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Plant diseases are one of the most studied subjects in the field of plant science due to their

impact on crop yield and food security. Our increased understanding of plant–pathogen

interactions was mainly driven by the development of new techniques that facilitated

analyses on a subcellular and molecular level. The development of labeling technologies,

which allowed the visualization and localization of cellular structures and proteins in live

cell imaging, promoted the use of fluorescence and laser-scanning microscopy in the field

of plant–pathogen interactions. Recent advances in new microscopic technologies opened

their application in plant science and in the investigation of plant diseases. In this regard,

in planta Förster/Fluorescence resonance energy transfer has demonstrated to facilitate

the measurement of protein–protein interactions within the living tissue, supporting the

analysis of regulatory pathways involved in plant immunity and putative host–pathogen

interactions on a nanoscale level. Localization microscopy, an emerging, non-invasive

microscopic technology, will allow investigations with a nanoscale resolution leading to

new possibilities in the understanding of molecular processes.

Keywords: callose, cell wall integrity, FRET, innate immunity, localization microscopy, powdery mildew, plant

defense, super-resolution

INTRODUCTION

The plant cell wall and its outer cuticle represent the first line

of defense to biotic and abiotic stress. Based on its crucial

role in plant defense, the cell wall also constitutes a primary

target of plant pathogen attack and is constantly subject to var-

ious extrinsic, physical forces. While pathogens try to enter

the cell to establish infection structures for further coloniza-

tion of the tissue, which can be associated with a reprogram-

ming of the plant metabolism for its own purpose, as in the

case of obligate biotrophic and hemibiotrophic pathogens with

their release of effectors (Giraldo and Valent, 2013), the plant

responds to the attack by a variety of cell wall-associated defense

reactions.

Even though we already have a detailed insight into the pro-

cesses and signaling pathways that follow recognition of pathogens

by plasma membrane-bound receptors (Hamann,2012; Wolf et al.,

2012), we only have little knowledge about processes that occur

directly at the cell wall. In recent years, growing evidence suggests

that a mechanism for cell wall integrity may exists, which mon-

itors and maintains functional integrity of the cell and includes

restructuring and rebuilding of cell wall components (Knepper

and Day, 2010; Steinbrenner et al., 2012). In this regard, the plant

cell wall seems to be more dynamic as previously expected. In

response to pathogen attack, the main cell wall polymer cellu-

lose, a (1,4)-β-glucan, forms a three-dimensional network with the

(1,3)-β-glucan callose (Eggert et al., 2014), a cell wall polymer that

is directly associated with the plant’s innate immunity (Hardham

et al., 2007). A prerequisite of these advances in cell wall visual-

ization is the increasing number of advanced molecular dyes and

techniques that have become available for high resolution imaging

of cell wall integrity processes and for localization of individual

cell wall components.

Here, we describe the role that Förster/Fluorescence reso-

nance energy transfer (FRET) and localization microscopy has

played and probably is going to play in investigating plant–

pathogen interaction by highlighting processes occurring at the

plant cell wall and being part of cell wall integrity mechanisms. In

contrast to scanning electron microscopy, transmission electron

microscopy, or atomic force microscopy, FRET and localization

microscopy are both suitable to visualize processes and inter-

actions between different components with a resolution in the

submicron to nanometer scale in live cell imaging where the tissue

is still intact and in its native state maintaining the full functional-

ity of enzymes as well as arrangement of cell wall fibrils and other

components.

This perspective focuses on the new and emerging possibilities

in subcellular investigation of plant–pathogen interactions and

the understanding of how individual molecules, such as callose

and cellulose, and its regulating enzymes allow plants to perceive

pathogens and pathogens to infect their hosts.

