc, and copper is crucial to microbes
during pathogenic interactions with a host [134]. Iron is vital as a cofactor of various enzymes,
oxygen carriers, and electron-transfer systems involved in many fundamental cellular functions [135].
The effects of iron limitation on C. neoformans have been known for many years, as one important
consequence is the enhancement of capsule formation [100]. Despite their different fungal
groupings, Cryptococcus neoformans and S. cerevisiae share many similarities in metal homeostasis.
Both utilise Fe(III) reductases as their major means of acquiring iron [136,137]. Although they do
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not synthesize siderophores, the two yeasts can extract iron from siderophores formed by other
microorganisms [134,137]. At the same time, C. neoformans and S. cerevisiae can both use non-enzymatic
means of reducing iron [100,121,137]. The non-enzymatic reduction of Fe(III) was observed with
secreted 3-hydroxyanthranilic acid and melanin [121]. C. neoformans produces melanin by the oxidation
of catecholamines, representing a natural means of iron recruitment [121].

Copper serves as a catalytic and structural cofactor for enzymes involved in energy generation,
and processes such as iron acquisition, oxygen transport, and cellular metabolism [134]. It is also known
to be involved in melanin synthesis and polysaccharide capsule production in C. neoformans [134,138].
Zinc homeostasis is essential for fungal growth as this metal is structurally critical for numerous
enzymes and is a co-factor in the functionality of a wide variety of proteins [139]. It has been shown
in C. gattii that disruption of the ZAP1 gene, which encodes a zinc sensor and transcription factor,
reduces the virulence of the pathogen [140]. Cryptococcus uses carbonic anhydrases, which are zinc
proteins, to convert CO2 to HCO3. Nickel is a cofactor for urease. As with urease-deficient strains,
cryptococci with deficient nickel homeostasis show impaired dissemination following pulmonary
infection [131,141].

4.5. Lipid Metabolism in Growth and Virulence

Lipid metabolism is essential for varied signalling pathways as well as for energy production
and the maintenance of the plasma and intracellular membranes. Furthermore, production of the
fungal lipid ergosterol (that serves the role of cholesterol in mammalian cells) is the target of azoles
and amphotericin B antifungal agents, and several fungal lipids are distinct from those found in
mammals. Fatty acid metabolism appears essential to C. neoformans as attempts to delete either of
the identified fatty acid synthase genes were unsuccessful [142]. Cryptococci possess acetate kinases
that are used by fungi to utilise short chain fatty acids as a carbon source [143] however fatty acid
transporters in C. neoformans have yet to be identified. C. neoformans has a high triacylglycerol content,
which increases in stationary phase growth and may serve as an energy store when under nutritional
stress [144]. Diacylglycerol (DAG) is an important second messenger that activates protein kinase C.
This pathway is conserved in C. neoformans and is critical for regulation of cell wall composition [145].
Ceramide is another lipid second messenger found in Cryptococcus that is metabolised to DAG by
inositol-phosphorylceramide synthase [146]. Inositol-phosphorylceramide synthase is required for
virulence and deletion of the enzyme leads to poor growth in macrophages and low pH [147].
Differences in sphingolipids and ergosterol levels between C. neoformans, C. gattii, and the rarely
pathogenic Cryptococcus albidus and Cryptococcus laurentii have been observed but the details of their
importance in cryptococcal biology is yet to be ascertained [148]. Lipid modification of proteins
has been studied in C. neoformans, particularly modifications of the small GTPases, but not at all in
C. gattii [149–152]. Mutation of S-acyl transferase results in dramatic morphological changes that are
highly detrimental to stress tolerance and virulence [150,151]. Farnesyltransferase β-subunit is not
required for budding growth except at high temperature but is required for sexual reproduction and
virulence [152,153]. Studies of C. neoformans indicate, as for several other parasitic microorganisms,
that phospholipases contribute to host cell penetration, injury, and lysis [154,155]. Mice inoculated
with four strains of C. neoformans expressing high, intermediate, or low phospholipase activity and the
subsequent infection levels quantified revealing a positive correlation between phospholipase activity,
capsule size, and virulence [156]. Both C. neoformans and C. gattii have enzymes with phospholipase B,
lysophospholipase, and lysophospholipase transacylase activity [157]. The best characterised enzyme
is PLB1 which is required for virulence and growth in macrophages [158,159]. Phospholipids in the
environment may induce titan cell formation and PLB1 has also been implicated in cell size regulation
in C. neoformans [64,159].

