
This is a repository copy of Modelling built-up expansion and densification with multinomial
logistic regression, cellular automata and genetic algorithm.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/122357/

Version: Accepted Version

Article:

Mustafa, A, Heppenstall, A orcid.org/0000-0002-0663-3437, Omrani, H et al. (3 more 
authors) (2018) Modelling built-up expansion and densification with multinomial logistic 
regression, cellular automata and genetic algorithm. Computers, Environment and Urban 
Systems, 67. pp. 147-156. ISSN 0198-9715 

https://doi.org/10.1016/j.compenvurbsys.2017.09.009

© 2017 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1 

 

Modelling built-up expansion and densification with multinomial 

logistic regression, cellular automata and genetic algorithm 

 

Ahmed MUSTAFA (Corresponding Author) 

LEMA, Urban and Environmental Engineering department, Liège University, Belgium. 

Department of Computer Science, Purdue University, USA. 

 

Permanent address:  

Liège University, Allée de la Découverte 9, Quartier Polytech 1, 4000 Liège, Belgium 

Tel.: +32 43 66 9394 

Email: a.mustafa@ulg.ac.be  

Present address:  

Purdue University, Department of Computer Science, 305 N University St, West Lafayette, 

47907 IN, USA. 

Tel.: +1 765 250 1765. 

Email: a-mustafa@purdue.edu 

 

 

Alison HEPPENSTALL  

School of Geography, University of Leeds, UK 

E-mail: a.j.heppenstall@leeds.ac.uk 

 

 

Hichem OMRANI 

Urban Development and Mobility Department, LISER, Luxembourg 

E-mail: hichem.omrani@liser.lu 

 

 

Ismaïl SAADI 

LEMA, Urban and Environmental Engineering department, Liège University, Belgium. 

E-mail: ismail.saadi@ulg.ac.be 

 

 

Mario COOLS  

LEMA, Urban and Environmental Engineering department, Liège University, Belgium.  

Email: mario.cools@ulg.ac.be  

 

 

Jacques TELLER  

LEMA, Urban and Environmental Engineering department, Liège University, Belgium.  

Email: jacques.teller@ulg.ac.be  



2 

 

Modelling built-up expansion and densification with multinomial 

logistic regression, cellular automata and genetic algorithm 

 

Abstract: This paper presents a model to simulate built-up expansion and densification 

based on a combination of a non-ordered multinomial logistic regression (MLR) and 

cellular automata (CA). The probability for built-up development is assessed based on (i) a 

set of built-up development causative factors and (ii) the land-use of neighboring cells. The 

model considers four built-up classes: non built-up, low-density, medium-density and high-

density built-up. Unlike the most commonly used built-up/urban models which simulate 

built-up expansion, our approach considers expansion and the potential for densification 

within already built-up areas when their present density allows it. The model is built, 

calibrated, and validated for Wallonia region (Belgium) using cadastral data. Three 

100×100m raster-based built-up maps for 1990, 2000, and 2010 are developed to define one 

calibration interval (1990-2000) and one validation interval (2000-2010). The causative 

factors are calibrated using MLR whereas the CA neighboring effects are calibrated based 

on a multi-objective genetic algorithm. The calibrated model is applied to simulate the built-

up pattern in 2010. The simulated map in 2010 is used to evaluate the model’s performance 

against the actual 2010 map by means of fuzzy set theory. According to the findings, land-

use policy, slope, and distance to roads are the most important determinants of the 

expansion process. The densification process is mainly driven by zoning, slope, distance to 

different roads and richness index. The results also show that the densification generally 

occurs where there are dense neighbors whereas areas with lower densities retain their 

densities over time. 

Keywords: Built-up density; cellular automata; multinomial logistic regression; multi-

objective genetic algorithm 
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1. Introduction 1 

Built-up development is the most typical form of land-use change. Without policy 2 

interventions, built-up developments may cause destructive impacts on the environment, on 3 

natural resources and on human health (Zhang et al., 2011). Consequently, modelling built-up 4 

development is attracting attention of scientists, urban planners and politicians alike. Most built-5 

up/urban models  (e.g. Han and Jia, 2016; Liao et al., 2014; Liu et al., 2014; Puertas et al., 2014; 6 

Vermeiren et al., 2012) are raster-based with a coarse cell space ranging from 30×30m to 7 

300×300m. Whilst many authors advocate a larger grid cell for land-use modelling, for example 8 

100×100m (e.g. Jiang et al., 2007; Munshi et al., 2014; Poelmans and Van Rompaey, 2010), 9 

land-use cells with these dimensions usually comprise a mix of different land-uses (Omrani et 10 

al., 2015). For example, a cell classified as built-up land may be occupied by 80% built-up 11 

surface and 20% arable surface. With increases in the spatial resolution of data, researchers have 12 

begun to use grid cells as small as 10×10m, such as Berberoğlu et al. ( 2016) model for Adana 13 

city (Turkey). However, the drawback to using such a fine resolution is that it requires intensive 14 

computational resources to model larger study areas such as regions where 100×100m cell 15 

dimensions are commonly used (e.g. Omrani et al., 2015; Poelmans and Van Rompaey, 2010). 16 

One solution to address the trade-off between coarse regular cell spaces and heterogeneity is 17 

examining several built-up densities instead of a binary classification (i.e. non built-up/built-up).  18 

Although built-up densification processes, transitions from low-density to high-density, is 19 

critically important for policy makers who are concerned with restricting sprawl (Nabielek, 20 

2012; Tachieva, 2010), the literature on urban/built-up expansion models highlights that many of 21 

the models focus only on expansion process (e.g. Poelmans and Van Rompaey, 2009; Wang et 22 
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al., 2013).  However, there are a limited number of studies that consider the expansion of several 23 

urban densities and/or densification in a variety of ways. Mustafa et al. (2015), Robinson et al. 24 

(2012), Sunde et al. (2014), Xian and Crane (2005), Yang (2010) and Zhang et al. (2011) model 25 

the expansion of different urban/built-up densities. Crols et al. (2015), Loibl and Toetzer (2003) 26 

and White et al. (2015, 2012) model the processes of urban expansion as well as of densification. 27 

They define densification as an increase in population and/or several economic sectors density.  28 

One of the most popular techniques of existing urban/built-up expansion models which are 29 

employed to analyze and/or predict the built-up pattern is cellular automata (CA) (e.g. 30 

Berberoğlu et al., 2016; Feng et al., 2011; Han et al., 2009; Tian et al., 2016; Wang et al., 2013). 31 

CA is a dynamic discrete space and time bottom-up modelling approach. CA is widely used in 32 

urbanization modeling due to its simplicity, transparency and powerful capacities for dynamic 33 

spatial simulation (Clarke and Gaydos, 1998). Aburas et al. (2016) and Santé et al. (2010) 34 

reviewed CA urbanization models concluding that the CA modelling approach is one of the most 35 

appropriate techniques for simulating urban/built-up patterns. However, key challenges in CA 36 

are calibrating the transition rules of built-up development probability as a function of (i) a series 37 

of causative factors (driving forces) and (ii) spatial (neighborhood) characteristics. Early 38 

methods for CA calibration are based on trial and error (e.g. White and Engelen, 1997) and/or a 39 

visual test, to determine the model’s parameters (e.g. Clarke et al., 1997; Ward et al., 2000). 40 

Recently, a variety of automated methods based on statistics (e.g. García et al., 2013), machine 41 

learning (e.g. Rienow and Goetzke, 2015), artificial neural networks (e.g. Berberoğlu et al., 42 

