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Abstract: To detect the particle agglomeration degree for assessing crystal growth quality during a
crystallization process, an in-situ image analysis method is proposed based on a microscopic double-
view imaging system. Firstly, a fast image preprocessing appreadopted for segmenting raw
images taken simultaneously from two cameras installed at different angles, to redundkid¢imce

from uneven illumination background and solution turbulence. By defining an index of the inner
distance based curvature for different particle shapes, a preliminary sieving algettitiem used to
identify candidate agglomerates. By introducing two texture descriptors for pattern recognition, a
feature matching algorithns subsequently developed to recognize pseudo agglomeraash pair

of the double-view images. Finally, a fast algoritsyproposed to count the number of recogniz
particles in thee agglomerates, besides the unagglomerated particles. Experimental results from the
potassium dihydrogen phosphate (KDP) crystallization process demonstrate good accuracy for
recognizing pseudo agglomeration and counting the primary particleseatiglomerates by using

the proposed method.

Keywords: particle agglomeration; pseudo agglomerate; double-view image analysis; feature

matching; texture descriptor; particle counting
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1. Introduction

Online imaging systems have been incredsingpplied to monitor industrial crystallization
processes at the micro-scale in the last two de@ie&a‘fering on-line observation of the crystal
shapes related to crystal morphology and growth rate. By using high-speed microscopic camera sensors
e.g., the patrticle vision and measurement (PVM) instrt@at}d the non-invasive imaging syﬁm

a small number of image analysis methods were explored in the recent ref¢tét@son-line

measurement of crystal size distribution (CSD) during a crystallization process. However, the influence
from uneven illumination background and solution turbulencénesitu imaging in a continuously

stirred crystallizer was not fully considered in literature. Such influence may provoke significant
misestimate of crystal morphology or CSD by using the existing image processing methods, as studied

in the recent pap&l Development of advanced in-situ image analysis methods has been eagerly

appealed for on-line monitoring, control and optimization of various crystallization prdégsses

Particle agglomeration is commonly associated with crystallization processes due to particle
collisions in the stirred crystal suspension, which has a considerable impact on the crystal properties
such as the dissolution rate, precipitation, filtration, drying, milling and grinding. It is one of the main
tasks to control the agglomeration degree for industrial crystallization pro%lssemge-based
detection of particle agglomeration has therefore been increasingly studied for on-line control and
optimization. In the early stu detecting agglomerates from crystal images was performed off-line
by usinga statistical principal component analysis (PCA) approach. Ferreira@p{bsented an
automatic classification tree to distinguish different classes of sucrose crystals and the agglomeration
degree Terdenge et developed an image processing method basealdiscriminant factorial
analysis to evaluate the agglomeration degree of crystalline products. Ochsenb@p&kﬁnted a
machine learning method to identify the agglomeration of needle-like crystals together with the
primary particles involved in these agglomerates. Borchert aieveloped an image-based
identification method for monitoring the growth rate of crystals sucthepotassium dihydrogen
phosphate (KDP) that is a typical case of morphology evolution for multi-dimensional CSD
measurement and verification.

As a matter of fact, there occur a lot of pseudo agglomerat#sgle-view images taken from a



crystallization process, due to overlapped particles which have different distances to the camera lens.
These pseudo agglomerates inevitably affect image-based measurement accuracy of CSD and the tru:
agglomeration degree. To solve the problem, it was suggéstadopt double-view images for
recognizing pseudo agglomer@sbut how to realize exact feature matching for overlapped particles

in each pair of double-view images remains open. Regarding feature matching betwamubitbe

view image taken for the same object, a widely recognized matching algorithm is the scale invariant
feature transform (SIF where a 128-dimensional descriptor was established from a three-
dimensional (3D) histogram of gradient locations and orientations, while using a weighting function
of the gradient magnitude for each location bin to ensure efficient matching. An alternative interest
point descriptor was proposed to construct another matching algorithm namemﬁ'fh may

procure improved matching effect in some cases, but at the cost of larger computation effort. To
alleviate the computation load of SIFT, Bay ebleveloped a fast algorithm so called speeded up
robust features (SURF), which computed the Haar wavelet responses via the integral images instead
of the gradient information. By comparison, Rublee roposed a faster matching algorithm
called ORB by using the binary descriptors, which demonstrated good robustness to
rotational variation and measurement noise.

Note that particles in microscopic double-view images taken from a crystallization process
typically have high similarity in the feature properties, thus bringing difficulty to feature distinction by
using the aforementioned matching methods. To efficiently address the problem of feature similarity
among these images, texture statistical analysis was adopted as an alternative descriptor for image
matching in literature. By defining the local binary pattern (LI%?b)oth the statistical and structural
characteristics of image texture were used for double-view image matching. A few modified LBP
descriptors have been developed in the refer@der better texture classification and image
recognition. To enhance the performance of LBP, a completed LBP modeling was developed for texture
classificatio which extracted the local gray levels and magnitude features among these images,
respectively. The approach was further extended by defining the LBP variance (LBPV) tberimra
the local contrast information in a one-dimensional LBP histogram for ma@\iBg comparison,

Liu et alproposed an LBP based neighboring intensities descriptor using only local neighborhood



distributions to represent consistent patterns. However, it remains open for implementing the above
methods for on-line recognition of particle agglomeration in engineering applications, in particular for
poor imaging conditions during a crystallization process.

In this paper, an in-situ double-view image analysis method is proposed for recognizing pseudo
particle agglomeration during a crystallization process, by establishing a double-view image matching
algorithm based on feature analysis. Firstly, an image preprocessing strategy is used ttheeduce
influence from uneven illumination background, solution turbulence, and measurement noise. Then a
preliminary sieving algorithm is given to screen out candidate agglomerates for mitigating the
subsequent computation load, by defining an index to distinguish candidate agglomerates from all
particles. By introducing two new texture descriptors for pattern recognition, a feature matching
algorithm is proposed to recognize pseudo agglomeration. The number of primary particles involved

in these agglomerates is counted by establishing a fast algorithm. The rock-like crystals of KDP as

studied in the referencgd|®Y{for image analysis are used for experimental tests to demonstrate the

effectiveness of the proposed method for on-line detection.

