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Abstract: To detect the particle agglomeration degree for assessing crystal growth quality during a 

crystallization process, an in-situ image analysis method is proposed based on a microscopic double-

view imaging system. Firstly, a fast image preprocessing approach is adopted for segmenting raw 

images taken simultaneously from two cameras installed at different angles, to reduce the influence 

from uneven illumination background and solution turbulence. By defining an index of the inner 

distance based curvature for different particle shapes, a preliminary sieving algorithm is then used to 

identify candidate agglomerates. By introducing two texture descriptors for pattern recognition, a 

feature matching algorithm is subsequently developed to recognize pseudo agglomerates in each pair 

of the double-view images. Finally, a fast algorithm is proposed to count the number of recognized 

particles in these agglomerates, besides the unagglomerated particles. Experimental results from the 

potassium dihydrogen phosphate (KDP) crystallization process demonstrate good accuracy for 

recognizing pseudo agglomeration and counting the primary particles in these agglomerates by using 

the proposed method. 
 

Keywords: particle agglomeration; pseudo agglomerate; double-view image analysis; feature 
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1. Introduction 

On-line imaging systems have been increasingly applied to monitor industrial crystallization 

processes at the micro-scale in the last two decades 1-5, offering on-line observation of the crystal 

shapes related to crystal morphology and growth rate. By using high-speed microscopic camera sensors, 

e.g., the particle vision and measurement (PVM) instrument 6, 7 and the non-invasive imaging system8, 

a small number of image analysis methods were explored in the recent references 9-13 for on-line 

measurement of crystal size distribution (CSD) during a crystallization process. However, the influence 

from uneven illumination background and solution turbulence on in-situ imaging in a continuously 

stirred crystallizer was not fully considered in literature. Such influence may provoke significant 

misestimate of crystal morphology or CSD by using the existing image processing methods, as studied 

in the recent paper 14. Development of advanced in-situ image analysis methods has been eagerly 

appealed for on-line monitoring, control and optimization of various crystallization processes 3, 15. 

Particle agglomeration is commonly associated with crystallization processes due to particle 

collisions in the stirred crystal suspension, which has a considerable impact on the crystal properties 

such as the dissolution rate, precipitation, filtration, drying, milling and grinding. It is one of the main 

tasks to control the agglomeration degree for industrial crystallization processes 16. Image-based 

detection of particle agglomeration has therefore been increasingly studied for on-line control and 

optimization. In the early study 17, detecting agglomerates from crystal images was performed off-line 

by using a statistical principal component analysis (PCA) approach. Ferreira et al. 18 presented an 

automatic classification tree to distinguish different classes of sucrose crystals and the agglomeration 

degree. Terdenge et al. 19 developed an image processing method based on a discriminant factorial 

analysis to evaluate the agglomeration degree of crystalline products. Ochsenbein et al. 20 presented a 

machine learning method to identify the agglomeration of needle-like crystals together with the 

primary particles involved in these agglomerates. Borchert et al. 21 developed an image-based 

identification method for monitoring the growth rate of crystals such as the potassium dihydrogen 

phosphate (KDP) that is a typical case of morphology evolution for multi-dimensional CSD 

measurement and verification.  

As a matter of fact, there occur a lot of pseudo agglomerates in single-view images taken from a 
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crystallization process, due to overlapped particles which have different distances to the camera lens. 

These pseudo agglomerates inevitably affect image-based measurement accuracy of CSD and the true 

agglomeration degree. To solve the problem, it was suggested to adopt double-view images for 

recognizing pseudo agglomerates 20, but how to realize exact feature matching for overlapped particles 

in each pair of double-view images remains open. Regarding feature matching between the double-

view images taken for the same object, a widely recognized matching algorithm is the scale invariant 

feature transform (SIFT) 22, where a 128-dimensional descriptor was established from a three-

dimensional (3D) histogram of gradient locations and orientations, while using a weighting function 

of the gradient magnitude for each location bin to ensure efficient matching. An alternative interest 

point descriptor was proposed to construct another matching algorithm named ASIFT 23 which may 

procure improved matching effect in some cases, but at the cost of larger computation effort. To 

alleviate the computation load of SIFT, Bay et al. 24 developed a fast algorithm so called speeded up 

robust features (SURF), which computed the Haar wavelet responses via the integral images instead 

of the gradient information. By comparison, Rublee et al. 25 proposed a faster matching algorithm 

called ORB by using the binary descriptors, which demonstrated good robustness to 

rotational variation and measurement noise.  

Note that particles in microscopic double-view images taken from a crystallization process 

typically have high similarity in the feature properties, thus bringing difficulty to feature distinction by 

using the aforementioned matching methods. To efficiently address the problem of feature similarity 

among these images, texture statistical analysis was adopted as an alternative descriptor for image 

matching in literature. By defining the local binary pattern (LBP) 26, both the statistical and structural 

characteristics of image texture were used for double-view image matching. A few modified LBP 

descriptors have been developed in the reference 27 for better texture classification and image 

recognition. To enhance the performance of LBP, a completed LBP modeling was developed for texture 

classification 28, which extracted the local gray levels and magnitude features among these images, 

respectively. The approach was further extended by defining the LBP variance (LBPV) to characterize 

the local contrast information in a one-dimensional LBP histogram for matching 29. By comparison, 

Liu et al. 30 proposed an LBP based neighboring intensities descriptor using only local neighborhood 
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distributions to represent consistent patterns. However, it remains open for implementing the above 

methods for on-line recognition of particle agglomeration in engineering applications, in particular for 

poor imaging conditions during a crystallization process. 