2016) and search algorithms for optimization such as  genetic algorithms (e.g. Al-Ahmadi et al., 43 

2009) and particle swarm optimization (e.g. Feng et al., 2011) have begun to be widely 44 

employed.  45 
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Validation of CA models is another challenge. A common validation method is based on 46 

pixel-by-pixel location agreement (Poelmans and Van Rompaey, 2009). This approach cannot 47 

discriminate between “near-miss” and “far-miss” errors which limits its ability to detect spatial 48 

patterns (Mustafa et al., 2014). Another approach is based on spatial metrics (Roy Chowdhury 49 

and Maithani, 2014). Spatial metrics can be potentially misleading, for example, two areas with 50 

distinctly different infrastructures may show the same spatial index (White and Engelen, 2000).  51 

A third method is based on a fuzzy set theory. Fuzzy map comparison provides a method of 52 

dealing and comparing maps containing a complex mixture of spatial information (Ahmed et al., 53 

2013). It takes into account local variations meaning that matches found at shorter distances are 54 

given a higher agreement. It measures the similarity of a cell in a value between 0 (fully-distinct) 55 

and 1 (fully-identical). Thus, it can easily distinguish areas of minor errors from areas of major 56 

errors. Van Vliet et al., 2016 present a comprehensive survey of calibration and validation 57 

practices in land use change modeling. 58 

This study contributes to research efforts that model built-up expansion and densification 59 

processes. We model the built-up expansion (non built-up to one of built-up density classes) and 60 

densification (lower built-up densities to higher ones). The model is based on a hybrid approach 61 

which integrates logistic regression and CA modelling approaches. The model is applied to 62 

Wallonia (Belgium). Belgian cadastral data (CAD) are used to generate three built-up maps for 63 

the years 1990, 2000 and 2010. These maps represent four built-up classes: non built-up (class-64 

0), low-density (class-1), medium-density (class-2) and high-density (class-3). Three maps can 65 

define one calibration interval (1990-2000) and one validation interval (2000-2010). The model 66 

considers a set of static causative factors related to accessibility, geo-physical features, policies 67 

and socio-economic factors. Another important factor is neighborhood interactions because of 68 
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the fact that urbanization can be regarded as a self-organizing system (Poelmans and Van 69 

Rompaey, 2010). 70 

The model’s parameters are calibrated based on a logistic regression model and genetic 71 

algorithm. The logistic regression is employed to set the parameter of 12 built-up development 72 

causative factors: elevation, slope, zoning status, employment rate, richness index and Euclidian 73 

distances to highways, main roads, secondary roads, local roads, railway stations, large-sized and 74 

medium-sized Belgian cities. The richness index is calculated as the average income per capita 75 

for each municipality divided by the average income per capita in Belgium. The built-up  76 

causative factors are selected according to a literature survey of common factors involved in 77 

urban/built-up expansion models (e.g. Achmad et al., 2015; Cammerer et al., 2013; Dubovyk et 78 

al., 2011; Li et al., 2013; Poelmans and Van Rompaey, 2010; Verburg et al., 2004) as well as the 79 

finding of previous studies conducted for Wallonia (Beckers et al., 2013; Mustafa et al., 2015). 80 

The dependent variable for the logistic regression model represents the changes from class-0 to 81 

class-1, class-2 or class-3, the changes from class-1 to class-2 and the changes from class-2 to 82 

class-3.  83 

As the dependent variable is a multi-level, i.e. with more than two possible outcomes, we 84 

should consider a non-binary logistic regression. The most common logistic regression types that 85 

handle multiple levels of an outcome are ordered logistic regression and multinomial logistic 86 

regression. Ordered logistic regression assumes that the levels of dependent status have a natural 87 

ordering (i.e. low to high). This is known as the proportional odds model or parallel regression 88 

assumption (Kim, 2003).  To evaluate this assumption, the test of the proportional odds 89 

assumption is performed. The null hypothesis of the test is that the relationship, i.e. 90 

coefficients, between each pair of dependent levels is the same. The significance of Chi-Square 91 
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statistic of the proportional odds test is < 0.001. Given the assumption of having a natural 92 

ordering in the dependent variable is violated, thus a non-ordered multinomial logistic regression 93 

model (MLR) is adopted for this study. 94 

A multi-objective genetic algorithm (MGA) is employed to calibrate the neighborhood 95 

interactions on a dynamic basis. García et al., (2013) reported that the GA is one of the most 96 

robust heuristic automated methods to solve optimization problems. A number of studies have 97 

used GA to calibrate CA models (e.g. Al-Ahmadi et al., 2009; García et al., 2013; Shan et al., 98 

2008). The MGA objective function is the maximization of allocation accuracy rates for all built-99 

up classes. The accuracy rate function is defined as a fuzzy membership function of exponential 100 

decay with a halving distance of two cells and a neighborhood window of four cells. The 101 

accuracy rate function is also employed to validate the model. 102 

2. Materials 103 

2.1 Study area 104 

The model is applied to Wallonia region, the southern part of Belgium. Wallonia occupies an 105 

area of 16,844 km² and administratively consists of five provinces: Hainaut, Liège, Luxembourg, 106 

Namur, and Walloon Brabant. The total population in 2010 was 3,498,384 inhabitants, 107 

corresponding to one third of the Belgium population (Belgian Federal Government, 2013). The 108 

population is mainly concentrated on the northern areas, following the 19th century industrial 109 

axis, running from east (Liège) to west (Mons) (Thomas et al., 2008). The rest of the territory is 110 

less densely inhabited. Consequently, several densities can be easily detected in the region and 111 

thus we can examine the transitions between different densities. The built-up development is 112 
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mainly characterized by low, slow rates, which makes the calibration of the model more difficult 113 

because there is less information on the built-up process (García et al., 2012). The expansion 114 

rates were 1.18% and 0.79% from 1990 to 2000 and from 2000 to 2010, whereas the 115 

densification rates were 12.18% and 9% respectively. 116 

 

Figure 1: Study area. 

Table 1 gives the actual built-up transitions over the modeled period for four density classes 117 

(Table 2). As in Xian and Crane (2005), the table suggests that the predominant built-up 118 

processes have been the development of low-density and medium-density areas. The majority of 119 

the new developments have a form of built-up sprawl. This development process had resulted in 120 

a highly fragmented built-up pattern. Table 1 indicates that the transitions from class-1 to class-3 121 

over the study period are marginal. Thus, the densification is considered as the transitions from 122 
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class-1 to class-2 and from class-2 to class-3, whereas the expansion are the transitions from 123 

class-0 to classes 1, 2 and 3.  124 

Table 1. Class (column) to class (row) changes (% of the reference class). 

