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a b s t r a c t 

Automatic evaluation of sports skills has been an active research area. However, most of the existing re- 

search focuses on low-level features such as movement speed and strength. In this work, we propose a 

framework for automatic motion analysis and visualization, which allows us to evaluate high-level skills 

such as the richness of actions, the flexibility of transitions and the unpredictability of action patterns. 

The core of our framework is the construction and visualization of the posture-based graph that focuses 

on the standard postures for launching and ending actions, as well as the action-based graph that focuses 

on the preference of actions and their transition probability. We further propose two numerical indices, 

the Connectivity Index and the Action Strategy Index, to assess skill level according to the graph. We 

demonstrate our framework with motions captured from different boxers. Experimental results demon- 

strate that our system can effectively visualize the strengths and weaknesses of the boxers. 

© 2017 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Computer technologies have taken on a crucial role in modern

sports and health sciences, in revolutionizing the way to observe,

analyze, and improve the performance of both amateur and profes-

sional athletes. Computer-managed weight lifting machines, tread-

mills and many other training equipment provide energy consump-

tion or repetition and weight management in many sport clubs.

Virtual reality technology has been applied in various training sys-

tems in baseball [1] , handball [2] and tennis [3] to assist more pro-

fessional sport activities. Nevertheless, these technologies are only

able to analyze motions at a low level, i.e. recording the timing or

repetitions of basic motions and comparing movement trajectories

with those performed by better players. More advanced technolo-

gies are needed for personalized and higher-level analysis compa-

rable to that from human experts. 

In addition to the instantaneous movement features of the

sports players, Experienced sport coaches consider high-level fea-

tures such as the variety of actions and quality of transitions from

one action to another. Taking boxing as an example, professional

boxers have in basic actions such as defence, stepping and attack,

threading through which the transitions are carried out based on
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he strategy and the opponent’s reactions. The action transitions

f a good boxer need to be flexible and contain great variety to

chieve the optimal outcome. Such information often serves as an

mportant indicator in assessing the skill level of a player, and the

ame principle applies to many other sports such as basketball

4] and fencing [5] . Unfortunately, automatic systems for analyzing

nd evaluating sports motions at such a high level is very limited. 

In this paper, we propose a robust visualization system to ad-

ress the above limitations, by represent motions as an interactive

raph of high-level features, including the flexibility and richness

f the actions as well as the transitions of actions. Although we

se boxing as a demonstration in this paper, our method is generic

nd can be applied to different sports. Our approach starts with

apturing the shadow boxing training motion of a boxer, in which

he boxer performs boxing with an imaginary opponent. An experi-

nced coach can effectively assess the boxer’s skill by watching the

hadowing boxing motions. As a positive side effect, this method of

otion analysis greatly reduces the complexity of motion capture

ue to occlusion and collision and has shown to be very effective

n our system. The motion data is then processed and visualized

n two different graphs: the posture-based graph and the action-

ased graph, for performance analysis. 

In the posture-based graph, the semantic actions segmented

rom the captured motion are grouped into clusters based on a

ustomized distance function that considers action specific fea-

ures. Our system then automatically generates a motion graph

tructure known as Fat Graph [6] , which uses nodes to represent
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roups of similar postures to start and end actions, and edges

o represent groups of action. By applying dimensional reduction

echniques, this graph can be visualized in a 3D space for per-

ormance analysis and evaluation. The transition capability of the

oxer are visualized by the connectivity of the nodes, where the

ichness and preference of the actions are visualized by the edges

n the graph. We further propose a skill evaluation metric known

s the Connectivity Index which evaluates the richness of actions

nd the flexibility of transitions according to the graph. 

Whilst the posture-based graph focuses on the variety of basic

ostures and the transition flexibility between actions, the action-

ased graph mainly considers the richness of actions and the tran-

ition probability among them. The action-based graph is con-

tructed as a customized Hidden Markov Model (HMM) [7] , in

hich similar actions are grouped into clusters that formulate the

odes. The transition probability among actions is calculated and

s expressed as edges between nodes. The graph is visualized in a

D space, and the positions of the nodes and edges are optimized

or better visualization. With such a graph, the pattern of action

aunching can be easily identified in order to assess the boxing

trategy of the boxer. We further propose the Action Strategy In-

ex to evaluate the unpredictability of action patterns according to

he graph. 

We conducted experiments on the motions captured from mul-

iple boxers and evaluate their skills. The corresponding posture-

ased and action-based graphs were generated. As shown in

ig. 10 , we can easily evaluate the skills of different boxers with

ur visualization system. 

There are three main contributions of this work: 

• We propose a framework for high-level skill analysis through

automatic motion analysis and visualization. Given a captured

motion from a sports player, our system automatically seg-

ments the motion into semantic action units and constructs

two graph structures. 
• We propose the posture-based graph, which is a variant of the

Fat Graph, to visualize the skills according to different standard

postures for launching and ending actions. It allows the user to

identify the correctness of standard postures and the diversity

of actions. We further propose the Connectivity Index that eval-

uates the richness of actions and the flexibility of transitions. 
• We propose the action-based graph, which is a variant of the

Hidden Markov Model (HMM), to visualize the skill according

to different groups of action. It allows the user to identify the

preference of actions and their transition probability. We fur-

ther propose the Action Strategy Index to evaluate the unpre-

dictability of action patterns. 

The preliminary results of this work were published in a con-

erence paper [8] , which proposed only the posture-based graph.

n this paper, we extend the work by introducing the new action-

ased graph. We perform analysis and experimental evaluation of

uch a graph, and compare its performance with the posture-based

raph. We have also updated the paper thoroughly such that the

wo graphs are presented in an organized and effective manner. 