For clarity, the paper is organized as follows. Section 2 briefly states the problem of detecting
particle agglomeration. In Section 3, an image preprocessing method is presented to alleviate the
influence fromin-situ imaging conditions during the process operation. In Section 4, a preliminary
sieving algorithm is given to screen out candidate agglomerates. A feature matching algorithm is
proposed to recognize pseudo agglomerates in Section 5, along with an illustration on the advantage
of the proposed texture descriptors compared to the existing image feature matching algorithms.
Section 6 presents a fast algorithm to count the primary particles involved in the agglomerates.
Experimental results are shown in Section 7 to demonstrate the effectiveness and advantage of the

proposed method. Some conclusions are drawn in the last Section 8.

2. Problem of detecting particle agglomerates during crystallization
2.1 Double-view imaging system for monitoring a crystallizer

A non-invasive microscopic imaging system for monitoring industrial crystallization processes

such as the KPD crystals grown from solution is shoyvn in Figure 1. The imaging system including two




high-speed cameras made by Hainan Six Sigma Intelligent Systems Ltd was used to captlre crysta
images synchronously during the cooling crystallization process. The two cameras (UI-2280SE-C-HQ)
with USB Video Class standard were made by IDS Imaging Development Systems GmbH, including
two micro telescope lenses. The angle between these camera optic axes was set about 18 degrees
capture double-view images with two LED lights.

As shown in Figure 1, the crystallizer wasnposed of a 4-liter glass vessel, a 4-paddle agitator
(PTFE), a thermostatic circulator (Julabo-CF41), and a temperature probe (PT100). Chemical
compound used for the experimemtas KDP (KHPQy) with distilled water (HO) as solvent. The
crystal suspension was monitored by the non-invasive microscopic double-view imaging system

installed outside the vessel.

2.2In-situ detection of particle agglomeration

In-situ image monitoring of particles in the suspension brings much more complexity cdmpare
to off-line image analysis of particles by using an optic microscopy. The major chdlEengethe
fact that particle motion and solution turbulence in a stirred crystallizer provoke image blurring and
additional noise. Secondly, the uneven light effect and time-varying hydrodynamics in the crystallizer
interferes with the uniformity and intensity of the image background. In addition, there may be
different gray scales between double-view images captured for the same particles, due o unequa

distances from two camera lenses to the same particles. A typical scenario of double-view images is

shown in Figure R by using the above imaging system.

It can be seen from the left view] of Figune 2 that there possibly exists particle agglomération.

fact, it can be verified from the right view|of Figurg 2 that the visual agglomerates were caused by

particles overlapping in the left view. The phenomenon has been recognized as pseudo agglomeration
in the literature. Herein the overlapped particles are defined by pseudo agglomerate for anialysis. |
obvious that a single-view image, subject to lots of pseudo agglomerates, could mislead counting the
crystal number and size, and thus affects on-line control and optimization of the crystal growth and
product quality. Therefore, the recognition of pseudo agglomeration should be envisaged for on-line

detection of the agglomeration degree. However, few methods were explored to solve this issue in the



literature, since the emergence of in-situ microscopic imaging technology for monitoring
crystallization processes in the recent y@s

To cope with the above problems,iarsitu image analysis method is proposed in this paper for
detecting particle agglomeration during a crystallization process. The key idea is to repegunae
agglomerates by patrticle sieving and feature matching between double-view images. Correspondingly,
the number of agglomerated particles can be efficiently counted. The agglomeration degree is

evaluated by using the following specificat@w

P, = Ny 100%
AT N X ¢ (1)

p

where N,, is the number of primary particles involved in the agglomerakés, is the total number

of valid particles counted in the image. Note that the primary particles means the recognized patrticles
in these agglomerates, which originate from unagglomerated particles during the crystallization
process. Correspondingly, the valid particles includselpeimary particles and unagglomerated

particles detected in the captured image.

A flowchart of the proposed double-view image analysis method is shown in F|guoa3.be

seen that there are four steps for on-line implementation, including image preprocessing, preliminary

sieving, feature matching, and particle counting, as detailed in the following sections, respectively.

3. Image preprocessing

3.1 Image reduction

For using a microscopic imaging system, the size of an image depends on the system resolution
and the magnification of camera lens. A larger image size corresponds to a longer time delay for on-
line analysis. An efficient image reduction method is therefore adopted to shrink the size of @ capture
image while maintaining fundamental image features to facilitate on-line analysis. Considering that
the method has the advantage of high reduction ratio and good denoising ability, a two-dimensional
discrete wavelet transform algorithm with the bi-orthogonal wavelet fur@ibmconstructed foa
captured image denoted bl(X,y) with a size of M xN . Denotingby M the row, by " the

column, and by] the number of decomposition levels, the low frequency component of discrete



wavelet transform forl (X,Y) is defined as

A(j,m,n)zﬁiyi_ll(x,y)coj,m,n(x,w @
where
D mn (X Y)=2"9(2 x-m,2 y—m) 3)

Then the low frequency componer¥(j,m,n) is used to approximate the original imadjex, ).

As a result, a reduction imagé(X,y) is constructed from the low frequency component.

3.2 Image segmentation

To alleviate the influence from uneven image background, morphology processing is considered
as an efficient approach based on the crystal shape characteristics. The uneven backgtoaridds ex
by using an opening operation algorithm with the structuring eI@ent

To properly parameterize the structuring element, a watershed transform algﬁﬂhmed for
computation. The watershed transform algorithm classifies catchment basins and watershed ridge lines
in an image by treating it as a surface where light and dark pixels correspond tochighv aalues,
respectively. The averaged distance between the watershed ridge lines is taganaaseter of the
structuring element. Then the uneven background is extracted by using the above algorithm.