FRET MICROSCOPY

Förster/Fluorescence resonance energy transfer is commonly used

to image the interaction of fluorescent labeled molecules or

proteins in living cells. The physical principle of FRET is a distance-

dependent interaction between the electronic excited states of

two dye molecules where excitation energy is transferred from

a donor molecule to an acceptor molecule without emission

of a photon. This transfer of energy only happens if (i) the

absorption spectrum of the acceptor overlap with the fluorescence
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emission spectrum of the donor and (ii) donor and acceptor

molecules are in close proximity (1–10 nm; Jares-Erijman and

Jovin, 2003; Grecco and Verveer, 2011). Donor and acceptor

molecules might be either fused to different putative interac-

tion partners or linked with each other by a spacer. In the first

case, energy transfer takes place as soon as both partners bind

each other. In second case, changes in protein folding induced

by shifts in the redox state, tension, or pH reduce the distance

of the FRET pair partners to a level that allows energy transfer

(Gjetting et al., 2012). The FRET pair can function as a FRET sen-

sor that generally consists of a substrate-specific binding domain,

which is flanked by a suitable donor on the one and acceptor

on the other site. Substrate binding causes a change in distance

or orientation of the two fluorophore that is translated into a

measurable change in energy transfer. FRET sensors have been

developed for a large spectrum of substrates and are used to ana-

lyze dynamic processes in mammals and plant cells (Okumoto

et al., 2012; Jones et al., 2013; Okumoto, 2014). Interestingly,

mammal sensors were successfully used in plant cells to iden-

tify new sugar transporters (Chen et al., 2010), highlighting the

comparability of basic cellular mechanisms in different biological

kingdoms.

FRET IN ANALYZING PROTEIN–PROTEIN INTERACTION OF PLANT

PENETRATION RESISTANCE

Over 150 years ago, deBary (1863) discovered cell wall thick-

enings in plants, so called papillae, at sites where fungal

pathogens penetrated through the cell wall. Chemical analy-

ses of papillae have identified callose, a (1,3)-β-glucan with

some (1,6)-branches (Aspinall and Kessler, 1957), as the most

common constituent among others, which may also include

protein (e.g., peroxidases, antimicrobial thionins), phenolics,

and other constituents (Aist and Williams, 1971; Mercer et al.,

1974; Aist, 1976; Mims et al., 2000). The formation as well

as degradation of papilla requires a high spatial and tempo-

ral regulation of transport processes between the infection site,

the plasma membrane, and the trans-Golgi network. Alter-

ation or disruption of these regulatory processes cannot only

result in increased susceptibility to pathogen attack, but also

induce complete penetration resistance to powdery mildews,

which are biotrophic fungal pathogens. This was illustrated in

studies with Arabidopsis (Arabidopsis thaliana) where overex-

pression of GSL5 (GLUCAN SYNTHASE-LIKE 5, also known

as POWDERY MILDEW RESISTENT 4), a gene encoding a

stress-induced callose synthase (Jacobs et al., 2003; Nishimura

et al., 2003), resulted in early and elevated callose biosynthe-

sis at sites of attempted penetration by the adapted powdery

mildew Golovinomyces cichoracearum and the non-adapted pow-

dery mildew Blumeria graminis f.sp. hordei. These enhanced

callose deposits prevented pathogen ingress (Ellinger et al., 2013).

Penetration resistance to fungal pathogens was also observed after

disruption of mildew resistance locus O (MLO) protein fam-

ily members in Arabidopsis infected with G. cichoracearum and

G. orontii as well as the necrotrophic fungus Botrytis cinerea

(Consonni et al., 2006, 2010), in tomato (Solanum lycopersicum)

after infection with the powdery mildew Oidium neolycopersici

(Bai et al., 2008), and in barley (Hordeum vulgare) after B. graminis

f.sp. hordei infection (Jørgensen, 1992; Piffanelli et al., 2004).

MLO proteins have been characterized as a family of plasma

membrane-localized MLO proteins that are required for successful

entry of adapted powdery mildew species in leaf epidermal cells

(Panstruga, 2005).