The rest of this paper is organized as follows. Related works

re reviewed in Section 2 . The details of motion capture and or-

anization are given in Section 3 . In Sections 4 and 5 , we explain

he design and implementation of the posture-based graph and the

ction-based graph respectively. Related experiments can be found

n Section 6 . The paper is concluded in Section 7 with future re-

earch directions discussed. 
. Related work 

.1. Sports visualization 

Helping athletes on skill improving via the visualization of

port motions is a field that has not been fully explored in the

eld of sports science. Existing research [9,10] mainly focuses

n the appearance changes of motions when body and motion

arameters are changed. For example, Yeadon [9,10] has done

esearch on how diving and somersault motions change when

he motions are launched at different timings by using physical

imulation. Although such tools are useful for the athletes to

nteractively visualize possible results under different parameters,

hey can only evaluate the performance of sports that do not

equire complex maneuvers and strategies, such as jumping, high

umping, sky jumping, or somersaults. In many sports games,

he performance depends not only on physical factors such as

elocity, power and strength, but also on flexibility to switch from

ne motion to another and richness of the player’s motions. This

igh-level information has not been used to visualize the skills

f the athlete in previous research and it is the major difference

etween our work and the afore-mentioned ones. In this research,

e combine the approaches of motion graph [11–13] and dimen-

ionality reduction [14,15] to visualize high-level skills information

f the athletes for the skill assessments. 

.2. Motion graphs for motion modeling 

The Motion Graph approach [11–13,16–19] is a method to inter-

ctively reproduce continuous motions based on a graph generated

rom captured motion data. Reitsma and Pollard [20] compared

ifferent motion graph techniques comprehensively. Heck et al.

21] further parametrized the motion space to control how the

otions are generated by blending samples in the motion graph.

uch an approach can be used for interactive character control

uch as that in computer games. When it comes to graph con-

truction, [16,17] are the ones most similar to our method. Min

t al. [16] grouped similar postures and transitions into nodes and

dges. Their focus was the motion variety of synthesized motions

o they used generative models to fit the posture and motion data.

ur focus is on skill visualization through the analysis of postures

nd motions so we can afford simpler and faster methods of analy-

is. Beaudoin et al. [17] cluster postures first then find motion mo-

ifs by converting the motion matching task into a string matching

roblem. Their priority was to find motifs that were representa-

ive while our focus is to visualize motion details and statistics

o help people assess the skills. Xia et al. [22] constructed a se-

ies of local mixtures of autoregressive models (MAR) for model-

ng the style variations among different motions for real-time style

ransfer. They demonstrated style-rich motions can be generated

y combining their method and motion graph. 

Since the Motion Graph produces a lot of edges and nodes

ithout any context, it becomes difficult to control generated mo-

ion as the user wishes. Safonova and Hodgins [23] optimized

he graph structure by combining motion graph and interpolation

echniques to improve performance. On the other hand, works to

esolve this problem by introducing a hierarchical structure were

roposed [6] . These approaches add topological structures into the

ontinuous unstructured data so that the motion synthesis can be

one at a higher level. In a sport like boxing, it is possible to cre-

te a motion graph of semantic actions such as attack and defence,

hich is known as the action-level motion graph [24,25] . A re-

ent work by Hyun et al. [4] proposed Motion Grammars to spec-

fy how character animations are generated by high-level symbolic

escription. Such an approach can be used with existing animation

ystems which are built based on motion graphs. Ho and Komura
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Fig. 1. The shadow boxing motions of several boxers were captured using an optical 

motion capture system. 

 

c  

a  

m  

b  

d  

(  

o

 

s  

f  

a  

d  

t  

t

3

 

i  

o  

t  

p  

o  

o  

i  

l  

n  

i  

a  

a  

i  

t  

v  

T  

h  

c  

a  

c  

c

3

 

i  
[26] built a finite state machine (FSM) based on Topology Coor-

dinates [27] for synthesizing two-character close interactions. The

sparse graph structure can be used for controlling the movement

of virtual wrestlers in computer games. The purpose of these ap-

proaches, however, is motion generation rather than the visualiza-

tion of the player’s skill. 

In our research, we adapted a hierarchical motion graph struc-

ture called the Fat Graph [6] on the action level to analyze the con-

nectivity and the variety of a captured motion set. In a fat graph,

similar nodes are grouped together as fat nodes, and similar edges

are grouped as fat edges, allowing better organization of motion

data. The filtered motion graph is a variation of the Fat Graph,

in which the temporal relationship between poses are considered

[28] . Such a structure, however, is targeted for motion reconstruc-

tion and analysis rather than visualization [29] . 

2.3. Statistical motion modeling 

Dimensionality reduction methods have been proposed to vi-

sualize the overall structure of captured motions. Grochow et al

[14] proposed a method to project the 3D motions of a human

onto a 2D plane, and further reconstruct 3D motions by mapping

arbitrary points from the 2D plane back onto 3D joint space. PCA

[15] and ISOMAP [30] are proposed to map the motions onto 2D

planes. Due to the high variation of human motion, local PCA that

considers only a relevant subset of the whole motion database in

order to generate a locally linear space is proposed [31,32] . One can

generate motions from arbitrary points on the plane by interpo-

lating the postures of the original motion. Meanwhile, non-linear

methods [33,34] and Deep Learning [35] have also been used to re-

duce the dimensionality of motions. The Gaussian Process [36] and

the mixture of Gaussian Processes [36] can be used to represent

a set of human postures with a small number of Gaussian param-

eters. However, such methodologies do not take into the account

the connectivity structure of the motions. We apply dimensional-

ity reduction to our graph structure to visualize the connectivity

structure of captured motions on a 2D plane. 

Other researchers have focused on the connectivities of mo-

tion/actions by methods such as Markov models. Hidden Markov

Model (HMM) [7] has been widely used in analyzing and synthe-

sizing human motion. Typically, the hidden states of the HMM are

the distribution of body poses and the dynamics of the motions are

represented by the transitions between the hidden states. The pa-

rameters of the HMM can then be learned from training data using

the Expectation-Maximization (EM) algorithm. Hara et al. [37] pro-

posed to model daily activities using HMM in intelligent house.

Françoise et al. [38] proposed to use HMM models for analyzing

Tai Chi motion sequences. An early work proposed by Brand and

Hertzmann [39] proposed to learn the dynamics of human mo-

tion using HMM in their motion style synthesis model. Tango and

Hilton [40] proposed to learn a HMM model from captured hu-

man motion for synthesizing in-between frames in keyframe ani-

mation. Ren et al. [41] presented a data-driven approach for quan-

tifying naturalness of human motion including those synthesized

by HMM. While existing work focuses on finding statistical distri-

butions of motions, our focus is on visualizing the motion richness

and the transition dynamics for skill assessments. 