Subsequently, the raw image is subtracted by the above uneven background. The segmentation

threshold t” is computed by using the Otsu thresholding fun@ms
t" =arg ma>(<72 { ) 4)
t

where o?(t) is the variance between two gray level classes with a threshold value[tfL] and
L is the maximum gray level.
Finally, the segmented image is obtained by

0, f(x,y)<t’

1, f(x,y)=t ®)

mxw={

After the segmentation, morphological region filling is performed to fill up all the holes inside
the segmented image(x, y), such that the resulting image only remains all the particle regions while

the image background is removed.



4. Preliminary sieving

This step is to screen out candidate agglomerates by using the particle shape features from the
segmented double-view images, in order to save computation time for specifically recognizing pseudo
agglomerates among these candidate agglomerates, while counting the number of valid particles in
these images.

In fact, it remains open to describe the shape feature of particle agglomeration, dfeugh

features describing particle shapes were explored in the litg?Pgdtr@ this work, the inner distance

descriptor recently proposed in the refer@s further extended to describe the agglomeration
feature so as to sieve out the candidate agglomerates efficiently. The coordinates of particle boundary

are denoted by(X,,Y,) , n=12...,N, and the centroid coordinatéx., Y,) is denoted by

pd

-1

X = X

i ag

(6)

Z|l~ Z|r
z

Ye = Yn

o

n=

The distances from the particle centroid to its boundary points are defined as

dy =% = %)7 + (Yo — ¥i)? (7)

A deviation distance is defined by

pn:dn_d (8)

where ¢ is the mean value ofl,.

The curvature of p, is computed by

_ Pn
- (1+ pn 2 )3/2 (9)

n

An index of the inner distance based curvature (IDC) is therefore proposed as

N

2.5 (10)

IDC =L
N

For illustration| Figure 4hows a few simplified round-like shapes of an unagglomerated patrticle

and three agglomerates involved with two, three, and four particles, respectively. It is found that the

IDC index of the single particle is evidently larger than the others, which may be used for recognizing



candidate agglomerates. Note that for rod-like and needle-like particle shapes, the corresponding IDC
indices may be similar to those of the involved agglomerates, daeetatively large length-width

ratio of such a particle or agglomeratelditional shape features, e.g., the specific elongationsratio

and perimeters of different crystalspurier descriptors, and geometric moments as studied in the

referenc may be adopted to further recognize candidate agglomerates.

Based on collecting typical shapes of individual particles and agglomerates in a crystallization
process, the corresponding IDC indices are constructed as a training set for preliminary sieving. By
classifying all the IDC indices into two groups, one for candidate agglomerates and the other for
unagglomerated particles, a linear classification algorithm is established below.

Denote by a, and a, for the IDC index groups of candidate agglomerates and unagglomerated

particles, respectively. The central value of a (i=1,2)is computed by
u =argmin)_ [ -y fl i= 1, (12)

The thresholdt, for classification is determined by

_Urt

t
0 2

(12)

To determine whether a segmented image region with an IDC index dielongs to an
agglomerate, a classification rule is proposed as follows:

{CAl, if b <t,;
S

: (13)
CA2, if b >t,.
where CAl denotes the candidate agglomerate set @4® indicates the unagglomerated particle

set.

5. Feature matching
To further recognize the pseudo agglomerates from the candidate agglomerates, an enhanced

feature matching algorithm is proposed to procure accurate recognition, by establishing the image

interest point location and its feature descriptors as developed in the reJéi"é? desr clarity, Figure
5 shows the flowchart of the feature matching process. Note that the raw surfaces of particles in the
segmented double-view images are wholly stuffed within their contours before proceeding with the

matching algorithm.



5.1 Interest point location
The Hessian matrix studied in SU@?S used for detecting the interest point location. Given an

image point Q(X, ), the Hessian matrixH(Q,o) in X is defined as

L.@Q.0) L, (Q,G)}

L,Qo) L,Q.0) (1)

H(Q,0) {
2

where L (Q,o) is the convolution of the Gaussian second order derivagvzeg(a) with respect
X

to the image pointQ, and so is forL,(Q,o) and L,(Q,0), o is a parameter of the Gaussian
function g(o), which denotes the image s

To simplify the above computation, box filters are used instead of the Gaussian second order
derivatives. DenotingD,,, D,, and D,, as the approximations of the Gaussian second order
derivatives for each image by using the box filters, respectively, an approximation determinant of the
Hessian matrix can be written as

Det(H)=D,D,, - (0.D,, ¥ (15)

The scale space is described as an image pyramid, which is divided into 4 octaves) anthea
includes 4 levels together with box filters of different window sizes denotedl by using the
integral image, the local maxima as a candidate interest point may be selecte@xiBx&
neighborhood in the scale space, such that the convolution computation could be ac@Ierated

For using the box filters, the parameters cannot be chosen arbitrarily. Following the guideline in

the referen it is preferred to take
L=2°xi+1
1.2 (16)

o=—VL
where 0€{l,2,3,4} is the octave index anéle{l,2,3,4} is the level index.
Moreover, a distance constraint is additionally imposed in the same gcdteavoid the interest
points over dense in a local area, because the density affects the matching efficieaggntfie,
denoting ¥ as the interest point set, a distance-constrained rule is defined for two interest points

X(x,y,) and X(X,,y,) as
X(x,y)eV, if Dis<t andR X, y, yREK y, » 0
X(Xp,y,) e, if Dis<t andR §, y; FR & Yy, X © (17)
X(x,y,)andX &, y,)e¥, if Dis > A.



where Dis=(x—-%)>+(y,—V¥,)?, R(x, %) and R(x,Y,) denote gray levels, andl is a

distance threshold similar to the parameter of the structuring element in Section 3.2.

5.2 Feature descriptor

The Haar wavelet responses in SL@F\Nhich can be quickly computed via integral images, are
used to construct a feature descriptor. Firstly, the dominant orientation of the Haar descriptor for the
interest point is computed by detecting the longest vector of the summed Gaussian weighted Haar
wavelet responses under a sliding sector windowr 68.