1990-2000  Class-0 Class-1 Class-2 Class-3 

Class-0  1422166 (98.82%) 0 0 0 

Class-1  10841 (0.75%) 85142 (89.25%) 0 0 

Class-2  5153 (0.36%) 10102 (10.59%) 128929 (98.57%) 0 

Class-3  1016 (0.07%) 151 (0.16%) 1872 (1.43%) 25284 

2000-2010  Class-0 Class-1 Class-2 Class-3 

Class-0  1410959 (99.21%) 0 0 0 

Class-1  7120 (0.50%) 88341 (92.04%) 0 0 

Class-2  3450 (0.24%) 7535 (7.85%) 142687 (98.96%) 0 

Class-3  637 (0.04%) 107 (0.11%) 1497 (1.04%) 28323 

2.2. Datasets 125 

The built-up maps for 1990, 2000 and 2010 are generated based on the Belgian cadastral 126 

database (CAD) in a shapefile format. CAD is provided by the Land Registry Administration of 127 

Belgium. The information contained includes the construction date for each building. CAD 128 

vector data were rasterized at a cell size of 2×2m. The rasterized cells were then aggregated to a 129 

100×100m raster-grid. The density values were calculated for the aggregated cells (100×100m) 130 

by counting the smallest cells (2×2m). All aggregated cells with a density values less than 25 131 

were considered as non built-up cells. The threshold of 25 (representing a building of 100m²) 132 

corresponds to an average-sized residential building in Belgium (Tannier and Thomas, 2013).  133 

All 100×100m cells have a density index ranging between 0 and 2500.  The density index is 134 

then used to set four classes: non-built-up (class-0), low-density (class-1), medium-density 135 

(class-2) and high-density (class-3). A geometrical interval classification method is used to set 136 

the density ranges that define the different classes. This classification method works very well on 137 
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continuous data (Arlinghaus and Kerski, 2013). The resulting density ranges are listed in Table 138 

2. 139 

Table 2. Built-up density classes range in number of 2×2 cells (% of 100x100 cell area). 

Class Minimum Maximum 

Class-0 (non built-up) 0 24 (1) 

Class-1 (low-density) 25 102 (4.1) 

Class-2 (medium-density) 103  499 (20) 

Class-3 (high-density) 500  2500 (100) 

The built-up development causative factors were operationalized to be included in the MLR. 140 

Table 3 gives the selected factors for this study. The socio-economic data (employment rate and 141 

richness index) come from the Belgian statistics, published by The Walloon Institute for 142 

Evaluation, Prospective and Statistics. The elevation data are derived from the Belgian National 143 

Geographic Institute. The distance to the different road categories are derived from a vector 144 

dataset made available by Navteq Company. The Navteq dataset identifies the following 145 

categories of roads: Road1 (highways), Road2 (main roads), Road3 (secondary roads), Road4 146 

(local roads). The location of railway stations are provided by Walphot SA Company. This study 147 

considers distance to large-sized cities (population greater than 90,000) and medium-sized 148 

Belgian cities (population between 20,000 and 90,000). The distance-based factors are based on 149 

the Euclidean distance to selected features. Euclidean distance is widely used in land-use change 150 

models (Poelmans and Van Rompaey, 2009; Roy Chowdhury and Maithani, 2014). Zoning areas 151 

were obtained from the regional zoning plan, commonly named as PDS (plan de secteur) in 152 

Wallonia. A zoning map was developed by discriminating between the zones where built-up 153 

development is legally permitted and those where it is not. 154 

 155 
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Table 3. List of selected built-up causative factors. 

Factor  Name Type Unit 

X1 Elevation (DEM) Continuous Meter  

X2 Slope Continuous Percent rise 

X3 Dist. to Road1 Continuous Meter 

X4 Dist. to Road2 Continuous Meter 

X5 Dist. to Road3 Continuous Meter 

X6 Dist. to Road4 Continuous Meter 

X7 Dist. to railway stations Continuous Meter 

X8 Dist. to large-sized cities Continuous Meter 

X9 Dist. to med-sized cities Continuous Meter 

X10 Employment rate Continuous Percent 

X11 Richness index Continuous Percent 

X12 Zoning Categorical  Binary (0 non built-up, 1 built-up)  

3. Methodology 156 

In this study, an integrated MLR and CA model is developed. The model considers two built-157 

up processes: (1) built-up expansion (transitions from non-built-up to built-up) and (2) built-up 158 

densification (transitions from lower built-up densities to higher ones). This section discusses the 159 

main characteristics of the model. The quantity of change during calibration (1990-2000) and 160 

validation (2000-2010) phases was constrained to the actual quantity of new built-up lands, table 161 

1, divided evenly by 10 (the number of years). 162 

3.1 The transition rules 163 

The quantity of change is spatially allocated based on a transition rule which has two 164 

components. The first component concerned the main built-up causative factors as determined 165 

using MLR (section 3.1.1). The second component dealt with the neighborhood characteristics 166 

(section 3.1.2). The transition potentials P for a cell ij changing its state from non-built-up to one 167 
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of the built-up densities or low density built-up to a higher one at specific time-step is calculated 168 

as follows: 169 

   ij c nij ij
P P P

   (1) 

where (Pc)ij is the built-up probability based on built-up causative factors, ሺ ௡ܲሻ௜௝ఙ  is the 170 

neighborhood effect on the cell ij and ı expresses the relative importance of the neighborhood 171 

effect. Figure 2 demonstrates an example of how the final transition potential P matrix is 172 

calculated. 173 

 174 

The model selects the top-scoring cells from the built-up transition potentials matrix for each 175 

density class and changes their state to the appropriate class until meeting the required quantity. 176 

The transition potential matrices are calibrated for 1990-2000. The calibration results are then 177 

used to simulate 2000-2010 built-up pattern. The simulated map of 2010 is compared against the 178 

actual 2010 map to validate the model allocation ability (section 3.2). 179 

3.1.1. Built-up development causative factors calibration  180 

The (Pc)ij can be determined through a set of factors described in Table 3 using the MLR. The 181 

MLR is a model to discover the empirical relationships between a multi categories dependent 182 

variable and several independent variables (built-up development causative factors). The model 183 

performed for class-0 (dependent variable represents non-changes/changes from class-0 to class-184 

Figure 2: An example of built-up tran-

sition potentials matrix (right) which 

equals the square root of pairwise mul-

tiplication of Pc (left) and Pn (middle) 

matrices. The relative importance (ı) of 

Pn is assumed to be 2. 
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1 or class-2 or class-3), for class-1 (dependent variable represents non-changes/changes from 185 

class-1 to class-2) and for class-2 (dependent variable represents non-changes/changes from 186 

class-2 to class-3). 187 

The general form of the MLR can be represented as: 188 

1 1 1 11 1 2 2

1 1 2 2

1 ...

...

log( )

...

log( )
n n n n

k k k k v

k k k k v

v

n v

X X X

X X X

k

k

   

   

    

    

 (2) 

where log(kn) is the natural logarithm of class kn versus the reference class k0, X is a set of 189 

explanatory variables (X1, X2,..., Xv), ߙ௞೙ is the intercept term for class kn versus the reference 190 

class and ߚ is the slopes for the classes (the coefficient vector). Thus, the probabilities of each 191 

class can be obtained using the following formula:  192 

 

   

   

0

1 2

1

1

1 2

1 2

1
,

1 exp(log( )) exp(log( )) ... exp(log( ))

exp
,

1 exp(log( )) exp(log( )) ... exp(log( ))

exp
,

1 exp(log( )) exp(log( )) ... exp(log( ))

( )

log( )
( )

...

log( )
( )

n

n

n

n

n

c ij

c ij

c ij

Y k
k k k

k
Y k

k k k

k
Y k

k k k

P

P

P

 
   

 
   

 
   