3. Motion capture and organization 

We first capture the motion required for analysis using motion

capture systems. Then, we propose an automatic system to seg-

ment long sequences of captured motion into meaningful actions,

which are used as building blocks of our posture-based and action-

based graphs. 
Here, we follow the definition from [25] , in which a motion is

onsidered to be a raw sequence of captured human movement,

nd an action is considered to be a short, meaningful segment of

ovement within a motion. In the field of boxing, an action can

e an attack (such as a “left straight”, “jab” or a “right kick”), a

efense (such as “parries”, “blocking” or “ducking”) , a transition

such as “stepping to the left”, “stepping forward” or “back step”),

r any combination of them. 

Postures and actions are good entities for skill visualization, as

ports players typically plan their strategies and evaluate their per-

ormances with such terms. For example, a boxer typically thinks

bout what sort of attack/defense/transition should be launched

uring a match. A coach typically evaluates the overall strategy in

he action level, as well as how well individual postures and ac-

ions are performed. 

.1. Motion capture 

Although it would be best to capture the motions of all players

n multi-player sports because the data would reflect the features

f the motions, capturing multiple players remains difficult due

o the occlusions and collisions among players. Fortunately, it is

ossible to only capture individual motions for our purposes with-

ut compromising the true motion characteristics. In boxing or any

ther martial arts, there is a training practice called “shadow box-

ng”. The boxer imagines a boxing session with another boxer, and

aunches boxing actions to interact with such an imaginary oppo-

ent. The boxer launches not only offensive actions such as punch-

ng, but also defence, stepping, and the consecutive combination of

ll such actions. There are similar practice methods in basketball

nd soccer as well, in which players use the ball to conduct var-

ous techniques in the court, imagining that their opponents are

rying to take the ball away from them. The players thus perform

arious actions to keep the ball and trick an imaginary opponent.

his technique has also been used by coaches for skill assessment

ence is suitable for our analysis. We employed an optical motion

apture system to acquire the performed motion as shown in Fig. 1

s it was less intrusive and highly accurate. Also, we preferred to

apture long and continuous clips of motion, such that the player

ould perform the motion in a natural manner. 

.2. Motion analysis 

After data capture, the system automatically segments mean-

ngful actions from the raw captured motion, and identifies the ef-
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Fig. 2. Upper: The movement segment is defined as the period between two double support supporting phases. Middle: The activity segment is defined as the period with 

high acceleration. Lower: The action is the combination of movement segment and activity segment. 
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ective joints that contribute the most to the semantic meaning of

he actions. 

For boxing motions, we observed that actions normally start

nd end in a double supporting state (i.e. both feet touching the

oor), as the state is usually dynamically stable. We detect such a

tate by monitoring the feet height and velocity and setting corre-

ponding thresholds. This allows us to segment the raw captured

otion into a set of movement segments , which are the periods be-

ween every two successive double supporting states, as visualized

n Fig. 2 Upper. 

We also observed that actions normally require a relatively

arger force to be performed, such as a punch or a step. We de-

ne periods with a high-level of force exertion as the activity seg-

ents . Since force is proportional to acceleration, these segments

an be found when the sum of squares of acceleration of all joints

s above a threshold, as visualized in Fig. 2 Middle. The threshold

s statistically obtained from the acceleration profile of the motion.

Finally, the actions are composed by using the movement seg-

ents as the building blocks. The timing and the duration of the

ctivity segments are used to determine if the movement segments

hould be merged together to form longer segments. Regarding the

elationship of the movement segments and the activity segments,

here could be three possible cases: (1) There is no activity seg-

ent inside a movement segment. In this case, the movement seg-

ent becomes a single action of pure body transition. (2) There

s one activity segment inside a movement segment. In this case,

his movement segment becomes an action with a special activ-

ty. (3) There are one or more activity segments lying across suc-

essive movement segments. In this case, the movement segments

ontaining activity segments at the border are merged to form an

ction as visualized in Fig. 2 Lower. Note that due to this merg-

ng process, the resulting action may contain multiple activity seg-

ents. In our system, we implement an optional step to filter very

hort actions that are likely to be generated due to the noise of the

upporting feet. 

We define the effective joints to be the set of joints to represent

n activity segment. In case (1) above, since the actions contain no

pecial activities, the pelvis is considered to be the effective joint.

n case (2) and (3), the effective joint is the joint that contributes

he most to the sum of squares of the acceleration in the activ-

ty segment. In more complicated actions such as left-right combo

unches, there may be multiple effective joints as there are mul-

iple activity segments. Such joints are used in later processes to

valuate the similarity of actions. 
t  
. Posture-based graph 

The posture-based graph focuses on evaluating the common

ostures that are used to start and end actions. In such a graph,

he nodes represent similar postures and the edges represent sim-

lar actions. It allows us to evaluate the consistency of common

ostures and the diversity of actions. 

.1. Graph construction 

We adopt a Fat Graph structure [6] in the action level [25] to

enerate the posture-based graph, as it can effectively simplify the

raph representation by grouping similar postures and actions to-

ether. The Fat Graph was originally proposed for motion synthesis,

nd thus it is not optimized for skill visualization. We redesign the

lgorithms to generate nodes and edges in the Fat Graph for our

urpose. 