In this paper, an in-situ double-view image analysis method is proposed for recognizing pseudo 

particle agglomeration during a crystallization process, by establishing a double-view image matching 

algorithm based on feature analysis. Firstly, an image preprocessing strategy is used to reduce the 

influence from uneven illumination background, solution turbulence, and measurement noise. Then a 

preliminary sieving algorithm is given to screen out candidate agglomerates for mitigating the 

subsequent computation load, by defining an index to distinguish candidate agglomerates from all 

particles. By introducing two new texture descriptors for pattern recognition, a feature matching 

algorithm is proposed to recognize pseudo agglomeration. The number of primary particles involved 

in these agglomerates is counted by establishing a fast algorithm. The rock-like crystals of KDP as 

studied in the references 21, 31 for image analysis are used for experimental tests to demonstrate the 

effectiveness of the proposed method for on-line detection. 

For clarity, the paper is organized as follows. Section 2 briefly states the problem of detecting 

particle agglomeration. In Section 3, an image preprocessing method is presented to alleviate the 

influence from in-situ imaging conditions during the process operation. In Section 4, a preliminary 

sieving algorithm is given to screen out candidate agglomerates. A feature matching algorithm is 

proposed to recognize pseudo agglomerates in Section 5, along with an illustration on the advantage 

of the proposed texture descriptors compared to the existing image feature matching algorithms. 

Section 6 presents a fast algorithm to count the primary particles involved in the agglomerates. 

Experimental results are shown in Section 7 to demonstrate the effectiveness and advantage of the 

proposed method. Some conclusions are drawn in the last Section 8. 
 

2. Problem of detecting particle agglomerates during crystallization 

2.1 Double-view imaging system for monitoring a crystallizer 

A non-invasive microscopic imaging system for monitoring industrial crystallization processes 

such as the KPD crystals grown from solution is shown in Figure 1. The imaging system including two 



 

-4- 
 

 

high-speed cameras made by Hainan Six Sigma Intelligent Systems Ltd was used to capture crystal 

images synchronously during the cooling crystallization process. The two cameras (UI-2280SE-C-HQ) 

with USB Video Class standard were made by IDS Imaging Development Systems GmbH, including 

two micro telescope lenses. The angle between these camera optic axes was set about 18 degrees to 

capture double-view images with two LED lights.  

As shown in Figure 1, the crystallizer was composed of a 4-liter glass vessel, a 4-paddle agitator 

(PTFE), a thermostatic circulator (Julabo-CF41), and a temperature probe (PT100). Chemical 

compound used for the experiments was KDP (KH2PO4) with distilled water (H2O) as solvent. The 

crystal suspension was monitored by the non-invasive microscopic double-view imaging system 

installed outside the vessel.  
 

2.2 In-situ detection of particle agglomeration  

In-situ image monitoring of particles in the suspension brings much more complexity compared 

to off-line image analysis of particles by using an optic microscopy. The major challenge lies in the 

fact that particle motion and solution turbulence in a stirred crystallizer provoke image blurring and 

additional noise. Secondly, the uneven light effect and time-varying hydrodynamics in the crystallizer 

interferes with the uniformity and intensity of the image background. In addition, there may be 

different gray scales between double-view images captured for the same particles, due to unequal 

distances from two camera lenses to the same particles. A typical scenario of double-view images is 

shown in Figure 2 by using the above imaging system.  

It can be seen from the left view of Figure 2 that there possibly exists particle agglomeration. In 

fact, it can be verified from the right view of Figure 2 that the visual agglomerates were caused by 

particles overlapping in the left view. The phenomenon has been recognized as pseudo agglomeration 

in the literature. Herein the overlapped particles are defined by pseudo agglomerate for analysis. It is 

obvious that a single-view image, subject to lots of pseudo agglomerates, could mislead counting the 

crystal number and size, and thus affects on-line control and optimization of the crystal growth and 

product quality. Therefore, the recognition of pseudo agglomeration should be envisaged for on-line 

detection of the agglomeration degree. However, few methods were explored to solve this issue in the 
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literature, since the emergence of in-situ microscopic imaging technology for monitoring 

crystallization processes in the recent years 3, 8. 

To cope with the above problems, an in-situ image analysis method is proposed in this paper for 

detecting particle agglomeration during a crystallization process. The key idea is to recognize pseudo 

agglomerates by particle sieving and feature matching between double-view images. Correspondingly, 

the number of agglomerated particles can be efficiently counted. The agglomeration degree is 

evaluated by using the following specification 32, 

              
Ap

A
p

100%
N

P
N

   (1) 

where ApN  is the number of primary particles involved in the agglomerates, pN  is the total number 

of valid particles counted in the image. Note that the primary particles means the recognized particles 

in these agglomerates, which originate from unagglomerated particles during the crystallization 

process. Correspondingly, the valid particles include these primary particles and unagglomerated 

particles detected in the captured image. 

A flowchart of the proposed double-view image analysis method is shown in Figure 3. It can be 

seen that there are four steps for on-line implementation, including image preprocessing, preliminary 

sieving, feature matching, and particle counting, as detailed in the following sections, respectively. 