 (3) 

where ((Pc)ij,Y=kn) is the probability of change from the reference class to class kn occurring in 193 

cell ij. The MLR employs the maximum likelihood estimation method to achieve the best fit sets 194 

of coefficients for each X. 195 

The MLR outcomes are a set of coefficients that define the relative contribution of each factor 196 

to the built-up process, as well as a set of maps of probability of built-up for each class that are 197 

generated by inserting the coefficients of the MLR model into Equation (3). 198 
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The goodness-of-fit of the MLR is evaluated using the relative operating characteristic (ROC) 199 

method. The ROC is an excellent method to estimate the quality of a model that predicts the 200 

occurrence of an event by comparing a probability map of that event occurring and a binary map 201 

presenting the actual changes (Hu and Lo, 2007). A ROC value of 0.5 means a completely 202 

random discrimination and 1 means a perfect one. 203 

All the data layers were resampled to the same cell resolution of 100×100m. The X-variables 204 

are measured in different units and therefore we standardized all continuous X-variables. If some 205 

of X-variables relatively measure the same phenomena, then strong collinearities will cause the 206 

erroneous estimation of the parameters. A multicollinearity test was examined in the initial stage 207 

using variance inflation factors (VIF) to ensure that there are not two or more causative factors 208 

measuring the same phenomena. (Montgomery and Runger, 2003) recommended that the VIF 209 

values should not exceed 4. 210 

The dependent variables may show spatial autocorrelation, which biases the results of the 211 

regression analysis (Overmars et al., 2003). This issue can be addressed through a data sampling 212 

approach (Cammerer et al., 2013; Poelmans and Van Rompaey, 2010; Rienow and Goetzke, 213 

2015). A sample of 29300 cells was randomly selected. For each reference class, other existing 214 

classes in 1990 are excluded from the sampling, e.g. expansion (class-0) sampling procedure 215 

considers new transitions from class-0 to class-0, class-1, class-2 and class-3. The selection of 216 

samples is based on 100 runs of the MLR with different random samples. The best sample set, 217 

evaluated by ROC, is then selected. 218 
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3.1.2. Cell neighborhood calibration  219 

Neighborhood interactions can also be calibrated in MLR model by including them as part of 220 

the explanatory variables (Hu and Lo, 2007; Verburg et al., 2004). However, because MLR 221 

models are not temporally explicit, they cannot reveal the path-dependent and self-organizing 222 

development which is typical for urban expansion (Poelmans and Van Rompaey, 2010; Wu, 223 

2002). The most common approach to explicitly calibrate the neighborhood interactions on a 224 

dynamic basis is by using a cellular automata (CA) modelling approach. 225 

In some studies (e.g. Chen et al., 2014; Poelmans and Van Rompaey, 2009; Wu, 2002) the 226 

neighborhood is defined as a square region, the Moore neighborhood, around the central cell 227 

with many square sizes from 3×3 to 11×11. Chen et al. (2014) and Poelmans and Van Rompaey 228 

(2009) analyzed several square sizes and concluded that the model run with the 3×3 229 

neighborhood window produces a land-use pattern that most fits the actual pattern. These studies 230 

use a coarse cell resolutions. However, it might be different for finer cell resolutions. In this 231 

study, a 3×3 neighborhood window is used to consider neighborhood interactions. The (Pn)ij is 232 

calculated according to the method proposed by White and Engelen (2000): 233 

 n kxd kxdij
k x d

P w I   (4) 

where wkxd is the weighting parameter assigned to a cell with class k, which represents one of the 234 

built-up classes listed in table 2, at position x at distance zone d and Ikxd is 1 if a cell in distance d 235 

is occupied by class k or 0 otherwise. 236 

Our objective is to define the CA parameters that achieve the best allocation accuracy rate for 237 

the expansion process (transitions from class-0 to class-1, class-2 and class-3 simultaneously) 238 
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and for the densification process (transitions from class-1 to class-2 and transitions from class-2 239 

to class-3). In order to automatically calibrate the neighborhood weighting parameters, a multi-240 

objective genetic algorithm (MGA) is used for the expansion and a genetic algorithm (GA) is 241 

used for the densification process. The genetic algorithm is a highly effective algorithm for 242 

solving both constrained and unconstrained optimization problems that has been inspired by the 243 

mechanisms of evolution and genetics (Al-Ahmadi et al., 2009; Holland, 1975). MGA attempts 244 

to portray a trade-off among multiple, possibly conflicting objectives at once. In this paper, 245 

MGA is a variant of a non-dominated sorting genetic algorithm II (NSGA-II) proposed by (Deb, 246 

2001). NSGA-II favors individuals with an elitist strategy and individuals that can help increase 247 

the diversity of the population (Yijie and Gongzhang, 2008). The output of the MGA is a set of 248 

solutions that is also known as Pareto front optimized solutions, among which we can select the 249 

most preferable solution. Pareto front is a set of feasible solutions that are non-dominated to each 250 

other but are significantly better than the rest of solutions. 251 

The MGA/GA initializes a random initial population in which many solutions participate in an 252 

iteration (generation). It then uses stochastic operators to generate new generations and direct a 253 

searching process based on a fitness function. Each individual in the population corresponds to a 254 

chromosome made up of a set of genes, where each gene represents one parameter that requires 255 

calibration. In each generation, every individual in the population is evaluated through a fitness 256 

function. Once the initial population is generated and evaluated, the parents for the next 257 

generation are selected by using a tournament procedure based on a relative fitness score. In this 258 

paper, the tournament randomly selects two individuals, and the individual with the highest 259 

fitness value becomes a parent. Each two parents are combined based on a crossover operator. 260 

We proposed that the crossover operator generates two children that lie on the line representing 261 
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both parents and inherit at least 70% genes from the parent with the better fitness value. Once the 262 

new generation is obtained, each child is then perturbed in its vicinity by a mutation operator that 263 

adds a small random number to each gene.  264 

This study tries to achieve a proper balance between exploration and exploitation ability of the 265 

MGA/GA. Exploration enables the MGA/GA to explore a broader search space, while 266 

exploitation enables MGA/GA to focus on one direction which is an optimal solution or close to 267 

it (Hansheng and Lishan, 1999). The mutation operator is used to provide exploration ability 268 

whereas the crossover operator is used to lead the population to the global optimal solution so 269 

far. In our case, the mutation operator selects a random number from a Gaussian distribution 270 

with a center of zero and a standard deviation of 2 at the first generation. This standard deviation 271 

is shrunk to 0 linearly as the last generation is reached. Consequently, the MGA/GA explores 272 

much more search space at the beginning of the optimization process and ensures the 273 

convergence of the population towards the global optimal solution by the end of the process. 274 

MGA/GA is initialized with a random population. Stochastic operators are applied to this 275 

population and a large number of generations evolved to obtain a favorable solution. Each 276 

individual solution takes about 19 seconds in case of MGA and 8 seconds in case of GA to be 277 

evaluated using a good PC (Intel Core i7-4700 CPU @ 2.4GHz) implying that large population 278 

and generation numbers require considerable time to be processed. To minimize the computing 279 

time, we implement a two phase MGA/GA. First, the MGA/GA starts with a low number of 280 

population and generations. Second, the outcome of the first run is used to set the initial 281 

population, initial range and number of generations. In addition, the first run is used to determine 282 

values for the crossover and mutation operators. Based on this, a set of 500 generations (300 for 283 
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expansion, 100 for densification of class-1 and 100 for densification of class-2) with 500 284 

individuals for each generation are used for the final MGA/GA.  285 

The objective function for the genetic algorithms for the calibration is based on a fuzzy 286 

membership function, as discussed further below. The parameter values that maximize the 287 

objective function will be selected as the best calibration outcome. 288 

3.2. Validation 289 

The ability of the model to locate transitions from non-built-up to one of built-up densities and 290 

lower densities to higher densities is validated by comparing the simulated map of 2010 with the 291 

actual map of 2010. The comparison considers only new built-up transitions between 2000 and 292 