.1.1. Fat Nodes 

In our system, the nodes of the Fat Graph, known as Fat Nodes,

re the common starting or ending postures of the actions. We

esign an unsupervised clustering scheme for grouping all start-

ng/ending postures into a finite set of posture groups, which

voids additional labour for posture labelling and grouping. Specif-

cally, we used k-means to cluster postures. The distance between

wo postures P 0 and P 1 is defined as: 

 (P 0 , P 1 ) = 

i = i total ∑ 

i =0 

| θ0 (i ) − θ1 (i ) | (1)

here θ0 ( i ) and θ1 ( i ) represent the 3D joint angle of the joint i

n posture P 0 and P 1 respectively, and i total is the total number of

oints. Regarding the cluster number k , a large k would result in

any clusters (Fat Nodes), which unnecessarily increases the com-

lexity of the graph. A small k will cluster very different postures

nto the same node, defeating the purpose of the graph. Therefore,

e set up a posture difference threshold empirically based on ex-

erts’ suggestions. Then, we iteratively search for a proper k by

nitially setting k = 1 and incrementing k by 1 until we find the

rst value of k that does not violate the distance threshold. After

lustering, we use the mean posture of a group to represent the

orresponding Fat Node. The nodes in the graph represent the set

f standard postures which the player starts various action from. In

he case of boxing, they are usually the fighting postures that the
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Fig. 3. The Fat Node represents the standard fighting pose. The three outgoing Fat 

Edges represent different action groups. 
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boxer uses to guard his/her face against the opponent, with both

feet landing on the ground and keeping shoulder width apart. 

By evaluating the Fat Nodes alone, we can already tell if a

boxer has multiple unnecessary standard postures, or if any stan-

dard postures contain potential weakness. In general, experience

players have fewer Fat Nodes, such that they can start actions in a

standard posture effectively without the needs of shifting to other

ones. Novice players sometimes may have a particular Fat Node for

some particular actions. This is discouraged in boxing training as

such postures hint the opponent as to what actions are going to

be launched. 

4.1.2. Fat Edges 

We design the edges of a Fat Graph, known as Fat Edges, as di-

rectional edges that represent groups of similar actions. Each edge

points from the Fat Node representing the starting posture to that

representing the ending posture. 

Similar to the Fat Nodes, we implement an unsupervised clus-

tering algorithm to group similar actions into Fat Edges. We use

k-means to cluster the actions and search for the smallest accept-

able k for a given distance threshold. We define the actions dis-

tance according to the trajectory of the effective joints as explained

in Section 3.2 . This allows accurate clustering of actions and en-

sures that the effects of the effective joints are not smoothed out

by other joints. 

Formally, the distance between two actions A 0 and A 1 is defined

as 

D (A 0 , A 1 ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∞ 

if A 0 and A 1 have different sequences 
of effective joints 

j total ∑ 

j=0 

f end ∑ 

f= f start 

[ A 0 ( j)( f ) − A 1 ( j)( f )] 

otherwise 

(2)

where A 0 ( j )( f ) and A 1 ( j )( f ) represent the 3D positions of effective

joint j in frame f in the action A − 0 and A 1 respectively, j total is

the total number of effective joints in the actions, f start and f end are

the starting frame and ending frame of the considering effective

joint. In case two effective joints with different duration are to be

compared, the shorter one is linearly scaled to the duration of the

longer one. 

In the field of boxing, a Fat Edge typically contains a set of ac-

tions with basic attacks or defences such as “straight punch”, “hook

punch”, “parry”, or a set of complex actions combining several at-

tacks and defences. Since member actions in a Fat Edges have to

share the same starting and ending Fat Nodes, if an action group

contains multiple starting or ending poses, it is sub-divided into

multiple Fat Edges. 

Again, by only looking at Fat Edges, one can tell the differences

between experienced and novice players. Experienced players nor-

mally have Fat Edges with similar numbers of actions, as they have

mastered a large variety of boxing actions and can switch between

them effectively using a small number of stable transition maneu-

vers. Novice boxers tend to have a larger number of Fat Edges but

each with a small number of actions, due to the inability to repro-

duce boxing actions consistently. Figure 3 shows the relationship

of Fat Nodes and Fat Edges. 

4.2. The connectivity index 

It requires deep knowledge and years of experience to assess

one’s skills in sports. Here, we make use of the posture-based

graph and define an index representing the skill level, allowing

more objective and efficient skill assessment. 
In many types of sports, there are two important skill indica-

ors. The first one is the richness of the actions that indicates the

esourcefulness of a player. The other is the flexibility of transi-

ions between states so that the player can switch between differ-

nt states at will. Our posture-based graph captures both of the

ndicators. The richness can be represented by the number of Fat

dges, indicating how many kinds of maneuvers the player has.

he flexibility is indicated by the connectivity of the graph, which

s inversely proportional to the number of Fat Nodes. A fully con-

ected graph shows great flexibility because there are transitions

etween any two nodes. 

Notice that these two factors are somehow contradicting. In

eneral, the richer the actions are, the greater the number of differ-

nt starting and ending poses is hence the poorer the connectivity

f actions is. Independently considering either of them would not

uffice. We therefore define a Connectivity Index that evaluates both

he action richness and the action flexibility of a player 

I = 

Number of Fat Edges 

Number of Fat Nodes 
(3)

To accurately reflect the skill level of a player, in our imple-

entation, we do not consider Fat Nodes that are not intentionally

reated. For example, one of our boxers tripped over during a ses-

ion. While it is good that our system can objectively pick up the

osture generated by the accident, we do not include the corre-

ponding Fat Nodes when calculating the Skill Index. Also, we only

onsider Fat Edges that are consistently performed, as those having

nly a small number of member actions could be randomly per-

ormed actions. Empirically, we consider edges having more than

 member actions. 

.3. Visualization system 

Here, we describe the design of our visualization system to vi-

ualize the posture-based graph in an effective manner. We also

ntroduce interactive features for the user to view the graph with

ifferent levels of details. 

The posture-based graph consists of high dimensional Fat Nodes

groups of similar postures of many degrees of freedom) and Fat

dges (groups of similar actions in the spatial-temporal domain),

hich presents a challenge for visualization. To reduce the dimen-

ionality for better visualization, we propose two different schemes

or nodes and edges due to their different nature in this graph.

pecifically, we project the Fat Nodes on a 2D space using Principal

omponent Analysis (PCA) as it creates a more consistent low di-

ensional space compared with other methods. We represent Fat

dges with 2D curves and augment the curves with a combination

f geometric primitives to visualize the action features. 