To determine the descriptor, a square region is chosen around the interest point. The region is split
into smaller 4x4 square sub-regions. For each sub-region, the Haar wavelet resgbnse
perpendiculato the dominant orientation and the Haar wavelet respotigein the dominant
orientation are computed. Hence, a four-dimensional (4D) Haar descriptor,

O dx > |d¥, > dy,>’|dy), is established for each sub-region. Givér4 square sub-regions for
each interest point, a Haar descriptor of 64 dimensions denote{] bg subsequently constructed
after normalization.

To compensate for the deficiency of the above descriptor in dealing with image noise and uneven
illumination background, two texture descriptors are supplemented to enhance the matching accuracy

for double-view images with high feature similarity. Inspired by the LBP approackodeden the

reference8™29 a deviation compensated LBP (DCLBP) descriptor and a magnitude difference based

LBP (MDLBP) descriptor are proposed to improve the accuracy of describing the interest region in the
presence of uneven illumination while mitigating the computation effort.
Denoting 9. as the gray value of the center pix€l,j) in a local region, andd,
(p=0,...,P-1) as the gray values of equally spac®d pixels in a circle of radiusR with respect
to the center pixel(i, j ), the location parameteg, is defined as
g.—std, ., if g.>1/(P+ 1);: 9,+ a):

0. = o (18)
g, + stdh 5, if g, <1/ (P+ 1D (9,+ 4)-
p=1

where std,  is the standard deviation of gray value with respecgifoand its neighborhoodd,, .

-10-



Thus, the DCLBP forG(i, j) is obtained as

P
DCLBR, (i, j)= D" s(g,— @)2° (19)
p=1
where
1, ifg,-9,2T;
S(gp—gi)—{o’ if g,—g,<T. (20)

where T is a practically specified difference threshold, e g3,

Considering that the magnitude information is also important for local texture structure
description we define the magnitude difference by, =9.—g,|. Note that the vector
[my, m,....m_,] is less sensitive to uneven illumination, which is therefore transformed into the

binary pattern for analysis. Correspondingly, the MDLBP is obtained as
P _
MDLBP{ ,iH>, (sgm I (21)
p=1

where Fp is the averaged value fdim,, m,...,m_,], and

1, if mp—mpzT

s(m, - m,) —{ (22)

0, if m-m <T
For illustration, a numerical example studied in the refe@iseperformed here to demonstrate

the proposed texture recognition of image micro-structure. Figure 6 shows three texture patterns with

different features to classify améchof the patterns has the same center pixel with 8 neighbors. It is

obvious that LBP and the proposed DCLBP have different thresholds in terms of théPsagelThe

three pattern@, b, c) are classified into the same pattern by using LBP, due to the oversimplified local

structure recognized by LBP. By introducing a complementary feature, called VAR, whicheftadd

the local contrast of each pattern, The refer%q:ﬁfoposed the combination of VAR and LBP for

recognition, as shown in Figure 6 (ii) and (iii). It can be seen that the patterns (a) aad {® c

distinguished but the patterns (b) and (c) are still regarded as the same texture, due to neglecting the

differences between the center and each neighbor. In contrast, both of the pb@o&# and

MDLBP have effectively recognized different binary patterns for these three texteragads shown

in Figure 6 (iv) and (v), owing to further detailed description of local texture feature in the interest

region.

-11-



Moreover, taking into account the rotation invariance of R/e denote DCLBPPFfiR(i, j) and
MDLBPPFfiR(i,j) as the rotation invariants of DCLBP and MDLBP, respectively. Distribution
histograms of the DCLBP and MDLBP values are taken as two dimensions in the feature descriptor.
The property of the histogram may facilitate analyzing the statistical region characteristics and
reducing the pattern dimens Take the DCLBP as an exampie the interest regionNx N for
the interest point, the DCLBP value of each pixel pdi#ti, j) is computed to generate the DCLBP
spectrogram composed oDCLBPPFfiR(i, j), 1,i=12:--N . Therefore, the interest region is

represented by a one-dimensional pattern hiss

h(k) :ZN:ZN: f(DCLBPPFfiR(i, 1),k), ke[0,K] (23)

i1 j-1
where K is the maximal DCLBP pattern value, and
f (DCLBRS (i, )k) = {1’ 1 DOLBRRL.1)=k: @4)
' 0,if DCLBPZ,(,j)=k.

Then, the texture feature vectoy, is determined by normalizindi(kK), k €[0,K]. Note that
the dimension ofV,, is determined by the interest region size, which is suggested {pbg based
on numerical computation. Similar t&, , the MDLBP feature vector denoted by, can be
determined.

Besides, the feature of dominant orienta@n’s also considered in the DCLBP spectrogram,

which is denoted byL(i,] ). Define the main orientation being from the interest point to the centroid

(i=Y0-LEi)/DLi), i=>i-L6.i)/DL{i)). Denoting by, all the point set in the
main orientation, L(m,n) (mneQ, ) is decomposed by the discrete Fourier transform. A weighted

amplitude Vv,,,(m, n) is defined by
Vo (M) =(mMm n)- v(m (25)

where V,,(m n) is the amplitude ofL(m,Nn) in the Fourier transform, and

2

o(m,n) = 27362 g2’ (26)

where 1 is the distance between the pixBICLBP(m N and the interest point, and is the
image scale of the interest point.
Correspondingly, the feature of dominant orientatign is taken as the mean of,, after

normalization.

12



To sum up, the interest point descriptor is composedafvy, V, Vi, Vol .

5.3 Descriptor matching

The above interest point descriptor generally has high dimension, which may be inefficient and
computationally intensive for matching. Hence, dimension reduction is adopted to improve
computation efficiency. The idea of linear graph embedding (LGE) with locality preserving projection
(LPPis adopted herein to extract the geometric features and local region characteristics. For a pair
of double-view images, the interest point descriptor set is defined byv,,...,v,}, v, e R", where
M is the dimension of the interest point descriptor @nds the number of the interest point. The
interest point descriptor is depicted by an undirected gi@plwith n vertices, while each vertex
indicates an interest point denoted gy To evaluate the similar degree of different interest points, a
symmetric matrixW is defined with the elements denoted BY whichis the weight of the edge

from the vertexV, to the vertexV; .