Förster/Fluorescence resonance energy transfer microscopy has

been used to analyze the recruitment and interaction dynamics of

components that contribute to plant penetration resistance, which

strongly promoted this technique in the field of plant–pathogen

interaction. Using FRET-acceptor photo bleaching (APB; Karpova

et al., 2003) and FRET-Fluorescence lifetime imaging microscopy

(FLIM; Becker, 2012), new spatiotemporal information about the

interaction of MLO and calmodulin, a cytoplasmatic calcium sen-

sor (Cheval et al., 2013), and a new function of MLO was obtained

(Iwai and Uyeda, 2008), which had remained undetected before

using these advanced microscopic technologies. A prominent field

of FRET-APB application is to verify dynamic protein–protein

interaction between cytosolic and membrane-bound proteins,

like the interaction of the endoplasmic reticulum (ER)-resident

BAX INHIBITOR-1 (BI-1) protein with the cytochrome oxi-

dase CYP83A1 during inoculation with the adapted powdery

mildew fungus Erysiphe cruciferarum (Weis et al., 2013). A fur-

ther field of FRET-APB application could be the localization

of membrane-bound enzymes or enzyme complexes that are

involved in reorganization and reinforcement of the cell wall after

pathogen attack. In this regard, the stress-induced callose synthase

GSL5 from Arabidopsis could be a suitable target. Its involve-

ment in pathogen-induced cell wall rearrangements was clearly

shown (Jacobs et al., 2003; Nishimura et al., 2003; Eggert et al.,

2014); and a successful fluorescence-tagging was also demon-

strated (Ellinger et al., 2013; Naumann et al., 2013). Because

quantitative proteomics of plasma membrane microdomains from

poplar (Populus trichocarpa) cell suspension cultures suggested

a localization of callose synthases in lipid rafts (Srivastava et al.,

2013), a FRET analysis of tagged GSL5 and lipid raft-resident

protein used as markers could reveal whether this specific local-

ization would also occur in intact plant tissue. In addition, this

analysis might provide information about the mechanisms of

enzyme translocation that was already observed during infec-

tion (Ellinger et al., 2013). Because it has been suggested that

a callose synthase complex is formed at sites of callose biosyn-

thesis (Verma and Hong, 2001), FRET-ABP can be used as a

microscopic tool to screen for possible interaction partners of

the callose synthase GSL5 at sites of attempted fungal penetra-

tion. A promising target for a screening would be monomeric

GTPases (Figure 1) that were already identified as putative inter-

action and complex forming partners in Saccharomyces cerevisiae

where a GTPase from the Rho family might control the phospho-

rylation status of the callose synthase (Calonge et al., 2003), and

in Arabidopsis where the Rho-like GTPase Rop1 might be involved

in regulating callose biosynthesis of GSL6 at cell plate through

interaction with the UDP-glucose transferase UGT1 (Hong et al.,

2001).

FRET FOR SENSING ION INFLUX AND MECHANICAL STRESS

During entry of pathogenic fungi into plant tissue, a localized

deformation of the cell surface occurs. The perception of those
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FIGURE 1 |Targets for nanoscale microcopy tools to analyze plant

immunity-related cell wall modifications. The presented model highlights

possible targets at the plasma membrane and the cell wall in epidermal leaf

cells of plants attacked by pathogens. ABF, aniline blue fluorochrome

[fluorescent dye specific for the (1,3)-β-glucan callose]; S4B, pontamine fast

scarlet 4B [fluorescent dye specific for the (1,4)-β-glucan cellulose]; APB,

acceptor photo bleaching; FRET, Förster/Fluorescence resonance energy

transfer; RLK, receptor-like kinase.

punctual mechanical signals induces a dynamic protein interac-

tion (as described above) and a very rapid reorganization of actin

microfilaments, ER, and peroxisoms (Koh et al., 2005). This is also

associated with ion flux within the plant cell (Meng and Sachs,

2011). Using the FRET based Ca2+ sensor Yellow Cameleon 3.6

(Nagai et al., 2004), it was demonstrated in root hairs that local-

ized cell wall deformation induced a monophasic Ca2+ increase

starting from the site of stress and spreading through the cyto-

plasm, which finally activated extracellular production of reactive

oxygen species at the cell wall (Monshausen et al., 2008, 2009).