Y. Shen et al. / Computers & Graphics 69 (2017) 104–115 109 

Fig. 4. From left to right, the character becomes larger as the size of the nodes increases. 
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Fig. 5. The geometric patterns for landmark values between -1 and 1. Each pattern 

represents a landmark posture in an action. (Lower) Comparison of visualization 

without/with the patterns. Each curve represents a group of action. The right image 

shows the uses of landmark patterns to identify different types of action. 
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.3.1. Visualizing Fat Nodes 

Although the degree of freedom (DOF) of human postures are in

igh dimensionality (45 DOF in our system), they are intrinsically

ependent on each other [14] . In fact, the Fat Nodes can be rep-

esented effectively in a 2D space where nodes of similar postures

re located together while those of different postures are located

ar apart. This allows viewers to easily understand the relationship

etween postures. 

For each Fat Node, we obtain the mean posture as its represen-

ation. Given a set of postures, we apply principal component anal-

sis (PCA) to reduce the dimensionality to 2. Essentially, we cal-

ulate the covariance matrix to evaluate the intrinsic dependency

f the dimensions. We then calculate the eigenvectors from such

 covariance matrix, and use the two eigenvectors with largest

igenvalues to form a feature vector. 

PCA is used as it has shown to be effective on human postures

14] . However, since we only have a small number of postures,

e believe other dimensionality reduction techniques would also

ork. 

We render the mean posture of each Fat Node onto a 2D X-

 plan. This allows the user to identify inappropriately performed

ostures. In boxing, novice boxers sometimes lose track of their

oxing rhythm, and hence start or end an action with an inappro-

riate posture. We use the fatness of the character to represent the

umber of member postures in the node, as shown in Fig. 4 . This

llows the user to easily observe the postures that the player usu-

lly uses to start actions. 

.3.2. Visualizing Fat Edges 

Here, we explain how to visualize the Fat Edges, which contain

nformation of groups of similar actions. 

We do not apply dimensionality reduction techniques directly

n the action data itself because the low dimensional projection

ould be very complex. Instead, we propose to visualize each Fat

dge by a 2D curve that represents its mean action on the X –Z

lane. We optimize the angle and sign of these curves to minimize

cclusion. For edges with a starting node different from the end-

ng node, the edge angle is fixed. The only adjustable variable is

he bending side of the curves, which is essentially the sign of the

urves. For those with the same starting and ending node, both

dge angle and bending side can be controlled. We optimize the

igns and angles of the edges in a greedy manner such that they

ould blend towards a less dense region of the graph. 

To visually distinguish between different Fat Edges, we add

ome geometric patterns to the 2D curves. We collect the high-

nergy frames of all actions and project them onto a 1D space

sing the PCA system explained in Section 4.3.1 . Since the high-

nergy frames of different actions are typically distinguishing pos-
ures, the projection essentially maps all action features onto a

ormalized 1D space in the range of [ −1 . 0 , 1 . 0] . To visualize the

alue in this 1D space, we design some geometric patterns for

andmark values -1.0, -0.5, 0.0, 0.5 and 1.0 as shown in Fig. 5 Up-

er. The patterns to represent values between two landmarks are

btained by linear interpolation between nearby landmarks. 

We further represent the number of member actions in the

dge by the thickness of the curve. This allows the user to iden-

ify the player’s preferred actions. For instance, if a boxer relies

eavily on single straight punches, the Fat Edge for such action

ill be unreasonably thick, while edges for other attacks will be

elatively thin, which demonstrates a potential lack of diversity at-

acking strategies. 

Through the comparison between Fig. 5 Lower Left and Lower

ight, it shows that adding the geometric patterns gives a better

isualization of actions in the edges. This strategy presents an intu-

tive way to show the players preferences over actions of different

omplexity. 

.3.3. Interactive features 

We integrate some interactive features in our system to dis-

lay relevant information based on user input. When the user se-

ects any specific entities in the graph, related information will be

hown. 

When a Fat Node is selected, its corresponding Fat Edges will

e highlighted for easier observation. Information about the num-

er of members in that node, number of outgoing edges, and num-

er of incoming edges are displayed in a sub window. When a Fat

dge is selected or highlighted (because of a Fat node selection),
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Fig. 6. The posture-based graph of the Boxer S. 1, 2 and 3 are Fat Nodes. 4 and 5 

are two Fat Edges. 4 connects Node 2 and Node 3. 5 connects Node1 to itself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The three HMM nodes represent action groups. The HMM edges represent 

transitional probability between them. 
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we render the member actions included, such that the user can

understand the content of the edge. 

As an example, in Fig. 6 , there are three Fat Nodes indicated by

red arrows and numbered as 1, 2 and 3, each visualized as a char-

acter with a mean posture in the node. The sizes of the nodes are

indicated by the body fatness. Node 1 is represented by the most

muscular character, which indicates the largest node size. Nodes 2

and 3 are far thinner. Fat Edges are rendered as curves between

nodes such as the ones shown by 4 and 5. The thicknesses of the

edges indicate the frequency of the actions taken. Edge 5 is thicker

than edge 4, suggesting that this boxer takes action 5 more often.

In addition, an edge can be smooth like a circle or bumpy with

geometric patterns. A single pattern means one activity segment

such as a single punch, while multiple patterns indicate a series of

activities such as a combo attack. Our system also supports inter-

active features. Fig. 6 is the result when the user selects Node 1.

All the edges starting from this node are highlighted, each with a

small character performing the action on it. 

5. Action-based graph 

The action-based graph focuses on evaluating the transition

probability from one action class to another. In such a graph, the

nodes represent groups of action with similar activity segments.

The edges represent the transition probability between two action

groups. It allows us to evaluate the pattern of launching actions

and extract the strategy of the boxer. 

5.1. Graph construction 

We use the hidden Markov model (HMM) to organize the cap-

tured motion, as it has been shown effective in modelling hu-

man motion. In the domain of character animation, HMM has been

mostly used in the posture level to create motion graphs [12] . We

adapt the graph into the action level such that we can visualize

the transition probability among actions. 

The nodes of the graph represent different action groups. We

apply Eq. (2) to group the captured actions into a number of ac-

tion groups with k-means clustering. The process is similar to that

in Section 4.1 , in which we define a threshold based on expert

knowledge, and then incrementally increase the number of classes

until the threshold is met. We denote k ′ as the total number of

groups, | G i | as the number of actions in the i th action group (which

is used in the visualization system for visualizing the fatness and

the placement of the node and will be described later). 