 

3. Image preprocessing 

3.1 Image reduction 

For using a microscopic imaging system, the size of an image depends on the system resolution 

and the magnification of camera lens. A larger image size corresponds to a longer time delay for on-

line analysis. An efficient image reduction method is therefore adopted to shrink the size of a captured 

image while maintaining fundamental image features to facilitate on-line analysis. Considering that 

the method has the advantage of high reduction ratio and good denoising ability, a two-dimensional 

discrete wavelet transform algorithm with the bi-orthogonal wavelet function 33 is constructed for a 

captured image denoted by ( , )I x y  with a size of M N . Denoting by m  the row, by n  the 

column, and by j  the number of decomposition levels, the low frequency component of discrete 
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wavelet transform for ( , )I x y  is defined as 

 , ,
1 1

1
( , , ) ( , ) ( , )

M N

j m n
x y

A j m n I x y x y
MN


 

   (2) 

where  

 /2
, , ( , ) 2 (2 ,2 )j j j

j m n x y x m y m     (3) 

Then the low frequency component ( , , )A j m n  is used to approximate the original image ( , )I x y . 

As a result, a reduction image ( , )f x y  is constructed from the low frequency component. 

 

3.2 Image segmentation 

To alleviate the influence from uneven image background, morphology processing is considered 

as an efficient approach based on the crystal shape characteristics. The uneven background is extracted 

by using an opening operation algorithm with the structuring element 34.  

To properly parameterize the structuring element, a watershed transform algorithm 33 is used for 

computation. The watershed transform algorithm classifies catchment basins and watershed ridge lines 

in an image by treating it as a surface where light and dark pixels correspond to high and low values, 

respectively. The averaged distance between the watershed ridge lines is taken as a parameter of the 

structuring element. Then the uneven background is extracted by using the above algorithm.  

Subsequently, the raw image is subtracted by the above uneven background. The segmentation 

threshold *t  is computed by using the Otsu thresholding function 33 as 

  * 2arg max ( )
t

t t  (4) 

where 2( )t  is the variance between two gray level classes with a threshold value of [1, ]t L  and 

L  is the maximum gray level.  

Finally, the segmented image is obtained by  

 
*

*

0, ( , )
( , )

1, ( , )

f x y t
q x y

f x y t

  


 (5) 

After the segmentation, morphological region filling is performed to fill up all the holes inside 

the segmented image ( , )q x y , such that the resulting image only remains all the particle regions while 

the image background is removed.  
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4. Preliminary sieving 

This step is to screen out candidate agglomerates by using the particle shape features from the 

segmented double-view images, in order to save computation time for specifically recognizing pseudo 

agglomerates among these candidate agglomerates, while counting the number of valid particles in 

these images.  

In fact, it remains open to describe the shape feature of particle agglomeration, though a few 

features describing particle shapes were explored in the literature 8, 20. In this work, the inner distance 

descriptor recently proposed in the reference 14 is further extended to describe the agglomeration 

feature so as to sieve out the candidate agglomerates efficiently. The coordinates of particle boundary 

are denoted by ( , )n nx y  , 1,2, ,n N , and the centroid coordinate c c( , )x y  is denoted by  

 

1

c
0

1

c
0

1

1

N

n
n

N

n
n

x x
N

y y
N













 





 (6) 

The distances from the particle centroid to its boundary points are defined as 

 2 2
c c( ) ( )n n nd x x y y     (7) 

A deviation distance is defined by 

 n nd d    (8) 

where d  is the mean value of nd . 

The curvature of n  is computed by 

 2 3/2

''

(1 ' )
n

n
n

c






 (9) 

An index of the inner distance based curvature (IDC) is therefore proposed as 

 1IDC

N

n
n

c

N

  (10) 

For illustration, Figure 4 shows a few simplified round-like shapes of an unagglomerated particle 

and three agglomerates involved with two, three, and four particles, respectively. It is found that the 

IDC index of the single particle is evidently larger than the others, which may be used for recognizing 
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candidate agglomerates. Note that for rod-like and needle-like particle shapes, the corresponding IDC 

indices may be similar to those of the involved agglomerates, due to a relatively large length-width 

ratio of such a particle or agglomerate. Additional shape features, e.g., the specific elongation ratios 

and perimeters of different crystals, Fourier descriptors, and geometric moments as studied in the 

reference 14, may be adopted to further recognize candidate agglomerates. 

Based on collecting typical shapes of individual particles and agglomerates in a crystallization 

process, the corresponding IDC indices are constructed as a training set for preliminary sieving. By 

classifying all the IDC indices into two groups, one for candidate agglomerates and the other for 

unagglomerated particles, a linear classification algorithm is established below. 

Denote by 1a  and 2a  for the IDC index groups of candidate agglomerates and unagglomerated 

particles, respectively. The central value iu  of ia  ( 1,2i  ) is computed by  

 
2argmin || || , 1,2

i
i i iu

u u i   a                         (11) 

The threshold 0t  for classification is determined by  

 1 2
0 2

u u
t


  (12) 

To determine whether a segmented image region with an IDC index of b  belongs to an 

agglomerate, a classification rule is proposed as follows:  

 0

0

CA1, ;

CA2, .

if b t
b

if b t


 

 (13) 

where CA1 denotes the candidate agglomerate set and CA2 indicates the unagglomerated particle 

set.  

 

5. Feature matching 

To further recognize the pseudo agglomerates from the candidate agglomerates, an enhanced 

feature matching algorithm is proposed to procure accurate recognition, by establishing the image 

interest point location and its feature descriptors as developed in the references 22-25. For clarity, Figure 

5 shows the flowchart of the feature matching process. Note that the raw surfaces of particles in the 

segmented double-view images are wholly stuffed within their contours before proceeding with the 

matching algorithm.  
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5.1 Interest point location 

The Hessian matrix studied in SURF 24 is used for detecting the interest point location. Given an 

image point ( , )Q x y , the Hessian matrix ( , )H Q   in X  is defined as  

 
( , ) ( , )

( , )
( , ) ( , )

xx xy

xy yy

L Q L Q
H Q

L Q L Q

 


 
 

  
  

 (14) 

where ( , )xxL Q   is the convolution of the Gaussian second order derivative 
2

2
( )g

x



 with respect 

to the image point Q , and so is for ( , )xyL Q   and ( , )yyL Q  ,   is a parameter of the Gaussian 

function ( )g  , which denotes the image scale 22. 