At the site of fungal ingress, also callose is deposited in the

apoplastic space (Figure 1). The amount of deposited callose

depended on the cytoplasmatic Ca2+ level because the pres-

ence of chelators or inhibitors of Ca2+ channels reduced callose

biosynthesis (Mercer et al., 1974; Mims et al., 2000). It has been

speculated that possible stress-activated Ca2+-permeable chan-

nels might be gated by changes in membrane tension (Bhat et al.,

2005).

The sensing of mechanical stress and the resulting induction

of callose biosynthesis or cellulose remodeling likely occurs via

cell wall sensors. These mechanosensory proteins with their puta-

tive carbohydrate-binding domains, like lectin receptor kinases

(Vaid et al., 2013), cell wall-associated kinases (Kohorn and

Kohorn, 2012), or the THESEUS 1 receptor-like kinase (Che-

ung and Wu, 2011), might be linked to the cytoskeleton or

to glycosylated proteins and polysaccharides of the cell wall.

Here, they could transmit information about deformation of the

cell wall via kinase-dependent phosphorylation of target pro-

teins. Although neither phosphorylation of cell wall integrity

target proteins nor tension-depended activation of cell wall

sensors was shown so far in plant–fungus interactions, func-

tional FRET sensors for phosphorylation (Sato and Umezawa,

2004; Mirabet et al., 2011) as well as tension (Nagai et al., 2004;

Monshausen et al., 2009; Ellinger et al., 2013; Monshausen and

Haswell, 2013) already exist. As stated by Ehrhardt and From-

mer (2012), these tools have to make useable to the plant science

community.

However, a major challenge in investigating cell wall integrity

during plant–pathogen interaction using FRET technology is the

autofluorescence in photosynthetic active tissue and especially

of cell wall material. Therefore, fluorophores for these applica-

tions have to be carefully selected. An alternative would be the

use of bioluminescent proteins, like the Ca2+-sensitive aequorin

(Kunkel et al., 2007) where excitation is caused by a chemical reac-

tion instead of light. In general, it has to be considered that

FRET efficiency strongly depends on the distance that separates

the FRET pair and the spatial orientation of the fluorophores.

In most applications that we referred to in this article, fluo-

rophores were fused to the proteins of interest. However, this

protein modification may change its conformation, activity, or

even stoichiometry in a protein-protein-interaction. Therefore, a

lack of FRET efficiency cannot only indicate a non-interaction

of proteins but also an inappropriate protein modification. As

a consequence, various constructs with alternative fusion sites
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or linker usage would have to be tested to eventually distin-

guish between inappropriate modification and actual protein

non-interaction. Nevertheless, for both, negative and positive

FRET signals, appropriate controls have to be included; and results

of FRET experiments should be verified by other methods like

protein co-precipitation experiments in case of protein-protein

interactions.

LOCALIZATION MICROSCOPY

A great advantage of FRET microscopy is the possibility to resolve

molecule or protein interaction at nanoscale in live cell imag-

ing. However, the resolution of the imaging system itself is not

increased in FRET application. As a consequence, it is possible

to determine that a specific interaction between the partners of

FRET pair occurs in the cell, but it is not possible to determine on

a nanoscale level where exactly the interaction takes place in the

cell.

To overcome this limitation, new imaging technologies are

now available, which allow the localization of molecules and pro-

teins below the diffraction limit and are commonly referred to

as super-resolution microscopy (Hell, 2007; Agrawal et al., 2013;

Requejo-Isidro, 2013). These new microscopic techniques include

stimulated emission depletion fluorescence (STED) microscopy

with a possible resolution of 35 nm in the far field (Hell and

Wichmann, 1994), but without reports of successful application

on intact plant tissue due to the relatively high laser energy that

destroys the tissue. Successful application of a super-resolution

microscopy technique on intact plant cells was reported for struc-

tured illumination microscopy (SIM). This technique allowed a

super-resolution time-lapse imaging of microtubule dynamics and

organization in Arabidopsis (Komis et al., 2014) and, recently, the

visualization and localization of specific domains and effector pro-

teins at the extrahaustorial membrane of the pathogenic oomycete

Phytophthora infestans (Bozkurt et al., 2014). In SIM applications,

it is possible to achieve a lateral resolution that exceeds the clas-

sical diffraction limit by a factor of two, resulting in a possible

axially resolution of 400 nm and up to 100 nm in x–y direc-

tion (Gustafsson, 2000; Schermelleh et al., 2008). This relatively

high resolution can be exceeded by a factor of five in localization

microscopy, which is one of the most dynamic and evolving fields

of nanoscale imaging. In localization microscopy techniques such

as photoactivated localization microscopy (PALM; Betzig et al.,

2006) or stochastic optical reconstruction microscopy (STORM;