The edges of the graph represent transitional probability from

one action group to another. To obtain the transitional probability,

we go through the sequence of actions in the captured motion and

count the number of occurrences for an action belonging to group

i to be followed by another belonging to group j , which is denoted

as c ij . The transition probability of action group i to action group j
s defined as 

 i j = 

c i j ∑ k ′ 
m =1 

∑ k ′ 
n =1 c mn 

(4)

here the denominator represents the total number of transition

n the whole motion. Notice that i may be equal to j . In such a case,

wo actions of the same action group are launched successively. 

The concept of the action-based graph is shown in Fig. 7 . In

eneral, experienced boxers tend to have a more evenly distributed

ransitional probability across all actions, which means that there

hould be edges connecting all the nodes. This indicates that the

oxer’s pattern is dynamic and cannot be easily predicted by an

pponent. Conversely, novice boxers may have limited edges and

ome thick edges connecting two nodes, which means a high prob-

bility to launch those two groups action consecutively. An oppo-

ent may discover such a pattern and counter-act in advance when

he first action is observed. 

.2. The action strategy index 

In many sports, the unpredictability of action patterns is an im-

ortant skill indicator. Experienced players would diversify their

ction patterns such that their opponents cannot predict the next

ction. However, novice players tend to perform actions based on

redictable patterns (i.e. the sequence of actions to be launched

ontinuously), which can be easily identified. For example, a novice

oxer usually perform two straight punches successively. This is

ecause the boxer is not able to link different types of punches

uently, and therefore would perform the simplest punches again

nd again. The proposed action-level graph allows easy observa-

ion of boxing patterns, as we can visualize the transitional proba-

ility among actions. We further propose the Action Strategy Index ,

hich evaluates the unpredictability of action pattern. We obtain

he number of outgoing HMM edges for each HMM node, forming

 set that is denoted as e = { e i } ∀ i ∈ [1 , k ′ ] , where k ′ is the total

umber of HMM nodes. Skillful players would have similar values

n the e set, while novice players would have very different values.

e therefore define the Action Strategy Index as the precision of

 , that is, the reciprocal of its standard deviation 

SI = 

1 

σ (e ) 
(5)

here σ represents the standard deviation operator. A high ASI

alue indicate that the player’s action patterns are more unpre-

ictable, which indicates a higher skill level. 
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Fig. 8. Action-based graphs of the same boxer generated by setting the frequency threshold as (a) 0, (b) 1 and (c) 2. The red shade indicates the inner circle covering nodes 

of the frequent class, and the blue shade indicate the outer circle covering nodes of the rare class. 
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Fig. 9. The action-based graph of the Boxer S. 1, 2 are HMM nodes belonging to the 

frequent class. 3, 4 are outgoing HMM edges from the node 1. 5, 6 are HMM nodes 

belonging to the rare class. 
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.3. Visualization system 

Here, we explain the visualization system for the action-level

raph. The system allows easy observation of the preference of ac-

ion and the boxing pattern. Both are very important aspects to

valuate the high-level strategy of a boxer. 

.3.1. Visualizing HMM Nodes 

Each action group is represented by its corresponding median

ction, which is the action that is the closest to the mean value of

he action group during k-means clustering. We render the nodes

sing human characters with the starting posture of the median

ction. The number of actions in each action group is visualized

sing the fatness of the corresponding character. The color of the

odes are randomized. 

As mentioned in Section 4.1.2 , we observe that some boxers,

specially novices, may produce random actions that are not re-

eatable. Such actions may generate a large number of thin nodes,

hich distract the user from evaluating the actions that are of-

en launched. Therefore, we classify the action groups with | G i | > a

nto the frequent class , and groups with | G i | ≤ a into the rare class ,

here G i is the number of member actions in a node as defined

n Section 5.1 , a is a preset frequency threshold. Fig. 8 shows the

esult of setting different values of a . We find that setting a = 2

enerates the best results. 

We place the nodes belonging to the frequent class at an inner

ircle, and those belonging to the rare class at an outer circle, such

hat the user can identify them easily and decide what to focus

n. For the inner circle, nodes are ordered according to the cor-

esponding value of | G i |, and are placed evenly at a circle with a

maller radius. For the outer circle, to minimize edge crossing, we

lace the nodes at a position on a circle with a larger radius that

s the closest to the nodes with incoming and outgoing edges. To

mplement this, we develop a simple optimization algorithm that

ptimizes the position of the nodes. During the optimization, we

onstrain the position to be at the circle and not overlapping with

xisting nodes. We then minimize the sum of distance with respect

o the nodes connecting to the current one. 

By default, we render the HMM node belonging to the frequent

lass with solid colors, and those belonging to the rare class in

emi-transparent colors. This further avoids the user being dis-

racted by the rarely performed actions. 

.3.2. Visualizing HMM Edges 

We visualize the edges using 2D curves. While we can render

he edges with straight lines, the resultant group would be diffi-

ult to observe as the lines overlap significantly. We augmented

he edges with a small random curvature to solve the problem. We

lso render the edges as semi-transparent such that the users can

ee through partially overlapped edges. The thickness of the edge
s proportional to T ij calculated in Eq. (4) . As a result, a thicker

dge connecting node i to node j indicates that the boxer often

aunches action group j after action group i . The color of the edges

re decided based on that of the source node. This helps the user

o identify which action groups the boxer may launch after a par-

icular one. 

.3.3. Interactive features 

We also implement some interactive features such that the user

an select what to view. The most important component of the

ction-based graph is the action itself. Therefore, we implement

n interactive system such that when a user clicks on a particular

MM node, the median action of the corresponding action group is

isplayed. We also highlight the outgoing edges from such a node.

his allows the user to examine individual action group together

ith the transition probability to the next groups. The information

f the node, such as the number of member actions and the num-

er of out-going HMM edges, are displayed on a separate window.