To simplify the above computation, box filters are used instead of the Gaussian second order 

derivatives. Denoting xxD , yyD  and xyD  as the approximations of the Gaussian second order 

derivatives for each image by using the box filters, respectively, an approximation determinant of the 

Hessian matrix can be written as  

 2Det( ) (0.9 )xx yy xyH D D D   (15) 

The scale space is described as an image pyramid, which is divided into 4 octaves, and each octave 

includes 4 levels together with box filters of different window sizes denoted by L . By using the 

integral image, the local maxima as a candidate interest point may be selected in a 3 3 3   

neighborhood in the scale space, such that the convolution computation could be accelerated 24. 

For using the box filters, the parameters cannot be chosen arbitrarily. Following the guideline in 

the reference 35, it is preferred to take 

 

2 1

1.2
=

3

oL i

L

   




 (16) 

where {1,2,3,4}o  is the octave index and {1,2,3,4}i  is the level index.  

Moreover, a distance constraint is additionally imposed in the same scale   to avoid the interest 

points over dense in a local area, because the density affects the matching efficiency. For example, 

denoting   as the interest point set, a distance-constrained rule is defined for two interest points 

1 1( , )X x y  and 2 2( , )X x y  as  

1 1 1 1 2 2

2 2 1 1 2 2

1 1 2 2

( , ) ,   <  and ( , ) ( , ) 0   

( , ) ,   <  and ( , ) ( , ) 0

( , )and ( , ) ,   

X x y if Dis R x y R x y

X x y if Dis R x y R x y

X x y X x y if Dis






  
   
  

˗

˗

.

 (17) 
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where 2 2
1 2 1 2( ) ( )Dis x x y y    , 1 1( , )R x y  and 2 2( , )R x y  denote gray levels, and   is a 

distance threshold similar to the parameter of the structuring element in Section 3.2.  

 

5.2 Feature descriptor  

The Haar wavelet responses in SURF 24, which can be quickly computed via integral images, are 

used to construct a feature descriptor. Firstly, the dominant orientation of the Haar descriptor for the 

interest point is computed by detecting the longest vector of the summed Gaussian weighted Haar 

wavelet responses under a sliding sector window of / 3 . 

To determine the descriptor, a square region is chosen around the interest point. The region is split 

into smaller 4 4  square sub-regions. For each sub-region, the Haar wavelet response dx 

perpendicular to the dominant orientation and the Haar wavelet response dy  in the dominant 

orientation are computed. Hence, a four-dimensional (4D) Haar descriptor, 

( , , , )dx dx dy dy    , is established for each sub-region. Given 4 4  square sub-regions for 

each interest point, a Haar descriptor of 64 dimensions denoted by Hv  is subsequently constructed 

after normalization. 

To compensate for the deficiency of the above descriptor in dealing with image noise and uneven 

illumination background, two texture descriptors are supplemented to enhance the matching accuracy 

for double-view images with high feature similarity. Inspired by the LBP approach developed in the 

references 27-30, a deviation compensated LBP (DCLBP) descriptor and a magnitude difference based 

LBP (MDLBP) descriptor are proposed to improve the accuracy of describing the interest region in the 

presence of uneven illumination while mitigating the computation effort.  

Denoting cg  as the gray value of the center pixel ( , )i j  in a local region, and pg  

( 0,..., 1p P  ) as the gray values of equally spaced P  pixels in a circle of radius R  with respect 

to the center pixel ( , )i j , the location parameter ag  is defined as  

 

c , c c
1

a

c , c c
1

,  1 / (P 1) ( );

, 1 / (P 1) ( ).

P

P R p
p

P

P R p
p

g std if g g g

g

g std if g g g






   

 
    





 (18) 

where ,P Rstd  is the standard deviation of gray value with respect to cg  and its neighborhood pg . 
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Thus, the DCLBP for ( , )G i j  is obtained as 

                              , a
1

( , ) ( )2
P

p
P R p

p

DCLBP i j s g g


   (19) 

where 

 
a

a
a

1, ;
( )

0, .
p

p
p

if g g T
s g g

if g g T

     
   (20) 

where T  is a practically specified difference threshold, e.g., -3e .  

Considering that the magnitude information is also important for local texture structure 

description 28, we define the magnitude difference by c| |p pm g g  . Note that the vector 

0 1 1[ , ,..., ]Pm m m   is less sensitive to uneven illumination, which is therefore transformed into the 

binary pattern for analysis. Correspondingly, the MDLBP is obtained as  

                               ,
1

( , ) ( ) 2
P

p
P R p p

p

M D L B P i j s m m


   (21) 

where pm  is the averaged value for 0 1 1[ , ,..., ]Pm m m  , and 

 
1,

( )
0,

p p

p p

p p

if m m T
s m m

if m m T

    
 

   (22) 