2010. The fuzziness index of a cell location depends on the cell itself and the cells in its 293 

neighborhood. There is no universally agreed extent to which the neighboring cells influence the 294 

fuzzy representation and a type of decay function among land-use modelers. Although it may be 295 

advantageous to experiment with different neighboring sizes and decay functions to define the 296 

best alternative, this experiment is beyond the scope of this paper as it would require too much 297 

space to adequately discuss such analyses. However, a number of authors proposed an 298 

exponential decay function with a halving distance of two cells and a neighborhood with a four- 299 

cell radius to evaluate (Ahmed et al., 2013; Hagen, 2003; Loibl et al., 2007). Likewise, the 300 

average fuzziness index used in this paper is an exponential decay with a halving distance of two 301 

cells and a neighborhood with a four-cell neighbor extent and calculated as follows:  302 
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where Ak (0 ≤ A ≥ 1) is the average fuzziness index for class k, ܫ௫ೖௗ is 1 if cell xk in the simulated 303 

map in a neighborhood at zone d (0 ≤ d ≥ 4) is identical to one cell in neighborhood at zone d in 304 

the actual map otherwise is 0, Xk,sim is the total number of changed cells of class k in the 305 

simulated map and Xk,actul is the total number of changed cell of class k in the actual map. The 306 

fuzziness index is also employed as the objective function for MGA/GA. 307 

4. Results and discussion 308 

In this section, the built-up pattern resulted from classification of CAD data, the calibration 309 

results and the validation of the model are discussed. In general, the built-up pattern visible in 310 

Wallonia resembles the classical built-up pattern from across a wide range of regions worldwide 311 

(Kumar et al., 2012). A high level of built-up density was found in the major built-up cores 312 

surrounded by medium-density built-up areas. A large majority of low-density lands are likely to 313 

be found in scattered rural areas and remote locations. Figure 3 illustrates different densities for 314 

Charleroi and Namur metropolitan areas as an example. 315 
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Figure 3: Built-up classes of 2010 for Charleroi and Namur metropolitan areas. 

Variance inflation factors test, with values of less than 1.33, shows no problems with 316 

multicollinearity suggesting that all causative factors can be incorporated in the MLR model. The 317 

MLR parameter sets calibrated in the 1990–2000 are shown in Figure 4. According to the results, 318 

the major causative factor of the expansion process is the zoning status  and that is in-line with 319 

Poelmans and Van Rompaey (2010). Zoning impact shows a steady upward trend along with 320 

density. High-density developments are located in areas where the legally-binding plan allows 321 

such developments, to avoid any possible administrative and financial risks. On the other hand, 322 

built-up developments in areas adjacent to urban cores (class-2) like suburbs do not strictly 323 

follow policies. The impact of policy on low-density developments is low compared to other 324 

classes. This class can be considered as remote built-up areas, consisting in scattered buildings, 325 

which can sometimes deviate from zoning plans. The magnitude of the zoning status influence 326 
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on the densification process is remarkably low compared to the expansion process.  The fact that 327 

the densification process is done within existing built-up areas, merely means that the zoning 328 

plan does not have a strong effect on the densification processes. As in Poelmans and Van 329 

Rompaey (2010) slope shows a negative effect on the development of built-up areas. Distance to 330 

roads shows a negative effect on the built-up developments so that built-up transitions generally 331 

occur close to roads as reported in Cammerer et al., (2013) and Poelmans and Van Rompaey 332 

(2010). Distance to railway stations is statistically significant for the expansion of high-density 333 

built-up suggesting that parcels nearby train stations are attractive for new dense developments. 334 

Although the richness index is insignificant, as in Hu and Lo (2007),  except for all medium-335 

density transitions, it implies that the medium-density developments are linked closely to the 336 

income distribution. Medium-density can generally represent urban sprawl and suburbanization 337 

which replace non-built-up lands with single-family houses on large lots. The richness index has 338 

a positive impact on transition from non-built-up and low-density to medium-density implying 339 

that affluent and middle-class people settle in medium-density built-up areas. In contrast, the 340 

richness index has a strong negative impact on the transition from medium-density to high-341 

density so that most such transitions can be found in somewhat poor neighborhoods. Distance to 342 

cities especially the medium-sized cities indicates a moderate negative impact on built-up 343 

expansion processes and densification of low-density areas. That is in-line with Poelmans and 344 

Van Rompaey (2010) who reported that urban development tends to occur near to the cities. As 345 

in Hu and Lo (2007) and Poelmans and Van Rompaey (2010), employment rate has insignificant 346 

impact on the expansion of most built-up densities and the densification process.    347 
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Figure 4: The MLR parameters coefficients for 1990-2000. 

 

Figure 5: The convergence of the fitness score during the GA optimization. 

The GA optimization module for the densification of class-1 and class-2 began to converge 348 

when reaching iteration 56 and 50 respectively (Figure 5). After  228  iterations,  average  349 

change  in  the  spread  of  Pareto  solutions for MGA was less than 0.00001. The MGA/GA 350 

optimal weighting values that define neighborhood interactions are given in Figure 6 (a, b and c). 351 
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The calibration shows that the likelihood of low-density expansion is highly increased by 352 

increasing the number of existing low-density and medium-density lands and decreasing the 353 

number of high-density lands in the immediate neighborhood of the cell. The probability of 354 

medium-density expansion is increased with increasing number of all land-uses, especially 355 

medium-density cells. This study finds a positive relationship between expansion of high-density 356 

and the number of existing high-density cells in the neighborhood of the cell. In contrast, the 357 

expansion of high-density lands is negatively impacted by increasing the number of non built-up, 358 

low and medium-density lands. The probability of low to medium-density built-up transitions is 359 

positively linked with the existing non built-up, low and medium-density built-up neighbors and 360 

negatively linked with high-density neighbors, whereas the densification of medium-density 361 

areas is negatively related to the increasing number of non  built-up and low-density cells and 362 

positively related to the increasing the number of high-density cells in the neighborhood of the 363 

cell.  Together, these findings suggest that existing residents of low and medium-density areas 364 

tend to protest dense developments near their home, whereas most new densified areas are 365 

located within or close to already high-density neighbors. This causes a highly fragmented and 366 

low-density built-up landscape. One of the main factors leading to this situation is the spatial 367 

planning policy (Dieleman and Wegener, 2004; Poelmans and Van Rompaey, 2009).  368 

The ROC values of the MLR outcomes are 0.81, 0.85, 0.94, 0.73 and 0.72 for class-0 to class-369 

1, class-0 to class-2, class-0 to class-3, class-1 to class-2 and class-2 to class-3 respectively. ROC 370 

values higher than 0.70 are considered as a reasonable fit and the estimates can be used in further 371 

analyses (Cammerer et al., 2013; Jr and Lemeshow, 2004). 372 

The calibration and validation of allocation accuracy rates are given in figure 6 (d). The 373 

relative importance of the neighborhood effect (ı) parameter is calibrated using MGA. The 374 
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MGA of ı converges when reaching iteration 35 for expansion process, 27 and 24 respectively 375 

for densification of class-1 and class-2. The value of parameter ı shows neutral effect, i.e. equals 376 

1, on the expansion of class-2, class-3 and the densification of class-2. For the expansion and 377 

densification of low-density class the values of ı are 1.97 and 0.53 respectively.  378 