As an example, in Fig. 9 , there are 5 HMM nodes belonging to

he frequent class including node 1 and 2. These nodes are vi-

ualized with more muscular characters, meaning that the boxer

erforms them more frequently. There are 3 HMM nodes belong-

ng to the rare class including node 5 and 6, which are visualized

ith thinner characters. Node 1 has 5 outgoing HMM edges, in

hich edge 3 point towards another node, while edge 4 is a self-

onnecting edge. Edge 4 is thicker than the others, indicating that

he boxer performs successive actions belonging to node 1 very

requently. The screen is captured when the user selects node 1,

nd as a result, all outgoing edges of node 1 are highlighted, and

he character representing node 1 performs the corresponding me-

ian action. 

. Experimental results 

In this section, we present experimental results. We captured

he motions of four boxers with varying skill levels. We first give
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Fig. 10. (Left) The posture-based graphs and (Right) the action-based graphs for boxer N, M1, M2 and S (top to bottom), respectively. 
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detailed motion analysis and visualization of individual motions,

and then compare them side by side using the proposed indexes.

This demonstrates that our system is an effective tool for mo-

tion analysis, skill assessment and comparisons. As it is difficult
o show the motions in pictures, we refer the readers to the sup-

lementary video for more details. 

The four boxers chosen have different skill levels. As a ground

ruth, their skills were evaluated by a professional boxing coach
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Table 1 

Statistics of the boxing motions. SL: Skill Level evaluated 

by a professional boxing coach. PN: Posture Number (for 

starting and ending actions). AN: Action Number. 

Boxer S Boxer M1 Boxer M2 Boxer N 

SL Skillful Medium Medium Novice 

PN 138 160 112 176 

AN 69 80 56 88 
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s skillful, medium, medium and novice respectively, and were de-

oted as S, M1, M2 and N. 

.1. Boxer evaluation 

The boxers’ posture-based and action-based graphs are shown

n Fig. 10 , in which letter annotations are given to help explain the

raphs. These graphs allow the users to assess boxing skills even if

hey are not familiar with boxing. 

.2. Boxer S 

The first row of images in Fig. 10 shows the graphs of boxer

. The posture-based graphs shows a main standard posture (a) to

tart and end actions, which is good for boxing as it allows the

oxer to transit from one action to another effectively through the

tandard posture. A large variety of actions (b) can be produced

rom such a posture. There is a secondary posture in which the

rms are further apart (c). This should be avoided as such a pos-

ure is weak in blocking attacks. Posture (d) is generated because

he boxer trips over during the training. Our system can pick up

nd visualize such a mistake accurately. 

The action-based graph of boxer S shows there there are many

ctions in the frequent group (a) and only a few in the rare group

b). This shows that the boxer is experienced and his actions are

onsistent. There is a major movement action (c) in the frequent

roup (a), and such an action has good connections to many of

he others. This is good as experienced boxers typically use move-

ent actions to adjust their position relative to their opponent,

nd launch attacks when the time is right. Other actions in the

requent group (a) are variations of attacks. For example, the more

requently used action (d) is a right-left combo and action (e) is

 single right punch, which show that the boxer tends to start an

ttack with the right punch. It is good to see that attacking actions

ay connect to each other, which enhance the unpredictability of

he boxer. 

.3. Boxer M1 

Next, we evaluate the posture-based graph of boxer M1. The

oxer has a main standard posture (a) to launch most of the ac-

ions (b). However, he has a secondary posture (c) for launching

ome attacks, and another (d) for launching a turning action. In

oth postures, the arms are in a low position and cannot guard

he boxer well from the opponent. More importantly, the relatively

ore frequently used secondary posture (c) is performed with the

oot distance much wider than the shoulder width. This means

he boxer has limited mobility in this posture, as the legs must

ove towards each other before another stepping action can be

erformed. These observations show that the boxer is not as expe-

ienced and consistent as boxer S. 

The corresponding action-based graph shows that there are

ewer frequent class actions (a) but more rare class ones (b) com-

ared to boxer S. This means that that the boxing action of boxer

1 is less consistent. The boxer has a large number of movement

ctions (c) that are connected to all the rest of the action nodes. He

lso has a variety of attack actions as shown in other actions in the

requent class (a). In particular, action (d) is a left-right combo and

ction (e) is a left punch, showing that the boxer tends to start an

ttack with the left punch. Overall, there is an acceptable number

f connections among attacks, demonstrating the acceptable un-

redictability of the boxer. 

.4. Boxer M2 

For boxer M2’s posture-based graph, there is a main standard

osture (a) launching the majority of actions (b). There are, how-
ver, a number of secondary postures (b)–(d). These postures are

ll performed sub-optimally with his arms not guarding the head,

nd should be avoided. Looking closely to the edges (f) going to

osture (c), we can find that the posture is performed as a subtle

ovement to prepare various left punches. This should be avoid

s the opponent can tell the moves whenever seeing such a pos-

ure. Postures (g) and (h) are very different from the rest, and are

eometrically far from the other postures. These two postures are

erformed because the boxer unintentionally raises the arms dur-

ng the capture. Our system can pick up the mistake and visualize

t in the graph. 

From boxer M2’s action-based graph, it can be observed that

here are relatively fewer actions in the frequent class (a), but a

arge number of actions in the rare class combining (b) and (c).

his shows that the boxer is quite inconsistent in the boxing ac-

ions, and could be because of the lack of training and experience.

ifferent from the boxers discussed, boxer M2 has a largest action

ode (d) of left punch. The second largest action node (e) is a dou-

le left punch. The movement action node (f) is relatively small.

his shows that boxer M2 has a different boxing style to use left

unch as a major action to connect to other actions and his left

unch is dominant. Such a boxing style is not advised as a punch-

ng action, comparing to a movement one, consume more energy

nd expose a larger risk of being attacked. 

.5. Boxer N 

In the posture-based graph of the novice boxer N, there are two

ajor standard postures (a) and (b) instead of one. There are a

arge number of self-connecting actions (c) and (d) for both pos-

ures, as well as a lot of actions (e) connecting the two. This shows

hat the boxer is highly inconsistent in the boxing postures. Pos-

ure (a), the more relatively frequently used one, is inferior to pos-

ure (b), due to its wider foot distance. It does not allow the boxer

o step freely. Posture (f), (g) and (h) are all secondary postures

ith different posture variations. They are all not well performed

ue to the low arm positions limiting blocking capability, and the

ide foot width limiting movement capability. 