For illustration, a numerical example studied in the reference 30 is performed here to demonstrate 

the proposed texture recognition of image micro-structure. Figure 6 shows three texture patterns with 

different features to classify and each of the patterns has the same center pixel with 8 neighbors. It is 

obvious that LBP and the proposed DCLBP have different thresholds in terms of the same 8P . The 

three patterns (a, b, c) are classified into the same pattern by using LBP, due to the oversimplified local 

structure recognized by LBP. By introducing a complementary feature, called VAR, which could reflect 

the local contrast of each pattern, The reference 26 proposed the combination of VAR and LBP for 

recognition, as shown in Figure 6 (ii) and (iii). It can be seen that the patterns (a) and (b) can be 

distinguished but the patterns (b) and (c) are still regarded as the same texture, due to neglecting the 

differences between the center and each neighbor. In contrast, both of the proposed DCLBP and 

MDLBP have effectively recognized different binary patterns for these three texture patterns, as shown 

in Figure 6 (iv) and (v), owing to further detailed description of local texture feature in the interest 

region.  
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Moreover, taking into account the rotation invariance of LBP 26, we denote Ri
, ( , )P RDCLBP i j  and 

Ri
, ( , )P RMDLBP i j  as the rotation invariants of DCLBP and MDLBP, respectively. Distribution 

histograms of the DCLBP and MDLBP values are taken as two dimensions in the feature descriptor. 

The property of the histogram may facilitate analyzing the statistical region characteristics and 

reducing the pattern dimension 29. Take the DCLBP as an example, in the interest region N N  for 

the interest point, the DCLBP value of each pixel point ( , )G i j  is computed to generate the DCLBP 

spectrogram composed of Ri
, ( , )P RDCLBP i j , , 1,2, ,i j N . Therefore, the interest region is 

represented by a one-dimensional pattern histogram 29 as  

 
Ri
,

1 1

( ) ( ( , ), ), [0, ]
N N

P R
i j

h k f DCLBP i j k k K
 

   (23) 

where K  is the maximal DCLBP pattern value, and 

 

Ri
,Ri

, Ri
,

1, ( , ) ;
( ( , ), )

0, ( , ) .

P R

P R

P R

if DCLBP i j k
f DCLBP i j k

if DCLBP i j k

  


 (24) 

Then, the texture feature vector Dv  is determined by normalizing ( )h k , [0, ]k K . Note that 

the dimension of Dv  is determined by the interest region size, which is suggested to be 2N  based 

on numerical computation. Similar to Dv , the MDLBP feature vector denoted by Mv  can be 

determined. 

Besides, the feature of dominant orientation 25 is also considered in the DCLBP spectrogram, 

which is denoted by ( , )L i j . Define the main orientation being from the interest point to the centroid 

( ( , ) / ( , )i i L i j L i j   , ( , ) / ( , )j j L i j L i j   ). Denoting by mo  all the point set in the 

main orientation, ( , )L m n  ( mo,m n ) is decomposed by the discrete Fourier transform. A weighted 

amplitude aw( , )v m n  is defined by  

 aw a( , ) ( , ) ( , )v m n m n v m n   (25) 

where am( , )v m n  is the amplitude of ( , )L m n  in the Fourier transform, and  

 
2

22
2

1
( , ) e

2

r

m n 




  (26) 

where r  is the distance between the pixel Ri
, ( , )P RDCLBP m n  and the interest point, and   is the 

image scale of the interest point. 

Correspondingly, the feature of dominant orientation Ov  is taken as the mean of amv  after 

normalization.  
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To sum up, the interest point descriptor is composed of H D M O[ ]v v v v v .  

 

5.3 Descriptor matching  

The above interest point descriptor generally has high dimension, which may be inefficient and 

computationally intensive for matching. Hence, dimension reduction is adopted to improve 

computation efficiency. The idea of linear graph embedding (LGE) with locality preserving projection 

(LPP) 36 is adopted herein to extract the geometric features and local region characteristics. For a pair 

of double-view images, the interest point descriptor set is defined by 1{ ,..., }, m
n iV v v v R  , where 

m  is the dimension of the interest point descriptor and n  is the number of the interest point. The 

interest point descriptor is depicted by an undirected graph G  with n  vertices, while each vertex 

indicates an interest point denoted by iv . To evaluate the similar degree of different interest points, a 

symmetric matrix W  is defined with the elements denoted by i jw  which is the weight of the edge 

from the vertex iv  to the vertex jv .  

 

2 2|| || /e , ( ) or ( );

0, ( ) and ( ).

i jv v
i k j j k i

ij

i k j j k i

if v N v v N v
w

if v N v v N v

    
 

 (27) 

where ( )k iN v  denotes the set of the k-nearest neighbors of iv  with a choice of 5k   herein for 

computation, and   is the averaged Euclidean distance among these points. 

Let 1[ ,..., ]Tnb b   be a map from the graph to a real line. The optimal   is determined by 

 
2

,

min ( )i j ij
i j

b b w  (28) 

It can be derived from (28) that 

 
2

,

1
( )

2
T

i j ij
i j

b b w B LB   (29) 

where L D W   is the graph Laplacian, D  a diagonal matrix whose entries are column (or row) 

sums of W , ii jij
d w .  

A minimization programming is established for solving (29) by 

 argmin . . 1T TB LB s t B DB  (30) 

The LGE is used to establish a linear approximation for the nonlinear relationship, T T
i ib v U , 

where U  is a projection matrix. After simplification, the optimal U  is given by the minimum 

eigenvalue of the generalized eigenvector for the following equation, 

 T TVLV U VDV U  (31) 
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Note that if the number of descriptor samples is small for dimension reduction, the matrix TV LV  

may be singular. It is therefore proposed to project the sample set into the PCA space 36 in advance.  

However, the computation load could become very heavy if using the global nearest neighbor 

searching method 24 to reduce the descriptor dimension for the interest points between the double-view 

images. It is therefore proposed to use the approximately nearest neighbor searching algorithm via the 

K-dimension (KD) tree 37 to save the computation effort.  