The calibration accuracy rates are larger than the validation rate. The possible source of this 379 

variation is potentially due to the uncertainty associated with the future values of modeling 380 

parameters. Most CA models (e.g. Al-Ahmadi et al., 2009; García et al., 2013) introduced a 381 

stochastic disturbance term to represent unknown errors and uncertainty. The extension of this 382 

study necessitates a more comprehensive framework that explicitly quantifies and models 383 

uncertainty related to future values of the model’s parameters.  384 

 

Figure 6: Weighting values that define neighborhood parameters values for (a) transitions from class-0 

to class-1, class-2 and class-3, (b) transitions from class-1 to class-2 and (c) transitions from class-2 to 

class-3. (d) The average fuzzy similarity rates for calibration and validation. 
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 385 

Figure 7: The actual and simulated 2000 and 2010 built-up patterns for Liege metropolitan. 386 
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The simulation of the 2000 and 2010 built-up patterns in the major metropolitan area (Liege), 387 

as an example, are shown in Figure 7. 388 

5. Conclusion  389 

One of the central limitations of most existing built-up/urban expansion models is that 390 

urbanization is considered as a binary process (built-up/non built-up). This research has 391 

demonstrated that the built-up development process is heterogeneous, with links between density 392 

and the impact of different built-up development causative factors. We propose an integrated 393 

multinomial logistic regression (MLR) and cellular automata (CA) model to examine the built-up 394 

development trends in Wallonia (Belgium). The built-up development considers both expansion 395 

and densification. Considering the densification is an essential component of sprawl-fighting 396 

land-use policies. In this study, built-up densities (non built-up, low-density, medium-density 397 

and high-density) for 1990, 2000 and 2010 and geophysical and socioeconomic data that are 398 

referred to as causative factors were gathered and processed.  399 

The MLR allows to automate the calibration of the causative factors whereas the CA model is 400 

used to simulate the neighborhood interactions. A multi-objective/genetic algorithm is employed 401 

to calibrate neighborhood interactions parameters. The calibration is done for built-up transitions 402 

between 1990 and 2000. The calibration results are then used to validate the model by simulating 403 

the 2010 built-up pattern and compare it with the actual 2010 built-up. The model evaluates the 404 

MLR outcomes using relative operating characteristic and validates the simulated built-up 405 

patterns by means of fuzzy set theory. The model reveals a good overall accuracy. However, 406 

calibration and validation processes provide information on the uncertainties in the model 407 

outcomes over time. In later work we intend to pursue the analysis further by quantifying and 408 
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modelling uncertainty in the future built-up simulations. Therefore, our model can effectively 409 

develop future built-up scenarios considering the uncertainty. 410 

The findings drawn from this study suggest that all selected factors have impacts on the 411 

expansion in Wallonia, but their relative importance varied with density. However, zoning status, 412 

slope, and distance to local roads are the most important determinants of the expansion process. 413 

In regards to the densification process, it is mainly driven by zoning, slope, distance to different 414 

roads and richness index. The magnitude of the effect of land-use policies (zoning) decline along 415 

with the densification process. The neighborhood effect weights imply that the densification 416 

occurs in already dense areas whereas low-density and medium-density areas tend to retain their 417 

densities over time. Public authorities clearly should play a role in the development of a more 418 

balanced densification policy, considering the densification of very accessible (transport, 419 

services, etc) low/medium density nodes besides a further densification of already dense areas. 420 

This is not contradictory with a concentration spatial policy provided that low/medium density 421 

nodes where densification occurs are well connected to city centers (as for instance promoted 422 

through transit-oriented development).  423 

This study identifies the most notable built-up development factors at different densities. Our 424 

analysis does not consider building use or height. There are several missing of buildings uses and 425 

heights within the cadastral data. Consequently, population and employment density indices 426 

cannot be considered here. However, this study prompts a series of further research questions 427 

regarding the relation between built-up density and land-use policy, spatial, geophysical and 428 

socioeconomic factors. Hopefully this study should provide a useful context for policy makers 429 

and the ongoing research.  430 

 431 



28 

 

Acknowledgments: The research was funded through the ARC grant for Concerted Research 432 

Actions, financed by the Wallonia-Brussels Federation. 433 

References 

Aburas, M.M., Ho, Y.M., Ramli, M.F., Ash’aari, Z.H., 2016. The simulation and prediction of spatio-temporal urban growth trends 434 

using cellular automata models: A review. Int. J. Appl. Earth Obs. Geoinformation 52, 380–389. 435 

doi:10.1016/j.jag.2016.07.007 436 

Achmad, A., Hasyim, S., Dahlan, B., Aulia, D.N., 2015. Modeling of urban growth in tsunami-prone city using logistic regression: 437 

Analysis of Banda Aceh, Indonesia. Appl. Geogr. 62, 237–246. doi:10.1016/j.apgeog.2015.05.001 438 

Ahmed, B., Ahmed, R., Zhu, X., 2013. Evaluation of Model Validation Techniques in Land Cover Dynamics. ISPRS Int. J. Geo-439 

Inf. 2, 577–597. doi:10.3390/ijgi2030577 440 

Al-Ahmadi, K., See, L., Heppenstall, A., Hogg, J., 2009. Calibration of a fuzzy cellular automata model of urban dynamics in Saudi 441 

Arabia. Ecol. Complex. 6, 80–101. doi:10.1016/j.ecocom.2008.09.004 442 

Arlinghaus, S.L., Kerski, J.J., 2013. Spatial Mathematics: Theory and Practice through Mapping. CRC Press. 443 

Beckers, A., Dewals, B., Erpicum, S., Dujardin, S., Detrembleur, S., Teller, J., Pirotton, M., Archambeau, P., 2013. Contribution 444 

of land use changes to future flood damage along the river Meuse in the Walloon region. Nat Hazards Earth Syst Sci 13, 2301–445 

2318. doi:10.5194/nhess-13-2301-2013 446 

Belgian Federal Government, 2013. Statistics Belgium [WWW Document]. Stat. Belg. URL http://statbel.fgov.be/fr/statis-447 

tiques/chiffres/ (accessed 4.29.14). 448 

Berberoğlu, S., Akın, A., Clarke, K.C., 2016. Cellular automata modeling approaches to forecast urban growth for adana, Turkey: 449 

A comparative approach. Landsc. Urban Plan. 153, 11–27. doi:10.1016/j.landurbplan.2016.04.017 450 

Cammerer, H., Thieken, A.H., Verburg, P.H., 2013. Spatio-temporal dynamics in the flood exposure due to land use changes in the 451 

Alpine Lech Valley in Tyrol (Austria). Nat. Hazards 68, 1243–1270. doi:10.1007/s11069-012-0280-8 452 

Chen, Y., Li, X., Liu, X., Ai, B., 2014. Modeling urban land-use dynamics in a fast developing city using the modified logistic 453 

cellular automaton with a patch-based simulation strategy. Int. J. Geogr. Inf. Sci. 28, 234–255. 454 

doi:10.1080/13658816.2013.831868 455 

Clarke, K.C., Gaydos, L.J., 1998. Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San 456 

Francisco and Washington/Baltimore. Int. J. Geogr. Inf. Sci. 12, 699–714. doi:10.1080/136588198241617 457 

Clarke, K.C., Hoppen, S., Gaydos, L., 1997. A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San 458 

Francisco Bay Area. Environ. Plan. B Plan. Des. 24, 247–261. doi:10.1068/b240247 459 

Crols, T., White, R., Uljee, I., Engelen, G., Poelmans, L., Canters, F., 2015. A travel time-based variable grid approach for an 460 

activity-based cellular automata model. Int. J. Geogr. Inf. Sci. 29, 1757–1781. doi:10.1080/13658816.2015.1047838 461 

