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GaN-based micro-dome optical cavities supported on Si pedestals have been demonstrated by dry

etching through gradually shrinking microspheres followed by wet-etch undercutting. Optically

pumped whispering-gallery modes (WGMs) have been observed in the near-ultraviolet within the

mushroom-like cavities, which do not support Fabry-P�erot resonances. The WGMs blue-shift

monotonously as the excitation energies are around the lasing threshold. Concurrently, the mode-

hopping effect is observed as the gain spectrum red-shifts under higher excitations. As the excita-

tion energy density exceeds �15.1 mJ/cm2, amplified spontaneous emission followed by optical

lasing is attained at room temperature, evident from a super-linear increase in emission intensity to-

gether with linewidth reduction to �0.7 nm for the dominant WGM. Optical behaviors within these

WGM microcavities are further investigated using numerical computations and three-dimensional

finite-difference time-domain simulations. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4940375]

GaN-based microcavities are vital towards achieving

high quality-factor (Q-factor) lasing as well as being excel-

lent platforms for investigating light-matter interactions in

the strong-coupling regime.1–3 Up to now, GaN optical

microcavities of various geometrics have been studied,

which generally include Fabry-P�erot (F-P) cavities employ-

ing distributed Bragg reflectors (DBRs),4 defective photonic-

crystal (PC) structures,5 and whispering-gallery mode

(WGM) microcavities.6 Amongst these options, WGM

microcavities have been demonstrated as promising candi-

dates for realizing low-threshold lasing with narrow emission

linewidths, attributed to their low optical losses and modal

volumes.7,8 However, the superior optical confinement capa-

bilities of GaN WGM microcavities are invariably weakened

by optical leakage through its transparent sapphire substrate.

Recently, GaN-based undercut two-dimensional (2D) WGM

microdisk lasers fabricated through the removal of sacrificial

layers embedded within the device structure by photoelectro-

chemical (PEC) or selective wet-etching9–11 have been

reported to effectively reduce such losses. Similar undercut

microdisk structures have also been demonstrated by con-

trolled wet-etch removal of the underlying Si substrate using

GaN-on-Si materials.12,13 There also are many other studies

on GaN WGM microcavities based on self-assembled micro/

nano crystals using bottom-up methods, including micro-

scale pyramids, hexagonal disks, and pillars.14–16 However,

it is difficult to achieve precise control over the locations,

morphologies, dimensions, and uniformities of these micro-

structures during growth.17 More importantly, in optical

microcavities containing pairs of parallel mirror-like crystal

facets, F-P modes will always coexist with WGMs.16,18,19

On the contrary, optical microcavities of spherical or hemi-

spherical geometries are ideal platforms for WGMs owing to

outstanding three-dimensional (3D) optical confinement.20

Spherical or hemispherical microcavities are typically fabri-

cated by the melting of silica glass,21,22 using liquid micro-

droplets levitated in air or self-assembled polymer

hemispherical cavities on hydrophobic DBRs through sur-

face tension.23–26 Although lasing actions have been demon-

strated from these spherical/hemispherical cavities through

addition of quantum dots or organic dyes as gain media,27

the control and maintenance over the dimensions and stabil-

ities of such microcavities remain challenging. In this study,

GaN undercut micro-dome 3D WGM optical cavities with

embedded InGaN/GaN quantum wells (QWs) have been

realized using microsphere lithography (MSL) and a combi-

nation of dry/wet etching. The optical characteristics of

WGMs within these 3D micro-dome optical cavities are

investigated by photoluminescence (PL) and 3D finite-

difference time-domain (3D-FDTD) simulations. By elimi-

nating F-P vertical modes, stimulated emission via WGM at

ultraviolet (UV) wavelengths has been observed from these

hemispheres.

Fig. 1(a) depicts the process flow for the fabrication of

the micro-dome WGM resonators. Details about the epi-

structure of the GaN-on-Si wafer can be found else-

where.13,28 First, silica microspheres with nominal diameters

of 2-lm are dispersed on the sample by spin-coating, utiliz-

ing a recipe that ensures that the microspheres are sparsely

distributed across the wafer. Silica microspheres are used

owing to their high thermal stabilities as well as sphericities,

which are important attributes for high-definition pattern

transfer. The sample is then etched using Ar/BCl3/SF6 gases

(10 sccm/10 sccm/25 sccm) by inductively coupled plasma

(ICP) etching to form GaN micro-domes, using process con-

ditions of 450 W/75 W of coil/ platen powers at a chamber

pressure of 5 mTorr. SF6 gas is added to increase the etch

rate of the silica microspheres so that their lateral dimensions

reduce as the etch proceeds; such gradual reduction of
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diameter results in the formation of micro-domes in the GaN