Rust et al., 2006; Heilemann et al., 2008), a lateral resolution as

high as 20 and 50 nm in the axial direction can be achieved (Bates

et al., 2008). Like SIM, localization microscopy has already been

successfully applied on intact plant tissue to visualize and localize

cell wall polymers with a nanoscale resolution of below 50 nm

(Liesche et al., 2013; Eggert et al., 2014). It turned out that both,

the cellulose-specific fluorescent dye pontamine fast scarlet 4B

(S4B; Anderson et al., 2010) and the callose-specific fluorescent

dye aniline blue fluorochrome (ABF; Evans et al., 1984) revealed

stochastic intensity fluctuations and photoblinking in stained cell

walls (Eggert et al., 2014), which is a prerequisite for an appli-

cation in localization microscopy. Besides a confirmation of the

previously known orientation and size of the S4B-stained cellu-

lose fibrils, new information about the interaction of cellulose

and callose during pathogen attack was provided. Callose fibrils

migrated into and penetrated through the preexisting cellulosic

cell wall, which resulted in the formation of a three-dimensional

polymer network (Eggert et al., 2014). This is a first example where

localization microscopy helped to uncover previously unknown,

plant immunity-related alterations and rearrangements of cell wall

precisely at the site of attempted fungal penetration. Hence, local-

ization microscopy can be used to examine localized cell wall

changes induced either by stress or processes related to main-

tain cell wall integrity. In this regard, it would be useful to test

additional fluorescent dyes that specifically label cell wall com-

ponents or polymers other than cellulose and callose to receive

a complete, three-dimensional overview of the cell wall and its

changes in response to different types of stress. An alternative

for fluorescent dyes would be the use of antibodies that are spe-

cific for different polymers or oligosaccharides of the plant cell

wall. These antibodies are already known and have been tested for

their specificity in intact plant tissue (Pattathil et al., 2010). For

their application in localization microscopy, the primary antibod-

ies could be either directly labeled, for example with fluorophores

like CAGE552 that belongs to a class of caged rhodamines (Belov

et al., 2010), or detected by an appropriate secondary antibody,

which was successfully tested for the pathogen-induced callose

deposition (Eggert et al., 2014). However, the use of primary and

secondary antibody can decrease the maximum resolution com-

pared to direct labeling (Ries et al., 2012; Eggert et al., 2014). In

a next step, localization microscopy of cell wall polymers and

components could be combined with the detection of tagged

proteins within the cell wall, the apoplast, or the plasma mem-

brane. The plasma membrane currently represents the z-direction

limit in localization microscopy of intact, uncut plant tissue

because this imaging technique is usually combined with total

internal reflection microcopy resulting in a restriction of imag-

ing to approximately 100–200 nm in z-direction (Cleemann et al.,

1997; Martin-Fernandez et al., 2013). However, this limitation of

imaging in localization microscopy would be sufficient to analyze

important processes related to cell wall rearrangement as indicated

in Figure 1.

The opportunities that localization microscopy already offers

for nanoscale imaging of intact plant tissue, and that will likely

be expended in the future, raises the question whether this new

imaging tool would replace FRET due to the possibility that tagged

proteins and labeled molecules could be directly imaged. At the

current technical status of localization microscopy, this is not

very likely because this imaging technique is limited in practice

to resolutions of tens of nanometers, which is still far above the

distance of FRET interactions with 1–10 nm and would not be

sufficient to conclusively prove direct molecular interactions. In a

future perspective, the implementation of super-resolution FRET

microscopy as described by Grecco and Verveer (2011) could be a

strategy to overcome limitations of both techniques and combine

their superior benefits.
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