Deb, K., 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons. 462 

Dieleman, F., Wegener, M., 2004. Compact City and Urban Sprawl. Built Environ. 1978- 30, 308–323. 463 

Dubovyk, O., Sliuzas, R., Flacke, J., 2011. Spatio-temporal modelling of informal settlement development in Sancaktepe district, 464 

Istanbul, Turkey. ISPRS J. Photogramm. Remote Sens., Quality, Scale and Analysis Aspects of Urban City Models 66, 235–465 

246. doi:10.1016/j.isprsjprs.2010.10.002 466 

Feng, Y., Liu, Y., Tong, X., Liu, M., Deng, S., 2011. Modeling dynamic urban growth using cellular automata and particle swarm 467 

optimization rules. Landsc. Urban Plan. 102, 188–196. doi:10.1016/j.landurbplan.2011.04.004 468 

García, A.M., Santé, I., Boullón, M., Crecente, R., 2013. Calibration of an urban cellular automaton model by using statistical 469 

techniques and a genetic algorithm. Application to a small urban settlement of NW Spain. Int. J. Geogr. Inf. Sci. 27, 1593–470 

1611. doi:10.1080/13658816.2012.762454 471 

García, A.M., Santé, I., Boullón, M., Crecente, R., 2012. A comparative analysis of cellular automata models for simulation of 472 

small urban areas in Galicia, NW Spain. Comput. Environ. Urban Syst. 36, 291–301. doi:10.1016/j.compenvurb-473 

sys.2012.01.001 474 

Hagen, A., 2003. Fuzzy set approach to assessing similarity of categorical maps. Int. J. Geogr. Inf. Sci. 17, 235–249. 475 

doi:10.1080/13658810210157822 476 

Han, J., Hayashi, Y., Cao, X., Imura, H., 2009. Application of an integrated system dynamics and cellular automata model for 477 

urban growth assessment: A case study of Shanghai, China. Landsc. Urban Plan. 91, 133–141. doi:10.1016/j.landur-478 

bplan.2008.12.002 479 

Han, Y., Jia, H., 2016. Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of 480 

Foshan, China. Ecol. Model. doi:10.1016/j.ecolmodel.2016.04.005 481 



29 

 
Hansheng, L., Lishan, K., 1999. Balance between exploration and exploitation in genetic search. Wuhan Univ. J. Nat. Sci. 4, 28–482 

32. doi:10.1007/BF02827615 483 

Holland, J.H., 1975. Adaptation in natural and artificial systems. U Michigan Press, Oxford, England. 484 

Hu, Z., Lo, C.P., 2007. Modeling urban growth in Atlanta using logistic regression. Comput. Environ. Urban Syst. 31, 667–688. 485 

doi:10.1016/j.compenvurbsys.2006.11.001 486 

Jiang, F., Liu, S., Yuan, H., Zhang, Q., 2007. Measuring urban sprawl in Beijing with geo-spatial indices. J. Geogr. Sci. 17, 469–487 

478. doi:10.1007/s11442-007-0469-z 488 

Jr, D.W.H., Lemeshow, S., 2004. Applied Logistic Regression. John Wiley & Sons. 489 

Kim, J.-H., 2003. Assessing practical significance of the proportional odds assumption. Stat. Probab. Lett. 65, 233–239. 490 

doi:10.1016/j.spl.2003.07.017 491 

Kumar, A., Pandey, A.C., Jeyaseelan, A.T., 2012. Built-up and vegetation extraction and density mapping using WorldView-II. 492 

Geocarto Int. 27, 557–568. doi:10.1080/10106049.2012.657695 493 

Li, X., Zhou, W., Ouyang, Z., 2013. Forty years of urban expansion in Beijing: What is the relative importance of physical, socio-494 

economic, and neighborhood factors? Appl. Geogr. 38, 1–10. doi:10.1016/j.apgeog.2012.11.004 495 

Liao, J., Tang, L., Shao, G., Qiu, Q., Wang, C., Zheng, S., Su, X., 2014. A neighbor decay cellular automata approach for simulating 496 

urban expansion based on particle swarm intelligence. Int. J. Geogr. Inf. Sci. 28, 720–738. 497 

doi:10.1080/13658816.2013.869820 498 

Liu, X., Ma, L., Li, X., Ai, B., Li, S., He, Z., 2014. Simulating urban growth by integrating landscape expansion index (LEI) and 499 

cellular automata. Int. J. Geogr. Inf. Sci. 28, 148–163. doi:10.1080/13658816.2013.831097 500 

Loibl, W., Toetzer, T., 2003. Modeling growth and densification processes in suburban regions—simulation of landscape transition 501 

with spatial agents. Environ. Model. Softw., Applying Computer Research to Environmental Problems 18, 553–563. 502 

doi:10.1016/S1364-8152(03)00030-6 503 

Loibl, W., Tötzer, T., Köstl, M., Steinnocher, K., 2007. Simulation of Polycentric Urban Growth Dynamics Through Agents, in: 504 

Koomen, E., Stillwell, J., Bakema, A., Scholten, H.J. (Eds.), Modelling Land-Use Change, The GeoJournal Library. Springer 505 

Netherlands, pp. 219–236. doi:10.1007/978-1-4020-5648-2_13 506 

Montgomery, D.C., Runger, G.C., 2003. Applied Statistics and Probability for Engineers, Fourth. ed. John Wiley & Sons, New 507 

York. 508 

Munshi, T., Zuidgeest, M., Brussel, M., van Maarseveen, M., 2014. Logistic regression and cellular automata-based modelling of 509 

retail, commercial and residential development in the city of Ahmedabad, India. Cities 39, 68–86. doi:10.1016/j.cit-510 

ies.2014.02.007 511 

Mustafa, A., Cools, M., Saadi, I., Teller, J., 2015. Urban Development as a Continuum: A Multinomial Logistic Regression Ap-512 

proach, in: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. 513 

(Eds.), Computational Science and Its Applications -- ICCSA 2015, Lecture Notes in Computer Science. Springer Interna-514 

tional Publishing, pp. 729–744. 515 

Mustafa, A., Saadi, I., Cools, M., Teller, J., 2014. Measuring the Effect of Stochastic Perturbation Component in Cellular Automata 516 

Urban Growth Model. Procedia Environ. Sci., 12th International Conference on Design and Decision Support Systems in 517 

Architecture and Urban Planning, DDSS 2014 22, 156–168. doi:10.1016/j.proenv.2014.11.016 518 

Nabielek, K., 2012. The Compact City: Planning strategies, recent developments and future prospects in the Netherlands - PBL 519 

Netherlands Environmental Assessment Agency, in: Proceedings of the AESOP 26th Annual Congress. Presented at the 520 

AESOP 26th Annual Congress, Ankara. 521 

Omrani, H., Abdallah, F., Charif, O., Longford, N.T., 2015. Multi-label class assignment in land-use modelling. Int. J. Geogr. Inf. 522 

Sci. 29, 1023–1041. doi:10.1080/13658816.2015.1008004 523 

Overmars, K.P., de Koning, G.H.J., Veldkamp, A., 2003. Spatial autocorrelation in multi-scale land use models. Ecol. Model. 164, 524 

257–270. doi:10.1016/S0304-3800(03)00070-X 525 

Poelmans, L., Van Rompaey, A., 2010. Complexity and performance of urban expansion models. Comput. Environ. Urban Syst. 526 