W =

{ew P if v, eN, ¢, ) o, eN, ¢ ); 27)

0, if vigN, {,)ands;, N, ¢ )
where N,(v)) denotes the set of the k-nearest neighborg, ofvith a choice ofk =5 herein for
computation, andr is the averaged Euclidean distance among these points.
Let B=[b,....0 ] be amap from the graph to a real line. The optimalis determined by
ming b-b)w (28)
It can be derived from2@) that
ECRRELIL @9
where L=D -W is the graph LaplacianD a diagonal matrix whose entries are column (or row)
sums of W, d; =ZjV\{i .
A minimization programming is established for solving (28)
argminB'LB st.B'DB= ] (30)
The LGE is used to establish a linear approximation for the nonlinear relatiotshipy U,

where U is a projection matrix. After simplification, the optim&l is given by the minimum

eigenvalue of the generalized eigenvector for the following equation,
WV U =ADV U (31)

-13-



Note that if the number of descriptor samples is small for dimension reduction, the Waithik
may be singular. It is therefore proposed to project the sample set into the Pimaclaance.

However, the computation load could become very heavy if using the global nearest neighbor
searching meth@to reduce the descriptor dimension for the interest points between the double-view
images. It is therefore proposed to use the approxiynagarest neighbor searching algorithm via the
K-dimension (KD) treto save the computation effort.

Meanwhile, considering that the interest point descriptors could be mismatched if the scale
difference is large, it is proposed to limit the scale difference for feature matching, thatstsaléhe

difference S; of interest point pairs should satisfy
S, < S+W (32)
where S is the averaged scale value for all the interest points Vs{nds the scale standard deviation.
To ensure the matching accuracy and stability, an outlier detection algorithm is proposed to
remove outliers in the matching points. By denotif, y;) and (X,,Y,) as wo matching points,
the anglea between them is defined as

a=arctan’2_ %1 (33)

X=X
Denoting A={a())|i=12,---,m} as the angle set, wher@ is the number of matching points
N(j) asthe number in the clustdr, and x(j), j=1,--K as the cluster centroids computed from
A, where | is the cluster index number, thie-means clustering algorithEl is performed by
iterating the following two steps until(j) converges to the optimum, with an iniljarandom

choice of () within A.

Firstly, assigna(i) into the nearest cluster of(i) defined by

ofi) =argmin | (-4 () (34
Secondly, update the cluster centrojds) (j=21---K)of A by
> ol = pa()
u(j) =5 v j=1--Kk (35)
Zl{c(i) =}

After clustering, the minimum number of" is obtained as

j'=argminN ¢ ),j = 1...k (36)
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Then all the matching points within the corresponding angle clustej” ofire classified as
candidate outliers. Letl, be the mean value of the original angle set ahdhe mean value of the
angle set excludingj”. If |[u —u, bz /6C, the optimized matchings selectedby deleting the
candidate outliers. Otherwise, these candidate outliers should be remained.

After outlier detection, a label processing is proposed to recognize pseudo agglomerates. Firstly,
all particles in the segmented images are labeled. If there iso@me relationship between two
matching labels respectively in the double-view images, they should be recognized as agglomerated

particles. Otherwise, the candidate agglomerates should be viewed as pseudo agglomerates.

6. Particle counting

For pseudo agglomerates, the corresponding particles can be easily counted by usingpthe one-
many relationship of label processing. However, for true agglomerates, it remains difficult to count the
number of primary particles involved in these agglomerates. By virtue of the analysis on IDC as shown
in Figure 4, it is proposed to use the concave points of the agglomerate contours to count the primary
round-like particles in these agglomerates. A fast algorithm is therefore given as illustrated in Figure
7, based on the morphology mask as follows.

Step 1. A toolbox aIgorithE|is used to figure out the convex hu8) for a true agglomerate,
while the contour ofS,, is entirely stuffed.

Step 2. The concavitiesS() are computed as the difference between the convex &)l &nd
the agglomerate§, ), i.e., S, = §,- S,

Step 3. The value of salienc$al(b is calculated for the boundary poimbt in the contour
image by

sai(h = @)

where M is the pixel number of the circle mask centered on the bounblargnd M, is the
number of pixels in the maximum background block in the circle meskThe mask centeb scans
over the boundary of the contour by using a circle mdsk with radius R, . Salience points are
located in terms ofSal() >0.7. If several continuous points comply with the condition, the point

corresponding to the largestal( is taken as a salience point.
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Step 4. A concave point on the agglomerate boundary is determined if all the connecting lines
between the concave point and its adjacent salience points are inside the agglomerate.

Step 5. By drawing the nearest connecting lines between the determined concawénpoint
different concavities while avoiding any closed loop possibly constructed by the connecting lines, the
number of primary particles involved in these agglomeratesounted as the number of these

connecting lines plus one.

7. Experimental results

A seeded KDP cooling crystallization experiment was performed to verify the effectvaithe
proposed image analysis method for recognizing pseudo agglemditae KDP solution was firstly
heated up to 40 °C and maintained at the temperature for an hour to ensure complete dissolution of the
solute. Then the solution was cooled down with a cooling rate of 0.3°C/min. The crystal seeds were
added shortly after the solution went into the supersaturated zone. The agitator was operated at a spee
of 150 rpm to keep all particles in suspension during the cooling crystallization process for image
monitoring. The aforementioned non-invasive microscopic imaging system was applied for in-situ
imaging, by using two LED lights with an illumination level of 400lux. In the double-view imaging
system, each image was taken at the pixel resolution 0£22@88 per second. Note that 30 particles
were chosen from the previously captured images as the IDC training set to establish the classification
rule of preliminary sieving in advance.