Many fundamental aspects of lipid metabolism in Cryptococcus are still unknown. In particular,
metabolic flux of lipid synthetic pathways and how these are modulated during infection are poorly
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characterised [148]. Lipid metabolomic studies of cryptococcal mutants and strains would be highly
beneficial in our understanding of pathogenesis and the fundamental biology of cryptococci.

4.6. Phosphate Uptake

Phosphate is essential for many cellular functions from kinase signalling to energy production
and storage. Cryptococcus, like other pathogenic fungi examined, has a conserved phosphate uptake
pathway that is absent in human cells [160]. Deletion of the transcriptional regulator of acquisition,
Pho4, results in a failure to grow in the absence of added phosphate and with phosphate in alkaline
and host (pH 7.4) conditions [161]. Thus, in murine infection the PHO4 mutant fails to thrive and
demonstrates reduced lung growth and less dissemination to the brain. Furthermore, cells defective in
phosphate uptake have reduced capsule and melanin production and exhibit larger, irregular shaped
cells [162]. How other cryptococcal species differ in phosphate uptake and how these mechanisms
relate to their environmental niche is unknown.

5. Nutrition Acquisition in the Wider Cryptococcus Genus and Other Basidiomycota

Basidiomycete fungi are widespread in the environment and interspecies competition for
nutrients is a factor in their survival. As part of the saprophytic biome, nutrient acquisition by
basidiomycetes and the wider Cryptococcus genus has been the subject of significant research.
Cellobiosan is an anhydrosugar, produced from the burning of biomass and which is then available
to soil-dwelling microbes and Cryptococcal species are capable of utilising cellobiosan as a sole
carbon source [163]. Previously, Middelhoven et al. had shown that several yeasts taken from
soil could use uric acid, monoamines, and diamines as a sole carbon source [164]. The fruit
pathogen Cryptococcus laurentii can use ethanolamine whilst other basidiomycete yeasts such as
Trichosporon aquatile or Trichosporon brassicae, as well as C. laurentii, could also assimilate the polyamines
spermine and spermidine. Cryptococcus cerealis is found in pig feed fermentations, indicating that
it can tolerate low oxygen levels for respiration and may even have a role in reducing the oxygen
content of feeds in the fermentation process [165]. Cryptococcal strains occurring on plants demonstrate
proteolytic, lipolytic, and beta-glucosidase activity, with the broadest activities seen in yeasts associated
with leaves [166]. This corresponds with earlier observations that basidiomycete yeasts are more
proteolytic in nature than ascomycetes [167]. Although there is normally inter- and intra-species
competition between organisms, the mycorrhizal fungus Glomus mosseae and several soil yeasts such
as Cryptococcus laurentii, C. aerius, or Candida sake often interact synergistically and may improve
the growth of plants by increasing the availability of nitrogen and phosphorous to the plant root
system [168,169]. Under nitrogen-excess conditions the yeast Cryptococcus curvatus increases biomass
and reduces lipid production. However, under nitrogen-limited conditions, C. curvatus can accumulate
high levels of intra-cellular total sugars (ITS) if grown on lactose or sucrose as substrate. As nitrogen
from the medium becomes exhausted, and ITS and lactose are consumed, lipids, mainly palmitic,
stearic, and linoleic acids accumulate [170]. These single cell oils (SCOs), are produced in greater
quantity on lactose as opposed to sucrose media and have great biotechnological significance.