34, 17–27. doi:10.1016/j.compenvurbsys.2009.06.001 527 

Poelmans, L., Van Rompaey, A., 2009. Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: A 528 

case study in the Flanders–Brussels region. Landsc. Urban Plan. 93, 10–19. doi:10.1016/j.landurbplan.2009.05.018 529 

Puertas, O.L., Henríquez, C., Meza, F.J., 2014. Assessing spatial dynamics of urban growth using an integrated land use model. 530 

Application in Santiago Metropolitan Area, 2010–2045. Land Use Policy 38, 415–425. doi:10.1016/j.landusepol.2013.11.024 531 

Rienow, A., Goetzke, R., 2015. Supporting SLEUTH – Enhancing a cellular automaton with support vector machines for urban 532 

growth modeling. Comput. Environ. Urban Syst. 49, 66–81. doi:10.1016/j.compenvurbsys.2014.05.001 533 

Robinson, D.T., Murray-Rust, D., Rieser, V., Milicic, V., Rounsevell, M., 2012. Modelling the impacts of land system dynamics 534 

on human well-being: Using an agent-based approach to cope with data limitations in Koper, Slovenia. Comput. Environ. 535 

Urban Syst., Special Issue: Geoinformatics 2010 36, 164–176. doi:10.1016/j.compenvurbsys.2011.10.002 536 

Roy Chowdhury, P.K., Maithani, S., 2014. Modelling urban growth in the Indo-Gangetic plain using nighttime OLS data and 537 

cellular automata. Int. J. Appl. Earth Obs. Geoinformation 33, 155–165. doi:10.1016/j.jag.2014.04.009 538 

Santé, I., García, A.M., Miranda, D., Crecente, R., 2010. Cellular automata models for the simulation of real-world urban processes: 539 

A review and analysis. Landsc. Urban Plan. 96, 108–122. doi:10.1016/j.landurbplan.2010.03.001 540 



30 

 
Shan, J., Alkheder, S., Wang, J., 2008. Genetic Algorithms for the Calibration of Cellular Automata Urban Growth Modeling. 541 

Photogramm. Eng. Remote Sens. 74, 1267–1277. doi:10.14358/PERS.74.10.1267 542 

Sunde, M.G., He, H.S., Zhou, B., Hubbart, J.A., Spicci, A., 2014. Imperviousness Change Analysis Tool (I-CAT) for simulating 543 

pixel-level urban growth. Landsc. Urban Plan. 124, 104–108. doi:10.1016/j.landurbplan.2014.01.007 544 

Tachieva, G., 2010. Sprawl Repair Manual, 2 edition. ed. Island Press, Washington. 545 

Tannier, C., Thomas, I., 2013. Defining and characterizing urban boundaries: A fractal analysis of theoretical cities and Belgian 546 

cities. Comput. Environ. Urban Syst. 41, 234–248. doi:10.1016/j.compenvurbsys.2013.07.003 547 

Thomas, I., Frankhauser, P., Biernacki, C., 2008. The morphology of built-up landscapes in Wallonia (Belgium): A classification 548 

using fractal indices. Landsc. Urban Plan. 84, 99–115. doi:10.1016/j.landurbplan.2007.07.002 549 

Tian, G., Ma, B., Xu, X., Liu, Xiaoping, Xu, L., Liu, Xiaojuan, Xiao, L., Kong, L., 2016. Simulation of urban expansion and 550 

encroachment using cellular automata and multi-agent system model—A case study of Tianjin metropolitan region, China. 551 

Ecol. Indic., Navigating Urban Complexity: Advancing Understanding of Urban Social – Ecological Systems for Transfor-552 

mation and Resilience 70, 439–450. doi:10.1016/j.ecolind.2016.06.021 553 

van Vliet, J., Bregt, A.K., Brown, D.G., van Delden, H., Heckbert, S., Verburg, P.H., 2016. A review of current calibration and 554 

validation practices in land-change modeling. Environ. Model. Softw. 82, 174–182. doi:10.1016/j.envsoft.2016.04.017 555 

Verburg, P.H., van Eck, J.R.R., de Nijs, T.C.M., Dijst, M.J., Schot, P., 2004. Determinants of Land-Use Change Patterns in the 556 

Netherlands. Environ. Plan. B Plan. Des. 31, 125–150. doi:10.1068/b307 557 

Vermeiren, K., Van Rompaey, A., Loopmans, M., Serwajja, E., Mukwaya, P., 2012. Urban growth of Kampala, Uganda: Pattern 558 

analysis and scenario development. Landsc. Urban Plan. 106, 199–206. doi:10.1016/j.landurbplan.2012.03.006 559 

Wang, H., He, S., Liu, X., Dai, L., Pan, P., Hong, S., Zhang, W., 2013. Simulating urban expansion using a cloud-based cellular 560 

automata model: A case study of Jiangxia, Wuhan, China. Landsc. Urban Plan. 110, 99–112. doi:10.1016/j.landur-561 

bplan.2012.10.016 562 

Ward, D.P., Murray, A.T., Phinn, S.R., 2000. A stochastically constrained cellular model of urban growth. Comput. Environ. Urban 563 

Syst. 24, 539–558. doi:10.1016/S0198-9715(00)00008-9 564 

White, R., Engelen, G., 2000. High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Comput. 565 

Environ. Urban Syst. 24, 383–400. doi:10.1016/S0198-9715(00)00012-0 566 

White, R., Engelen, G., 1997. Cellular Automata as the Basis of Integrated Dynamic Regional Modelling. Environ. Plan. B Plan. 567 

Des. 24, 235–246. doi:10.1068/b240235 568 

White, R., Engelen, G., Uljee, I., 2015. The Cellular Automaton Eats the Regions: Unified Modeling of Activities and Land Use 569 

in a Variable Grid Cellular Automaton, in: Modeling Cities and Regions As Complex Systems: From Theory to Planning 570 

Applications. The MIT Press, Cambridge , Massachusetts. 571 

White, R., Uljee, I., Engelen, G., 2012. Integrated modelling of population, employment and land-use change with a multiple 572 

activity-based variable grid cellular automaton. Int. J. Geogr. Inf. Sci. 26, 1251–1280. doi:10.1080/13658816.2011.635146 573 

Wu, F., 2002. Calibration of stochastic cellular automata: the application to rural-urban land conversions. Int. J. Geogr. Inf. Sci. 574 

16, 795–818. doi:10.1080/13658810210157769 575 

Xian, G., Crane, M., 2005. Assessments of urban growth in the Tampa Bay watershed using remote sensing data. Remote Sens. 576 

Environ. 97, 203–215. doi:10.1016/j.rse.2005.04.017 577 

Yang, X., 2010. Integration of Remote Sensing with GIS for Urban Growth Characterization, in: Jiang, B., Yao, X. (Eds.), Geo-578 

spatial Analysis and Modelling of Urban Structure and Dynamics, GeoJournal Library. Springer Netherlands, pp. 223–250. 579 

doi:10.1007/978-90-481-8572-6_12 580 

Yijie, S., Gongzhang, S., 2008. Improved NSGA-II Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mech-581 

anism. Chin. J. Aeronaut. 21, 540–549. doi:10.1016/S1000-9361(08)60172-7 582 

Zhang, Q., Ban, Y., Liu, J., Hu, Y., 2011. Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China. 583 

Comput. Environ. Urban Syst., Geospatial Analysis and Modeling 35, 126–139. doi:10.1016/j.compenvurbsys.2010.12.002 584 

 