Considering the in-situ captured double-view images shown in Figure 2, the image analysis
method is illustrated in Figure 8. Firstly, the preprocessed images are shown in Figure 8 (a) by using
the reduction approach presented in Section 3. Then Figures8dtys the result by removing the
image background. Figure 8 (c) shows the segmented double-view image where the particle intensity
and the background are denoted by 1 and 0, respectively. Note that each pairs of double-view image
were simultaneously processed throughout the proposed analysis procedure. Figure 8 (d) shows the
candidate agglomerate recognized by the preliminary sieving using the IDC indices as listed in the
figure. Subsequently, Figure 8 (e) shows the pseudo agglomerate recognized by using the proposec

feature matching algorithm where the parameters of DCLBP and MDLBP were takén&sand
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R=2. Note that all the valid particles and interest points were rightly matched between the double-
view images.

To compare the matching performance for the in-situ double-view images captured during the
crystallization process, the developed algorithms, @:ZRSIF SUR and OR were also
performed for Figure 2 based on the above image preprocessing and preliminary sieving. The
parameter of Gaussian function in SIFT and ASIFT was taken as 1.6, the parameters of SURF were
computedn terms of (16) in Section 5, and the parameters of ORB were chosen with the radius of
neighborhood being 3 and the edge threshold being 31, according to the guidelines given therein. Note
that the proposed outlier detection algorithm was performed beforehand to perform these algorithms
for fair comparison. The matching results are shown in Figure 9. It is seen that none of thesmalgorith
could give perfect matching for all the particles including the agglomerate. Figure 9 \(e) thiad
SIFT gives correct matching for most of the interest points as shown in Figure 8 (e), but a prominent
interest point was overlooked as indicated by the yellow circle. In Figure 9 (b), it is obvious that a vali
particle was not matched in the double-view images by using ASIFT. Figure 9 (c) shows that there is
a mismatch of an interest point by using SURF, as indicated by the religjaee 9 (d) shows that a
valid particle is not matched while there exists a mismatch of an interest point (indicated by the purple
line) by using ORB.

To further demonstrate the effectiveness of the proposed algorithm for recognizing particle
agglomeration and counting the number of primary particles, Figure 10 shows the imaging analysis
results for another pair of double-view images captured from the crystallization process, which
includes true agglomeration. It is seen from Figure 10 (b) that the candidate agglonmerates
recognized by using the preliminary sieving step, as indicated by the red contours. Then iec verif
in Figure 10 (c) by using the proposed feature matching algorithm that there are two agglomerates i
the left view. From Figure 10 (d) it is seen that the number of the primary particles involved in the
agglomeratess properly courgd by the proposed algorithm.

Table 1 lists the recognition results for two different cases showgure 8 and Figure 10
respectively, for pseudo and true agglomerates. It can be seen that the proposed image analysis metho

can give precise assessment on the agglomeration degree and the total number of particles, while the
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number of unagglomerated particles and the number of primary particles involved in the agglomerates
are rightly counted, respectively.

In addition, to demonstrate the effectiveness of the proposed methmctlioe monitoring the
crystallization process, thirty pairs of double-view images including more than 200 particles captured
from the crystallization experiment, as illustrated in Figure 11 (including 6 representative pairs of
double-view images taken at different time instants), were taken to verify the proposed feature
matching algorithm in comparison with the above algorithms. For 6 representative pairs of these
images, the agglomeration degree defimedl) is evaluated by using the proposed double-view

analysis, which is denoted bf, , in Figure 11. For comparison, the corresponding result given by

18130

using the single-view analysis methog"lis denoted byP, , in Figure 11. Itis seen that the proposed

double-view analysis gives proper assessment of the agglomeration degree in real time (made per 5
minutes during the crystallization process), compared to the single-view analysis that gives obvious
misestimate such as the result for the image taken at the moment denoted by (15-20min). In other
words, the real-time estimation error arising from particle overlapping is significantly reduced by using
the proposed double-view analysis.

To evaluate the matching effect, the particle recall rajo is defined by

N

pa
TN N (38)
P N+ N,

where N, is the number of matched particles ahy is the number of unmatched particles.
The matching accuracy of interest points is defimgd
N

P,=—2
pm Nt (39)

where N, isthe number of correct point matches aNg is the total number of point matches. Note
that a valid particle is recognized if the point matching for two double-view images of the particle is
over 80%.

Three indices including point matching accuracy, particle recall ratio and averaged computation
time per frame were computed for comparison as listed in Table 2. Note that all of the above algorithms
used the same global nearest neighbor searching n@fmd:omputation. It is seen in Table 2 that

the proposed algorithm gave the best point matching accuracy and the highest particle recall ratio while
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using a moderate computation time for each frame of double-view images. In contrast, SIFT and
ASIFT gave similar point matching accuracy close to that of the proposed algorithm. However, they
required an evidently longer computation time compared to the proposed algorithm, due to the use of
high-dimensional feature descriptors. Although ORB spent the shortest computation time in these
algorithms, the resulting point matching accuracy and patrticle recall ratio were the lowest compared
to the other algorithms, due to insufficient description of local featBseasing a computation time
similar to the proposed algorithm, SURF gave inferior point matching accuracy, by using less local
texture features compared to the proposed algorithm. Note that for monitoring the crystallization
process, the particle recalltia reflecting particle matching is more important than the other two
indices for agglomerate recognition. The result in Table 2 well demonstrates that the proposed

algorithm can give good matching and recognition for on-line monitoring particle agglomeration.

8. Conclusions

Based on an in-situ installed double-view imaging system, a synthetic image analysis method has
been proposed in this paper for monitoring particle agglomeration during a crystallization gkocess.
fast image segmentation approach based on image reduction is firstly adopted to perform image
preprocessing so as to reduce the influence from uneven illumination background and solution
turbulence. By defining an IDC index to detect possible agglomeration, a preliminary sieving
algorithm is given to screen out candidate agglomerates from preprocessed images, effectively
mitigating the on-line computation load. Then by introducing two texture descriptors, DCLBP and
MDLBP, for pattern recognition, a fast feature matching algorithm is developed to recognize pseud
agglomerates with good accuracy. Subsequently, an efficient particle counting algorithm is established
to assess the agglomeration degree, by which both the unagglomerated particles and the primary
particles involved in agglomerates can be precisely counted, respectively. Experimental tests on
monitoring the KDP crystallization process well demonstrate that the proposed strategy can be more
effectively used for monitoring the crystal agglomeration degree in comparison with the existing
single-view analysis, along with obvious superiority for particle matching between double-view

images compared to the developed image feature matching methods.