layer. The field-emission scanning electronic microscope

(FE-SEM) image in Fig. 1(b) shows the GaN micro-domes

with average diameters of 2-lm on top Si pedestals after the

ICP dry-etching, which terminates approximately 5 lm

beneath the GaN-Si interface. After this, the sample is

immersed into an HF/HNO3 (1:1) acid solution for 1 min

which etches the Si beneath the micro-domes, creating Si

nano-posts with diameters of about �100 nm that mechani-

cally support the overhanging GaN micro-domes. This wet

process needs to be precisely controlled so that the Si nano-

posts will not be completely etched off, preventing the

collapse of the micro-domes. Bird’s eye view and cross-

sectional view of a single GaN micro-dome suspended atop

a Si post are presented in Figs. 1(c) and 1(d). The room-

temperature (RT) l-PL measurements are conducted using a

diode-pumped solid state (DPSS) pulsed laser emitting at

349 nm as an excitation source, with pulse durations of 4 ns,

repetition rates of 1 kHz, and maximum pulse energies of

120 lJ. The PL signals are probed by a multi-mode optical

fiber placed in close proximity to the sample and coupled to

an optical spectrometer with optical resolution of �0.04 nm.

The position of the fiber probe is fixed after the optimal opti-

cal coupling has been achieved, pointing to the micro-dome

structures at an angle of �15� to the horizontal plane.

Fig. 2(a) shows the RT-lPL spectra of the GaN micro-

domes with increasing excitation energy densities. At low

excitation energies, two dominant broadband peaks centered

at �370 nm and �450 nm can be clearly identified from the

PL spectra, corresponding to emissions from GaN materials

and InGaN/GaN MQWs, respectively. The PL intensities of

the blue emission band from the InGaN/GaN QWs are much

weaker than that from GaN, as shown in the inset of Fig.

2(a), due to partial removal of the QWs during dry etching,

retaining a small portion embedded at the top of micro-

domes. This can be overcome by growing a thicker cap layer

over the QWs. As the excitation energy densities are further

increased to above �11.8 mJ/cm2, several additional narrow

spectral peaks centered at �371.6 nm, �376.4 nm,

�381.4 nm, and �386.8 nm emerge in the near-UV range, la-

beled as P1,2,3,4 in Fig. 2(a). Here, it is worthy of noting that

these peaks only appear at the low-energy side of the

PL spectra, attributed to stronger absorption in the gain

mediums at shorter wavelengths due to the reduced Stokes

shift between absorption and emission.29 Furthermore, the

FIG. 1. (a) Schematic diagrams depict-

ing the fabrication process flow of the

2-lm GaN micro-dome suspended on

Si. (b) FE-SEM images of GaN micro-

domes with Si bases before wet-

etching. FE-SEM images showing (c)

bird’s eye and (d) cross-sectional

views of a single GaN micro-dome

suspended on a Si post after wet-

etching.

FIG. 2. (a) RT-lPL spectra from GaN micro-domes with increasing laser

excitations. The inset shows an enlarged view of emissions from the InGaN/

GaN QWs. (b) Log-log plot of integrated PL intensities against excitation

powers and linewidth evolution of the lasing peak at �376 nm.
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non-observation of optical modes in the QWs emission

range, even under very high excitation levels as plotted in

the inset of Fig. 2(a), can be attributed to the low gains of the

partially removed QWs, as well as poor coupling to the

strong fundamental WGMs. As a matter of fact, the undercut

beneath the micro-dome will minimize optical absorptions of

the Si substrate by reflecting light at the semiconductor-air

interface, promoting optical confinement in the vertical

direction. However, the curvature of the micro-dome will

divert these rays into non-vertical directions for couplings

into WGMs at the boundary of the domes, whilst preventing

wave-guide resonances coupling into stable F-P vertical

modes. As a result, this mushroom-like structure will facili-

tate lateral optical confinement into WGMs at the boundary

of the micro-dome resonators, while suppressing the forma-

tion of stand-waves in the vertical direction.