6. Evolution of Cryptococcal Virulence in the Environment

Virulence of Cryptococcus to the host has been defined as a microbial characteristic that is expressed
only in a susceptible host [37]. Of the 322 species listed within the Cryptococcus genus only seven are
recognised as being pathogenic [171]. Cryptococcus life cycle is not dependent on infection of an animal
host yet C. neoformans has a surprising capacity to infect and cause disease in a range of animal hosts,
including humans, other mammals, birds, and reptiles. Cryptococcus neoformans has co-evolved over
millions of years with free-living environmental phagocyte predators, such as amoebae, protozoa,
nematodes, mites, and insects [172–177] and this association has led to the hypothesis that virulence
of this fungus may have evolved and be maintained via selection imposed by exposure to such
environmental predators [174,178]. Given the known natural history of Cryptococcus places them
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firmly in a saprophytic niche we can assume that they will have evolved extensive strategies to
avoid predatory phagocytes. As mammalian phagocytes may originate from common environmental
ancestors, it is possible that the roles of higher animal host phagocytes against C. neoformans reflect
the complex interactions between the fungus and phagocyte predators in the environment [175].
Acanthamoeba castellanii is a common amoeba in soil and has been extensively studied as a model
phagocyte and as a model of metazoan cell biology. Studies of C. neoformans interactions with
Acanthamoeba demonstrated that following phagocytosis Cryptococci were able to replicate, killing the
amoeba. Intriguingly, acapsular strains did not survive after phagocytosis and support the supposition
that capsule may have evolved to avoid predatory phagocytes [178]. Melanization also appears
to enhance fungal survival and a C. neoformans phospholipase mutant had a decreased replication
rate in amoebae compared with wild-type phospholipase-producing strains as seen in mammalian
macrophages [159]. Such characteristics are recognised as contributing to mammalian virulence.
Many C. neoformans genes that are required for disease in humans are also required for infection,
survival, and killing of amoebae, nematodes, and insects [178–181]. In addition, passage of an
encapsulated C. neoformans strain through the social amoeba Dictyostelium discoideum was shown to
increase yeast virulence in mice, with enlargement of capsules and faster time to melanisation [108],
as has also been demonstrated in murine models [65,66,182]. This highlights that the possession of a
polysaccharide capsule, production of melanin and phospholipase are advantageous to C. neoformans
as virulence factors in a variety of animal and environmental hosts [174] and strongly suggests
that predation by environmental organisms may have consequentially led to the evolution of and
maintenance of C. neoformans virulence [173].

7. Summary and Perspectives

In addition to furthering our understanding of virulence of pathogenic fungi, understanding
nutritional requirements of pathogens has the possibility of identifying new, specific, therapeutic
targets. In C. neoformans, biosynthesis is one aspect of amino acid acquisition that has been studied
and linked to pathogenesis in the last 10 years. Several pathways have been associated with virulence
attenuation in animal models of infection, which would serve as putative molecular targets for
antifungal development [126]. Commercial inhibitors of anthranilate synthase component II and
tryptophan synthase were tested and are active against both C. neoformans and C. gattii, demonstrating
the potential application of inhibitors directed at the tryptophan biosynthetic pathway. The data
suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target.
Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro [124].

The isoleucine and valine biosynthetic enzyme acetolactate synthase (Ilv2p) is also an attractive
antifungal drug target, since the isoleucine and valine biosynthetic pathway is not present in
mammals, S. cerevisiae ilv2∆ mutants do not survive in vivo, C. neoformans ilv2 mutants are avirulent,
and both S. cerevisiae and C. neoformans ilv2 mutants die upon isoleucine and valine starvation [183]
The conserved subset of amino acid biosynthetic enzymes in fungi, not present in humans, offer exciting
potential as an unexploited class of antifungal drug targets. Threonine biosynthesis has been shown
to be essential in Cryptococcus neoformans and in other yeasts and fungi. Through examination of the
survival of Saccharomyces cerevisiae homoserine kinase (thr1) and threonine synthase (thr4) mutants in
mice demonstrated that threonine biosynthetic enzymes could be targeted for new antifungal drug
candidates [184]. In addition, as described above, many cryptococcal lipids and their biosynthesis are
distinct to mammalian cells and may be targeted for therapy [185].

Thus, as a soil and botanic dwelling basidiomycete yeast, Cryptococcus has evolved a broad
range of nutrient acquisition strategies. Many, if not most, of these strategies also appear to be
beneficial to infection of the host. While thermotolerance is the primary feature that sets the pathogenic
cryptococci apart [186], related species of cryptococci are an important resource in the understanding
of the C. neoformans and C. gattii. Considering nutrition acquisition is also a useful exercise when
studying experimental models of infection, not only because nutrient retention is a proven strategy of
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immune systems, but because human pathogenic cryptococci did not evolve to be animal pathogens.
Finally, there are many experimental animal models that represent the environmental predator–prey
relationships of the cryptococcal ecological niche. While a number of these have been used to a limited
extent [108,173,179,181,187–189], there is significant scope for using such models in understanding
this fatal fungal pathogen.
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