The corresponding action-based graph shows some actions in

he frequent class (a) but a large number of actions in the rare

lass (b). This means that the novice boxer cannot perform actions

onsistently. The action in the rare class (b) are mainly very long

ombo that are randomly combined and cannot be reproduced. The

ain action (c) is a movement action. Such an action cannot con-

ect to a number of others in the rare class (b), and many ac-

ions in the rare class (b) are not well connected. This means that

he boxer’s action is more predictable, which is bad in a match as

he opponent can guess what the boxer may launch next. The two

ore frequently used attack action (d) and (e) are left-right combo

nd left punch respectively, showing that the boxer tends to start

n attack with a left punch. 

.6. Statistical analysis 

Here, we give some statistics about the proposed system. 
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Table 2 

Statistics of the boxing motions. FNN: Fat Node Number 

(brackets show numbers after removing accidentally cre- 

ated nodes). FEN: Fat Edge Number (brackets show num- 

bers of consistently performed edges). CI: Connectivity In- 

dex. 

Boxer S Boxer M1 Boxer M2 Boxer N 

FNN 3 (2) 6 (4) 3 (3) 5 (5) 

FEN 20 (10) 36 (12) 16 (7) 57 (8) 

CI 5.0 3.0 2.3 1.6 

Table 3 

Statistics of the boxing motions in the Aciton Graphs. NN: 

Node Number. NNFC: Node Number for Frequent Class. 

NNRC: Node Number for Rare Class. EN: Edge Number. ASI: 

Action Strategy Index. 

Boxer S Boxer M1 Boxer M2 Boxer N 

NN 7 11 9 16 

NNFC 4 3 4 5 

NNRC 3 8 5 11 

EN 16 27 20 38 

ASI 0.572 0.448 0.426 0.378 
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Table 1 shows the skill level assessed by a professional boxing

coach, as well as the number of postures and actions, for each of

the boxers considered. 

Table 2 shows the statistics related to the posture-based graph,

including the number of fat nodes and fat edges, as well as the

Connectivity Index calculated with Eq. (3) . The index evaluates the

richness of actions and the flexibility of transitions. It aligns with

the boxers’ skill level and more skillful boxers have higher Connec-

tivity Indexes. 

Table 3 shows the statistics related to the action-based graph,

including the number of HMM nodes (which is further separated

into the number for the frequent class and the rare class respec-

tively) and HMM edges, as well as the Action Strategy Index cal-

culated with Eq. (5) . It indicates the unpredictability of a boxer,

and more skillful boxers are generally more unpredictable. Again,

it aligns with the boxer’ skill level and more skillful boxers have

higher Action Strategy Indexes. 

In terms of the computational cost, we run the proposed sys-

tem on a laptop computer with a Core i7-6820HQ CPU, 16GB of

RAM and a NVIDIA Quadro M10 0 0M graphic card. The computa-

tional time to analyze the captured motion ( Section 3.2 ) and com-

puting the graphs ( Sections 4 and 5 ) ranges from 6 to 9 s. The vari-

ation of computational time is mainly due to the iterative k-means

clustering algorithm for both postures and actions, as a larger k

requires longer computational time. The run-time cost is low and

we achieve frame rate higher than real-time (i.e. 60Hz). The frame

rate tends to be lower when there are more characters shown in

the graphs. 

7. Conclusion and discussions 

In this paper, we proposed a method to visualize the high-level

skills of boxers using an automatic motion analysis and visualiza-

tion framework. The proposed posture-based graph is a customized

Fat Graph that allows us to evaluate the quality of standard pos-

tures for launching and finishing actions. The action-based graph is

a customized Hidden Markov Model that visualizes the transition

probability among actions. We further introduce the Connectivity

Index that is deduced from the posture-based graph and allows

evaluation of the richness of actions and the flexibility of transi-

tions, as well as the Action Strategy Index that is deduced from

the action-based graph and allows evaluation of the unpredictabil-

ity of action patterns. The system is applied on the motion cap-
ured from 4 boxers with varying skill levels. The evaluations from

ur system aligns with that of a professional boxing coach. 

Although we use boxing as our target sport in the experimenta-

ion section, the underpinning theoretical development can be ap-

lied to most sports that require swiftness, flexibility and creativ-

ty, such as tennis, fencing and basketball. The adaptation of the

roposed system to these sports and the comparison of the system

erformances on different sports remain as future work. 

We focus on analyzing the skill level of the boxers in terms of

igh-level motion behaviour such as the richness of the action, the

ransition of action and the unpredictability of boxing patterns. We

o not evaluate the lower-level parameters such as the speed of

he punches, which has been explored in previous works. It is an

nteresting future direction to combine both high-level and low-

evel evaluation in order to have a full assessment of the boxers. 

There are limitations to our method. First, our method is based

n the assumption that the sports skills mainly consist of a finite

umber of key postures and key actions. Admittedly, not all sports

ollow this pattern. Second, the visualization and skill assessment

s based on an individual athlete, not considering skills related to

ollaborations such as those in group sports, in which the assess-

ent might need to employ different criteria. 

We argue that novice boxers tend to have different posture-

ased graphs, while experienced boxers tend to have graphs of

 similar topology. This is because unlike experience boxers who

ave only 1 to 2 main postures nodes, novice boxers tend to have

ore nodes, resulting in a much larger variation on the graph

opology. As a future work, we would like to utilize the stem to

valuate a large number of boxers in different skill levels to verify

his argument. 

In the future, we wish to extend the proposed algorithm to the

eld of computer animation. Currently, when synthesizing anima-

ions by motion graphs, experienced animators are required to tell

hat motions are missed or badly captured. With our system, it

s possible to analyze the connectivity and variety of a motion set,

hich are two critical factors in motion synthesis. However, how

o generalize these findings to give high-level suggestion, such as

roposing the motions to capture, remains an open problem. In

ddition, we would like to develop a visualization system to take

he adversarial nature of sports. For instance, although two box-

rs might have roughly the same skill level, in a match, one’s skill

omposition might give him/her advantages over the other. This

ind of analysis would be very useful in preparation for a game

r predicting the result. 
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