The log-log plot of integrated PL intensities and spectral

linewidth of the WGM at �376 nm as functions of excitation

power densities is shown in Fig. 2(b). When the excitations

are low, the peak integrated PL intensities will increase line-

arly with increasing the excitations, attributed to the sponta-

neous emission of GaN micro-domes. A nonlinear increase

in the integrated PL intensities is observed as the excitation

power exceeds �15.1 mJ/cm2 (Eth). This superlinear

increase is a clear sign that amplified spontaneous emission

(ASE) has been achieved, demonstrating a transition process

of spontaneous emission to stimulated emission within these

micro-domes. Since positive feedback of the ASE can further

generate lasing if the optical gain surpasses the losses via op-

tical coupling with WGMs, the emergence of the sharp spec-

tral peaks indicates that near-UV lasing actions have been

established within these micro-dome WG cavities. This is

also demonstrated by the saturation in the integrated PL

intensities at �1.2Eth. Meanwhile, the spectral linewidth of

the WGM at �376 nm narrows from �1.2 nm at �0.8Eth to

�0.7 nm at �1.1Eth, further confirming that optical absorp-

tion has been bleached and that the lasing regime has been

attained. A Q-factor of �530 at the transparency can be

roughly estimated using the relation Q¼ k/dk, where k and

dk represent the wavelength and spectral linewidth, respec-

tively. Improvements to the Q factor can be achieved by

refining the surface roughness during the ICP dry-etching or

chemical wet-etching processes.2,30 And the spontaneous

emission coupling factor (b) can be roughly estimated to be

�0.28, taking the ratio of PL intensities below and above the

threshold. Moreover, as the excitation energy densities grad-

ually increase from �0.6Eth to �1.1Eth, a continuous blue-

shift in the peak wavelengths of the observed WGMs

(P1,2,3,4) can be identified. Fig. 3(a) shows a magnified view

of the PL spectra around P3 under different excitation levels,

from which a clear blue-shift from 381.4 nm to 381.0 nm can

be distinguished. In addition, it can be found that all WGM

wavelengths blue-shift linearly as functions of excitation

powers in the range of �0.6Eth to �1.1Eth, as shown in Fig.

3(b). Since the existence of WGMs reflect the satisfaction of

standing-wave conditions (mk¼ 2pRneff) within the cavities,

the shifts of WGM wavelengths are thereafter determined by

the fluctuations (Dn) of the effective refraction index (neff).

As a matter of fact, Dn reflects the change of optical absorp-

tion coefficient, which can be strongly influenced by a

combination of three major factors: carrier band-filling,

energy bandgap shrinkage, and plasma effects.31–33 At sub-

threshold conditions whereby the lowest energy states near

the band edge have been filled up, more energy is needed for

electrons to be excited to the higher energy states within the

conduction band from the valence band. This band-filling

effect, together with the absorption of free carriers, will lead

to a reduction of the absorption coefficient, which results in

a negative Dn for wavelengths near or below the energy

band-gap.33 This carrier-induced negative Dn may explain

the linear blue-shift phenomenon of the WGMs with increas-

ing carrier concentrations (excitation). Thereafter, as the ex-

citation levels are further increased far beyond the threshold,

band-gap shrinkage caused by renormalization (electron-

electron and electron-ion interactions) and heating effects

(non-radiative recombination) will become dominant and

give rise to a positive Dn as the absorption coefficient

increases, potentially resulting in red-shifts of the WGM

wavelengths. This phenomenon has already been observed in

GaN-on-Si micro-disk cavities before, in which electron-

hole plasma (EHP) effects are likely to contribute concur-

rently.13 Although thermal effects are not dominant to

WGMs in the micro-domes, the broadband PL gain spectrum

is influenced by heat accumulation as the Si pivots are the

main thermal conduction pathways, resulting in red-shifts of

peak wavelengths from �370.6 nm to �373.8 nm as the exci-

tation increased from �0.6Eth to �1.1Eth. Consequently,

mode hopping occurs as the gain red-shifts, as illustrated in

FIG. 3. (a) l-PL spectra in the vicinity of the P3 mode under different exci-

tation energy densities. For clarity, the spectra have been vertically offset.

(b) Blue-shifts in wavelengths of the observed WGMs (P1,2,3,4) with increas-

ing excitation energy densities.
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Fig. 4. At �0.8Eth, three spectral peaks (P1, P2, P3) appear in

the PL spectrum. When the excitation is increased to

�1.1Eth, as the gain red-shifts to the lower energy side, the

WGM at shorter wavelength (P1) gradually disappears while

P4 shows up on the lower energy side.

Optical behaviors of the WGMs within a micro-dome

cavity are further investigated by numerical calculations and

3D-FDTD simulations. A model of the micro-dome cavity in

spherical coordinates is shown in Fig. 5(a). The radius of the

micro-dome and the neff of GaN materials are set to be

�1.0 lm and 2.5, respectively. The electric dipoles are ran-

domly distributed in the micro-dome cavity, while two

plane-monitors are placed along a cross-sectional plane and

at the bottom of the micro-dome to detect the electromag-

netic fields in the vertical and in-plane directions. The simu-

lated optical resonances within the micro-dome cavity are

displayed in Fig. 4, together with the mode numbers in the

sequence of (n, m, q) being labeled for these dominant fun-

damental and first-order optical modes, where n, m, q repre-

sent the mode numbers in the radial (r), azimuthal (u), and

polar angular (h) direction, respectively. Additionally,

transverse-electric polarized (TE) or transverse-magnetic

polarized (TM) WGMs are defined as optical modes whose

electric or magnetic fields are parallel to the hemispherical

surface of the micro-domes. The simulation results show that

only several orders of WGMs can be supported in the micro-

dome cavity, while F-P vertical modes are totally ruled out.