-19-



Acknowledgment
This work was supported in part by the NSF China Grant 61633006 and the National Thousand

Talents Program of China.

-20-



References

(1) Li, M.; Wilkinson, D.; Patchigolla, K., Determination of non-spherical piarze distribution from chord
length measurements. Part 2: Experimental validation. Chemical Engineering S6b¢60, (18), 4992-
5003.

(2) Yu, Z.; Chew, J.; Chow, P.; Tan, R., Recent advances in crystallizatioolcantindustrial perspective.
Chemical Engineering Research and De&igd7,85, (7), 893-905.

(3) Nagy, Z. K.; Fevotte, G.; Kramer, H.; Simon, L. L., Recent advances in the monitmdoiglling and
control of crystallization systems. Chemical Engineering Research and R64igy91, (10), 1903-1922.

(4) Zhang, B.; Willis, R.; Romagnoli, J. A.; Fois, C.; Tronci, S.; BarRttiImage-based multiresolution-ANN
approach for online particle size characterization. Industrial & Engineering GheResearcl2014,53, (17),
7008-7018.

(5) Schorsch, S.; Ochsenbein, D. R.; Vetter, T.; Morari, M.; Mazzotti, M., dlighiracy online measurement
of multidimensional particle size distributions during crystallization. Cboa&hiingineering Scien914,105,
(2), 155-168.

(6) Zhou, Y.; Srinivasan, R.; Lakshminarayanan, S., Critical evaluation of image proasgsiogches for real-
time crystal size measurements. Computers & Chemical Engin&f@€g33, (5), 1022-1035.

(7) Li, P.; He, G.; Lu, D.; Xu, X.; Chen, S.; Jiang, X., Crystal size distdbw#tnd aspect ratio control for rodlike
urea crystal via two-dimensional growth evaluation. Industrial & Engineering CheRissearct2017,56,
(9), 2573-2581.

(8) Wang, X. Z.; Roberts, K. J.; Ma, C., Crystal growth measurement using 2D andagihg and the
perspectives for shape control. Chemical Engineering Sckt& 63, (5), 1173-1184.

(9) Zhou, Y.; Lakshminarayanan, S.; Srinivasan, R., Optimization of image proceasangeters for large sets
of in-process video microscopy images acquired from batch crystallizatiorspescéntegration of uniform
design and simplex search. Chemometrics & Intelligent Laboratory Sy2¢rhsl 07, (2), 290-302.

(10) Schorsch, S.; Vetter, T.; Mazzotti, M., Measuring multidimensional partioée distributions during
crystallization. Chemical Engineering Sciera@d2,77, (1), 130-142.

(11) Chen, X.; Zhou, W.; Cai, X.; Su, M.; Liu, H., In-line imaging measurements otlpasize, velocity and
concentration in a particulate two-phase flow. Particuokiif4,13, (2), 106-113.

(12) zhang, R.; Ma, C. Y,; Liu, J. J.; Wang, X. Z., On-line measurement of the real size and shggialsfic
stirred tank crystalliser using non-invasive stereo vision imaging. Chebigaheering Scienc2015, 137,
(20), 9-21.

(13) Larsen, P. A.; Rawlings, J. B., The potential of current high-resoliriaging-based particle size
distribution measurements for crystallization monitoring. Alche Jol®@9,55, (4), 896-905.

(14) Huo, Y.; Liu, T.; Liu, H.; Ma, C. Y.; Wang, X. Z., In-situ crystal morphglddentification using imaging
analysis with application to the L-glutamic acid crystallization. Chemicaligeging Scienc2016,148, (12),
126-139.

(15) Zhang, R.; Ma, C. Y.; Liu, J. J.; Zhang, Y.; Liu, Y. J.; Wang, X. Z., Stereo imagngraanodel for 3D
shape reconstruction of complex crystals and estimation of facet growth kinégosic&l Engineering Science
2017,160, 171-182.

(16) Ulrich, J.; Frohberg, P., Problems, potentials and future of industrial crystallization. Froh@éesmical
Science and Engineeri2®13,7, (1), 1-8.

a7 Alander, E. M.; Uusi-Penttila, M. S.; Rasmuson, A. C., Characterization of paracatgiwoherates by
image analysis and strength measurement. Powder Techr26logyl 30, (1), 298-306.

(18) Ferreira, A.; Faria, N.; Rocha, F.; Teixeira, J., Using an online image analgishique to characterize
sucrose crystal morphology during a crystallization run. Industrial & Engineehirgui6try ResearcB011,
50, (11), 6990-7002.

-21-



(19) Terdenge, L. M.; Heisel, S.; Schembecker, G.; Wohlgemuth, K., Agglomeraticeeddigtribution as
quality criterion to evaluate crystalline products. Chemical Engineering $&@6a6,133, (8), 157-169.

(20) Ochsenbein, D. R.; Vetter, T.; Schorsch, S.; Morari, M.; Mazzotti, MIoAggration of needle-like crystals
in suspension: I. Measurements. Crystal Growth & De2@jib, 15, (4), 1923-1933.

(21) Borchert, C.; Temmel, E.; Eisenschmidt, H.; Lorenz, H.; SeidelmorgensteKaiAS., Image-based in
situ identification of face specific crystal growth rates from crystalulations. Crystal Growth & Desi@®14,
14, (3), 952971.

(22) Lowe, D. G., Distinctive image features from scale-invariant keypaiésnational Journal of Computer
Msion 2004,60, (2), 91-110.

(23) Morel, J. M.; Yu, G., ASIFT: A new framework for fully affine invariant irmagpmparison. Siam Journal
on Imaging Sciencez009,2, (2), 438-469.

(24) Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L. V., Speeded-up robust fedBlses-). Computer Msion & Image
Understandin@008,110, (3), 346-359.

(25) Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. In ORB: An efficidtdrnative to SIFT or SURF,
International Conference on Computer Vision, 2011; 2011; pp 2564-2571.