Meanwhile, considering that the interest point descriptors could be mismatched if the scale 

difference is large, it is proposed to limit the scale difference for feature matching, that is, the scale 

difference diS  of interest point pairs should satisfy 

        di sS S W    (32) 

where S  is the averaged scale value for all the interest points, and sW  is the scale standard deviation. 

To ensure the matching accuracy and stability, an outlier detection algorithm is proposed to 

remove outliers in the matching points. By denoting 1 1( , )x y  and 2 2( , )x y  as two matching points, 

the angle a  between them is defined as 

 2 1

2 1

arctan
y y

a
x x





 (33) 

Denoting { ( ) | 1,2, , }A a i i m   as the angle set, where m  is the number of matching points, 

( )N j  as the number in the cluster j , and ( )j , 1, ,j k  as the cluster centroids computed from 

A , where j  is the cluster index number, the k -means clustering algorithm 38 is performed by 

iterating the following two steps until ( )j  converges to the optimum, with an initially random 

choice of ( )j  within A . 

Firstly, assign  ( )a i  into the nearest cluster of ( )c i  defined by 

 
2( ) argmin || ( ) ( ) ||

j
c i a i j   (34) 

Secondly, update the cluster centroids ( )j  ( 1, ,j k ) of A  by 

 
1

1

1{ ( ) } ( )
( ) 1, ,

1{ ( ) }

m

i
m

i

c i j a i
j j k

c i j
 




 






ˈ  (35) 

After clustering, the minimum number of j   is obtained as 

 =argmin ( ), 1, ,
j

j N j j k   (36) 
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Then all the matching points within the corresponding angle cluster of j   are classified as 

candidate outliers. Let ou  be the mean value of the original angle set and ru  the mean value of the 

angle set excluding j  . If  r o| | / 60u u   , the optimized matching is selected by deleting the 

candidate outliers. Otherwise, these candidate outliers should be remained. 

After outlier detection, a label processing is proposed to recognize pseudo agglomerates. Firstly, 

all particles in the segmented images are labeled. If there is one-to-one relationship between two 

matching labels respectively in the double-view images, they should be recognized as agglomerated 

particles. Otherwise, the candidate agglomerates should be viewed as pseudo agglomerates.  

 

6. Particle counting 

For pseudo agglomerates, the corresponding particles can be easily counted by using the one-to-

many relationship of label processing. However, for true agglomerates, it remains difficult to count the 

number of primary particles involved in these agglomerates. By virtue of the analysis on IDC as shown 

in Figure 4, it is proposed to use the concave points of the agglomerate contours to count the primary 

round-like particles in these agglomerates. A fast algorithm is therefore given as illustrated in Figure 

7, based on the morphology mask as follows.  

Step 1. A toolbox algorithm 33 is used to figure out the convex hull (chS ) for a true agglomerate, 

while the contour of chS  is entirely stuffed. 

Step 2. The concavities (coS ) are computed as the difference between the convex hull (chS ) and 

the agglomerate (agS ), i.e., co ch agS S S  . 

Step 3. The value of saliency ( )Sal b  is calculated for the boundary point b  in the contour 

image by 

 
ci

( ) bM
Sal b

M
  (37) 

where ciM  is the pixel number of the circle mask centered on the boundary b , and bM  is the 

number of pixels in the maximum background block in the circle mask M . The mask center b  scans 

over the boundary of the contour by using a circle mask M  with radius pR . Salience points are 

located in terms of ( ) 0.7Sal b  . If  several continuous points comply with the condition, the point 

corresponding to the largest ( )Sal b  is taken as a salience point. 
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Step 4. A concave point on the agglomerate boundary is determined if all the connecting lines 

between the concave point and its adjacent salience points are inside the agglomerate. 

Step 5. By drawing the nearest connecting lines between the determined concave points in 

different concavities while avoiding any closed loop possibly constructed by the connecting lines, the 

number of primary particles involved in these agglomerates is counted as the number of these 

connecting lines plus one.  

 

7. Experimental results 

A seeded KDP cooling crystallization experiment was performed to verify the effectiveness of the 

proposed image analysis method for recognizing pseudo agglomerates. The KDP solution was firstly 

heated up to 40 °C and maintained at the temperature for an hour to ensure complete dissolution of the 

solute. Then the solution was cooled down with a cooling rate of 0.3°C/min. The crystal seeds were 

added shortly after the solution went into the supersaturated zone. The agitator was operated at a speed 

of 150 rpm to keep all particles in suspension during the cooling crystallization process for image 

monitoring. The aforementioned non-invasive microscopic imaging system was applied for in-situ 

imaging, by using two LED lights with an illumination level of 400lux. In the double-view imaging 

system, each image was taken at the pixel resolution of 2448×2048 per second. Note that 30 particles 

were chosen from the previously captured images as the IDC training set to establish the classification 

rule of preliminary sieving in advance.  

Considering the in-situ captured double-view images shown in Figure 2, the image analysis 

method is illustrated in Figure 8. Firstly, the preprocessed images are shown in Figure 8 (a) by using 

the reduction approach presented in Section 3. Then Figure 8 (b) shows the result by removing the 

image background. Figure 8 (c) shows the segmented double-view image where the particle intensity 

and the background are denoted by 1 and 0, respectively. Note that each pairs of double-view images 

were simultaneously processed throughout the proposed analysis procedure. Figure 8 (d) shows the 

candidate agglomerate recognized by the preliminary sieving using the IDC indices as listed in the 

figure. Subsequently, Figure 8 (e) shows the pseudo agglomerate recognized by using the proposed 

feature matching algorithm where the parameters of DCLBP and MDLBP were taken as =8P  and 
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2R . Note that all the valid particles and interest points were rightly matched between the double-

view images.  