All the experimentally detected spectral peaks (P1,2,3,4) are

found to belong to the first mode family (n¼ 1) WGMs with

different mode numbers in the lateral direction. Specifically,

P1 and P3 are attributed to TE modes (m¼ 38, 37; q¼ 2),

while P2 and P4 are fundamental order TM modes (m¼ 37,

36; q¼ 1). The in-plane and cross-sectional electric-field

energy intensity patterns for the fundamental TM mode at

�376 nm (P2) and first-order TE patterns at �381 nm (P3)

are presented in Figs. 5(b)–5(e). Regions shaded in red and

blue represent the highest and lowest field intensities, respec-

tively. The electric-field distributions for these TE and TM modes can be found in Fig. S1.34 Although some high-order

WGMs can coexist within the micro-dome cavity according

to the simulations, they are not appearing in the experimental

PL spectra, as these high-order modes always possess larger

mode volumes that can induce higher optical losses due to

re-absorption effect.35 It is also possible that these high-

order WGMs have not been picked up by the fiber probe,

whose orientation with respect to the micro-domes is fixed.

Afterwards, the free spectral range (FSR) is further analyzed

using 2D numerical computations, since the WGMs are

actually confined close to the bottom edge of the micro-

dome cavity.25,26 Derived from solving the 2D Helmholtz

equation via separation of variables, the mode spacing (Dk)

between adjacent modes can be roughly calculated by6

Dk ¼
k2

wgm

2pR nef f � kwgm
dn

dk

� � ;

where R represents the radius of the micro-dome, kwgm is

the WGM wavelengths, and dn/dk is the first-order disper-

sion in GaN. Using the Sellmeier equation for GaN, we

have obtained theoretical values of �9.3 nm for TE modes

FIG. 4. The mode-hopping effect shown in the PL spectra with increasing

excitation energy densities. The spectra have been vertically offset for

clarity. The green plot at the bottom shows the possible optical resonances

within a 2.06 lm GaN hemispherical cavity as predicted by 3D-FDTD

simulations.

FIG. 5. (a) Modeling of the GaN micro-dome in hemispherical coordinates.

The electric-field energy intensity patterns from 3D-FDTD simulations for

fundamental transverse-electric (TM) mode at �376 nm in the (b) x-y and

(c) x-z planes, and for first-order transverse-magnetic (TE) mode at

�381 nm in the (d) x-y and (e) x-z planes. Regions shaded in red and blue

represent the highest and lowest field intensities, respectively. The scale bars

represent lengths of 200 nm.
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(P1, P3) and �9.9 nm for TM modes (P2, P4), which are

nearly consistent with the spectral spacing of 9.8 nm and

10.4 nm evaluated from the PL spectrum, respectively. The

relatively lower value is attributed to the use of the geometri-

cal radius in the calculations, which will be slightly larger

than the effective radius of the micro-dome cavity for the op-

tical modes. These simulation results also suggest that the

QWs should be located close to bottom plane of the hemi-

spherical microcavities to achieve optimal optical coupling

between WGMs and the gain spectrum; of course growing

high-quality QWs close to the substrate is challenging.

In summary, 2-lm GaN undercut micro-dome WG reso-

nators on Si substrates have been demonstrated using a com-

bination of MSL and wet/ dry etch processes. As vertical F-
P modes are not supported by the hemispherical cavity, the

observation of optically pumped stimulated emission can

affirmatively be attributed to WGMs. Room-temperature las-

ing via WGMs at near-UV wavelengths with narrow line-

widths of �0.7 nm and Q-factors exceeding �500 has been

achieved, enabled by 3D optical confinement within the

micro-domes. Optical behaviors of WGMs within these cav-

ities have been studied carefully, revealing that carrier dy-

namics play a significant role in determining WGM

frequencies and mode competitions with increasing free-

carrier concentrations under various levels of excitations.

Numerical calculations and 3D-FDTD simulations have fur-

ther been carried out to identify the modal family and to

determine the mode patterns of the WGMs that are detecta-

ble from PL. This proof of concept demonstration paves the

way towards 3D GaN microcavities and coherent light emit-

ters which can potentially outperform its 2D counterparts.

This work was supported by the General Research Fund

(Project Code 17201614) of the Research Grants Council of

Hong Kong.
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