(26) Oijala, T.; Pietikdinen, M.; Maenpaa, T., Multiresolution gray-scale ratation invariant texture
classification with local binary patterns. IEEE Transactions on Pattern A&lydachine Intelligenc002,
24, (7), 971-987.

(27) Liu, L.; Fieguth, P.; Guo, Y.; Wang, X.; Pietikdinen, M., Local binary featuregxture classification:
Taxonomy and experimental study. Pattern Recogniiy,62, 135-160.

(28) Guo, Z.; Zhang, L.; Zhang, D., A completed modeling of local binary pattern apésattexture
classification. IEEE Transactions on Image Proces3ii@, 19, (6), 1657-63.

(29) Guo, Z.; Zhang, L.; Zhang, D., Rotation invariant texture classification usingyafhce (LBPV) with
global matching. Pattern Recognitia@10,43, (3), 706-719.

(30) Liu, L.; Zhao, L.; Long, Y.; Kuang, G.; Fieguth, P., Extended local binary pattertextore classification.
Image & Msion Computin@012,30, (2), 86-99.

(31) Yang, G.; Kubota, N.; Sha, Z.; Louhi-kultanen, M.; Wang, J., Crystal shape|doptnoanipulating
supersaturation in batch cooling crystallization. Crystal Growth & DeXi§86,6, (12), 2799-2803.

(32) Nyvlt, J.; Karel, M., Crystal agglomeration. Crystal Research and Techrid@8§y20, (2), 173-178.

(33) Gonzales, R. C.; Woods, R. E.; Eddins, S. L., Digital image processing using BIATeArson Prentice
Hall: Upper Saddle River, NJ, 2004.

(34) Chen, J.; Wang, X. Z., A wavelet method for analysis of droplet and pantiafe$ for monitoring
heterogeneous processes. Chemical Engineering Communic2Qamd 92, (4), 499-515.

(35) Oyallon, E.; Rabin, J., An analysis of the SURF method. Image Processing @016, (337), 176-
218.

(36) Cai, D.; He, X.; Han, J. In Spectral regression for efficient aegald subspace learning, International
Conference on Computer Vision, 2007; 2007; pp 1-8.

(37) Arya, S.; Mount, D. M.; Netanyahu, N. S.; Silverman, R.; Wu, A. In An optimal dhgofor approximate
nearest neighbor searching, Acm-Siam Symposium on Discrete Algorithms. 23-25 J&8894nArlington,
Virginia, 1994; 1994; pp 573-582.

(38) Jain, A. K.; Myrthy, M. N.; Flynn, P. J.; Jain, A. K.; Myrthy, M. N.,tBalustering: A survey. Acm
Computing Survey999,31, (2), 264-323.

-22-



List of Table and Figure Captions

Table 1. Recognition results for two different cases

Table 2. Comparison of matching results by using different algorithms

Figure 1. (&) Schematic of a microscopic image monitoring system for crystallization monitoring;
(b) Experimental set-up of a non-invasive microscopic double-view imaging system

Figure 2.  In-situ double-view images captured by a microscopic imaging system

Figure 3.  Flowchart of the proposed method for agglomeration detection

Figure 4. lllustration of IDC: (a)Janunagglomerated particle; (b) agglomerate of two particles;
(c) agglomerate of three particles; (d) agglomerate of four particles

Figure 5.  Flowchart of the proposed feature matching algorithm

Figure 6. Comparison of texture recognition: (i) three different texture patterns (a, b, c); (i) LBP
(a1, b1, cl); (iii) VAR values (a2, b2, c2); (iv) DCLBP (a3, b3, c3); (v) MDLBP (a4, b4,
c4)

Figure 7. Schematic of the proposed counting algorithm for particle agglomeration

Figure 8. Double-view image processing for in-situ captured images: (a) preprocessed images; (b)
result after removing the background; (c) segmented result; (d) preliminary sieving with
IDC (a candidate agglomerate is labeled in red contour); (e) feature matching (the
candidate agglomerate in the left view corresponds to two particles in the right view)

Figure 9. Comparison of matching results: (a) SIFT; (b) ASIFT; (c) SURF; (d) ORB

Figure 10. Agglomerate recognition and particle counting results: (a) in-situ captured double-view
images; (b) preliminary sieving (candidate agglomerates are labeled with red contour);
(c) feature matching; (d) counting primary particles in the agglomerates (the connecting
lines indicating four primary particles in the two agglomerates in the left view)

Figure 11. Microscopic double-view images captured during the KDP crystallization process
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Table 1. Recognition results for two different cases

Target parameters in the double-view images Casel Case?2
The number of pseudo agglomerates 1 0
The number of true agglomerates 0 2
The number of unagglomerated particles 5 3
The number of primary particles involved in the agglomerates 0 4
The total number of all the primary particles 5 7
The agglomeration degree 0% 57.14%

Table 2. Comparison of matching results by using different algorithms

. i . . Averaged computation time
Methods  Particle recall ratio (%) Point matching accuracy (%)
per frame (s)

Proposd 97.96 92.01 0.9347
SIFT 94.90 91.83 1.3703
ASIFT 93.88 91.65 1.8061
SURF 95.92 88.47 0.8925
ORB 90.82 83.95 0.4126
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Figure 1. (a) Schematic of a microscopic image monitoring system for crystallization monitoring; (b)

Experimental set-up of a non-invasive microscopic double-view imaging system

(a) Left view (b) Right view

Figure 2. In-situ double-view images captured by a microscopic imaging system
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Figure 8. Double-view image processing fior-situ captured images: (a) preprocessed images; (b) result after
removing the background; (c) segmented result; (d) preliminary sieving withaBehidate agglomerate
labeled in red contour); Yéeature matching (the candidate agglomerate in the left view corresjodmas

particles in the right view)
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Figure 9. Comparison of matching resul{g) SIFT; (b) ASIFT; (c) SURF; (d) ORB
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primary particles in the agglomerates (the connecting lines indicating four primary particlesia the

agglomerates in the left view)
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