To compare the matching performance for the in-situ double-view images captured during the 

crystallization process, the developed algorithms, SIFT 22, ASIFT 23, SURF 24 and ORB 25, were also 

performed for Figure 2 based on the above image preprocessing and preliminary sieving. The 

parameter of Gaussian function in SIFT and ASIFT was taken as 1.6, the parameters of SURF were 

computed in terms of (16) in Section 5, and the parameters of ORB were chosen with the radius of 

neighborhood being 3 and the edge threshold being 31, according to the guidelines given therein. Note 

that the proposed outlier detection algorithm was performed beforehand to perform these algorithms 

for fair comparison. The matching results are shown in Figure 9. It is seen that none of these algorithms 

could give perfect matching for all the particles including the agglomerate. Figure 9 (a) shows that 

SIFT gives correct matching for most of the interest points as shown in Figure 8 (e), but a prominent 

interest point was overlooked as indicated by the yellow circle. In Figure 9 (b), it is obvious that a valid 

particle was not matched in the double-view images by using ASIFT. Figure 9 (c) shows that there is 

a mismatch of an interest point by using SURF, as indicated by the red line. Figure 9 (d) shows that a 

valid particle is not matched while there exists a mismatch of an interest point (indicated by the purple 

line) by using ORB. 

To further demonstrate the effectiveness of the proposed algorithm for recognizing particle 

agglomeration and counting the number of primary particles, Figure 10 shows the imaging analysis 

results for another pair of double-view images captured from the crystallization process, which 

includes true agglomeration. It is seen from Figure 10 (b) that the candidate agglomerates were 

recognized by using the preliminary sieving step, as indicated by the red contours. Then it is verified 

in Figure 10 (c) by using the proposed feature matching algorithm that there are two agglomerates in 

the left view. From Figure 10 (d) it is seen that the number of the primary particles involved in the 

agglomerates is properly counted by the proposed algorithm.  

Table 1 lists the recognition results for two different cases shown in Figure 8 and Figure 10, 

respectively, for pseudo and true agglomerates. It can be seen that the proposed image analysis method 

can give precise assessment on the agglomeration degree and the total number of particles, while the 
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number of unagglomerated particles and the number of primary particles involved in the agglomerates 

are rightly counted, respectively. 

In addition, to demonstrate the effectiveness of the proposed method for on-line monitoring the 

crystallization process, thirty pairs of double-view images including more than 200 particles captured 

from the crystallization experiment, as illustrated in Figure 11 (including 6 representative pairs of 

double-view images taken at different time instants), were taken to verify the proposed feature 

matching algorithm in comparison with the above algorithms. For 6 representative pairs of these 

images, the agglomeration degree defined in (1) is evaluated by using the proposed double-view 

analysis, which is denoted by A 2P   in Figure 11. For comparison, the corresponding result given by 

using the single-view analysis method 18, 20 is denoted by A 1P   in Figure 11. It is seen that the proposed 

double-view analysis gives proper assessment of the agglomeration degree in real time (made per 5 

minutes during the crystallization process), compared to the single-view analysis that gives obvious 

misestimate such as the result for the image taken at the moment denoted by (15-20min). In other 

words, the real-time estimation error arising from particle overlapping is significantly reduced by using 

the proposed double-view analysis. 

To evaluate the matching effect, the particle recall ratio prP  is defined by  

 
pa

pr
pa pm

N
P

N N



 (38) 

where paN  is the number of matched particles and pmN  is the number of unmatched particles.  

The matching accuracy of interest points is defined by  

 a
pm

t

N
P

N
     (39) 

where aN  is the number of correct point matches and tN  is the total number of point matches. Note 

that a valid particle is recognized if the point matching for two double-view images of the particle is 

over 80%.  

Three indices including point matching accuracy, particle recall ratio and averaged computation 

time per frame were computed for comparison as listed in Table 2. Note that all of the above algorithms 

used the same global nearest neighbor searching method 24 for computation. It is seen in Table 2 that 

the proposed algorithm gave the best point matching accuracy and the highest particle recall ratio while 
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using a moderate computation time for each frame of double-view images. In contrast, SIFT and 

ASIFT gave similar point matching accuracy close to that of the proposed algorithm. However, they 

required an evidently longer computation time compared to the proposed algorithm, due to the use of 

high-dimensional feature descriptors. Although ORB spent the shortest computation time in these 

algorithms, the resulting point matching accuracy and particle recall ratio were the lowest compared 

to the other algorithms, due to insufficient description of local features. By using a computation time 

similar to the proposed algorithm, SURF gave inferior point matching accuracy, by using less local 

texture features compared to the proposed algorithm. Note that for monitoring the crystallization 

process, the particle recall ratio reflecting particle matching is more important than the other two 

indices for agglomerate recognition. The result in Table 2 well demonstrates that the proposed 

algorithm can give good matching and recognition for on-line monitoring particle agglomeration.  
 

8. Conclusions 

Based on an in-situ installed double-view imaging system, a synthetic image analysis method has 

been proposed in this paper for monitoring particle agglomeration during a crystallization process. A 

fast image segmentation approach based on image reduction is firstly adopted to perform image 

preprocessing so as to reduce the influence from uneven illumination background and solution 

turbulence. By defining an IDC index to detect possible agglomeration, a preliminary sieving 

algorithm is given to screen out candidate agglomerates from preprocessed images, effectively 

mitigating the on-line computation load. Then by introducing two texture descriptors, DCLBP and 

MDLBP, for pattern recognition, a fast feature matching algorithm is developed to recognize pseudo 

agglomerates with good accuracy. Subsequently, an efficient particle counting algorithm is established 

to assess the agglomeration degree, by which both the unagglomerated particles and the primary 

particles involved in agglomerates can be precisely counted, respectively. Experimental tests on 

monitoring the KDP crystallization process well demonstrate that the proposed strategy can be more 

effectively used for monitoring the crystal agglomeration degree in comparison with the existing 

single-view analysis, along with obvious superiority for particle matching between double-view 

images compared to the developed image feature matching methods.  
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List of Table and Figure Captions 
 

Table 1.  Recognition results for two different cases  

Table 2.  Comparison of matching results by using different algorithms  

 

 

Figure 1. (a) Schematic of a microscopic image monitoring system for crystallization monitoring;    

     (b) Experimental set-up of a non-invasive microscopic double-view imaging system 

Figure 2. In-situ double-view images captured by a microscopic imaging system 

Figure 3. Flowchart of the proposed method for agglomeration detection 

Figure 4. Illustration of IDC: (a) an unagglomerated particle; (b) agglomerate of two particles;  

     (c) agglomerate of three particles; (d) agglomerate of four particles 

Figure 5. Flowchart of the proposed feature matching algorithm 

Figure 6. Comparison of texture recognition: (i) three different texture patterns (a, b, c); (ii) LBP 

(a1, b1, c1); (iii) VAR values (a2, b2, c2); (iv) DCLBP (a3, b3, c3); (v) MDLBP (a4, b4, 

c4) 

Figure 7. Schematic of the proposed counting algorithm for particle agglomeration 

Figure 8. Double-view image processing for in-situ captured images: (a) preprocessed images; (b) 

result after removing the background; (c) segmented result; (d) preliminary sieving with 

IDC (a candidate agglomerate is labeled in red contour); (e) feature matching (the 

candidate agglomerate in the left view corresponds to two particles in the right view) 

Figure 9. Comparison of matching results: (a) SIFT; (b) ASIFT; (c) SURF; (d) ORB 

Figure 10. Agglomerate recognition and particle counting results: (a) in-situ captured double-view 

images; (b) preliminary sieving (candidate agglomerates are labeled with red contour); 

(c) feature matching; (d) counting primary particles in the agglomerates (the connecting 

lines indicating four primary particles in the two agglomerates in the left view) 

Figure 11. Microscopic double-view images captured during the KDP crystallization process 
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Table 1.  Recognition results for two different cases 

 

Target parameters in the double-view images Case 1 Case 2 

The number of pseudo agglomerates  1 0 

The number of true agglomerates  0 2 

The number of unagglomerated particles  5 3 

The number of primary particles involved in the agglomerates  0 4 

The total number of all the primary particles  5 7 

The agglomeration degree  0% 57.14% 

 

 

 

Table 2.  Comparison of matching results by using different algorithms 

 

Methods Particle recall ratio (%) Point matching accuracy (%) 
Averaged computation time 

per frame (s) 

Proposed 97.96 92.01 0.9347 

SIFT 94.90 91.83 1.3703 

ASIFT 93.88 91.65 1.8061 

SURF 95.92 88.47 0.8925 

ORB 90.82 83.95 0.4126 
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(a)                                    (b) 

 

Figure 1.  (a) Schematic of a microscopic image monitoring system for crystallization monitoring; (b) 

Experimental set-up of a non-invasive microscopic double-view imaging system  

 

 

 

 

 

(a) Left view               (b) Right view 

 

Figure 2.  In-situ double-view images captured by a microscopic imaging system 
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Figure 3.  Flowchart of the proposed method for agglomeration detection 
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 (a)                      (b)                (c)                      (d) 

 

Figure 4.  Illustration of IDC: (a) an unagglomerated particle; (b) agglomerate of two particles; (c) agglomerate of 

three particles; (d) agglomerate of four particles 
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Figure 5.  Flowchart of the proposed feature matching algorithm 
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Figure 6.  Comparison of texture recognition: (i) three different texture patterns (a, b, c); (ii) LBP (a1, b1, c1); (iii) 

VAR values (a2, b2, c2); (iv) DCLBP (a3, b3, c3); (v) MDLBP (a4, b4, c4)  
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Figure 7.  Schematic of the proposed counting algorithm for particle agglomerates 
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(e)  

 

Figure 8.  Double-view image processing for in-situ captured images: (a) preprocessed images; (b) result after 

removing the background; (c) segmented result; (d) preliminary sieving with IDC (a candidate agglomerate is 

labeled in red contour); (e) feature matching (the candidate agglomerate in the left view corresponds to two 

particles in the right view)  
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(a)  

 

(b)  

 

(c)  

 

(d)  

 

Figure 9.  Comparison of matching results: (a) SIFT; (b) ASIFT; (c) SURF; (d) ORB  
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(a)  

 

(b)  

 

(c)  

 

(d)  

 

Figure 10.  Agglomerate recognition and particle counting results: (a) in-situ captured double-view images; 

(b) preliminary sieving (candidate agglomerates are labeled with red contour); (c) feature matching; (d) counting 

primary particles in the agglomerates (the connecting lines indicating four primary particles in the two 

agglomerates in the left view) 

Left view                        Right view    
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Figure 11.  Microscopic double-view images captured during the KDP crystallization process 

 


