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Abstract

Decisions-makers often have access to a combination of descriptive and expe-
riential information, but limited research so far has explored decisions made
using both. Three experiments explore the relationship between task com-
plexity and the influence of descriptions. We show that in simple experience-
based decision-making tasks, providing congruent descriptions has little in-
fluence on task performance in comparison to experience alone without de-
scriptions, since learning via experience is relatively easy. In more complex
tasks, which are slower and more demanding to learn experientially, descrip-
tions have stronger influence and help participants identify their preferred
choices. However, when the task gets too complex to be concisely described,
the influence of descriptions is reduced hence showing a non-monotonic pat-
tern of influence of descriptions according to task complexity. We also pro-
pose a cognitive model that incorporates descriptive information into the
traditional reinforcement learning framework, with the impact of descrip-
tions moderated by task complexity. This model fits the observed behavior
better than previous models and replicates the observed non-monotonic rela-
tionship between impact of descriptions and task complexity. This research
has implications for the development of effective warning labels that rely on
simple descriptive information to trigger safer behavior in complex environ-
ments.

Keywords: decisions from experience, decisions from description, description-
experience gap, reinforcement learning, complexity, Iowa Gambling Task

Decisions in everyday life are often made using a combination of descriptive and ex-

periential information. For example, consumers use descriptive reviews and personal expe-

riences of similar items bought in the past; doctors rely on written published literature and
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their own clinical experience; and drivers pass road signs warning them of traffic queues on a

familiar stretch of road. The ongoing proliferation of warning signs and labels can be consid-

ered as descriptive information that is added to an individual’s own experience, reminders

of high-loss small-frequency risks that are rarely experienced. For example, passengers fre-

quently run at stations in order to catch their trains, and the overwhelming majority never

directly experiences any accidents. But warnings signs are common, reminding individu-

als that running can be dangerous and cause harm. Despite the ubiquitous presence of

both sources of information concurrently, the vast majority of decision-making research has

exposed participants either to “decisions from description” or “decisions from experience”

separately, very rarely combining the two in the same task (Fantino & Navarro, 2012).

Decisions from description vs. experience

Decisions from description are those in which a complete, idealized, and abstract set

of information about the values and frequencies of potential outcomes from each choice is

provided, typically in writing, to participants before choices are made (e.g., “50% chance

to win 1,000; 50% chance to win nothing”, from Kahneman & Tversky, 1979, p. 264).

Decisions from experience, in contrast, do not provide any information before choices are

made and, instead, require participants to form their own view of the potential outcomes

from each choice via feedback provided after each selection is made (e.g., “You have won 100

dollars”, from Bechara, Damasio, Damasio, & Lee, 1999, p. 5474). For the vast majority of

the history of decision-making research, these two paradigms have been explored separately,

each in their own individual domain.

One of the earliest attempts to empirically and systematically compare the two

paradigms and study any differences in behavior was made by Barron and Erev (2003).

They found that in decisions from experience, participants underweighted rare events, and
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were more risk seeking in the gain than in the loss domain. These are the reverse of well-

established phenomena in the decision-making literature (Kahneman & Tversky, 1979), that

is, overweighting of rare events and more risk seeking behavior in the loss domain, which

had previously been explored exclusively in paradigms based in decisions from descriptions.

This difference in behavior between decisions from descriptions and decisions from expe-

rience was later named the “description-experience gap” by Hertwig and Erev (2009). A

substantial body of research has since been dedicated to studying the gap, by presenting

different participants with the same choice scenarios, with either descriptions alone or ex-

perience alone (for a recent review, see Camilleri & Newell, 2013b). Camilleri and Newell

suggested that the gap might be caused by differences in how information is presented,

cognitively processed, stored, internally represented and compared. While the field has now

extensively studied and compared the two paradigms side-by-side, limited research has been

dedicated to tasks in which the two sources are combined and available simultaneously.

The limited previous research combining description and experience, “decisions from

description-plus-experience”, has shown no difference in behavior when adding descriptions

to decisions from experience, if the two provide the same underlying information (Lejarraga

& Gonzalez, 2011; Weiss-Cohen, Konstantinidis, Speekenbrink, & Harvey, 2016). In other

words, behavior was similar in decisions from experience and decisions from description-plus-

experience1. Lejarraga and Gonzalez proposed that this lack of observable differences in

behavior was due to descriptions being ignored when experience was also available. However,

descriptions do not appear to be fully ignored, because they influence behavior when they

provide novel information (Barron, Leider, & Stack, 2008). We showed in our previous

research (Weiss-Cohen et al., 2016), using cognitive modeling, that descriptions are not

completely ignored, but instead they are discounted. A similar effect of discounting of

descriptions, when experience was also present, was found in probability judgments by

Shlomi (2014). Empirical research so far has shown that descriptions are discounted, to the

point of apparent neglect, when combined with experience provided in the form of feedback.

The concept that feedback overwhelms descriptive information had been proposed

1The reason for not comparing them to decisions from description (without experience) is because the two
paradigms are inherently different. Decisions from description are typically single-choice, single-outcome,
while decisions from experience are multiple-choice, multiple-outcomes (Camilleri & Newell, 2013a). By
adding descriptions to the latter, it is possible to keep their repeated-choice nature constant.



TASK COMPLEXITY MODERATES THE INFLUENCE OF DESCRIPTIONS 4

before (Jessup, Bishara, & Busemeyer, 2008; Yuviler-Gavish & Gopher, 2011). Lejarraga

(2010) showed empirically that individuals prefer experiences over descriptions, by allow-

ing participants to choose between the two types of information, which was then used to

learn the probabilities associated with the options available and make their decisions. This

preference for experiences can be explained by different cognitive processes being applied

to descriptions and experiences, as suggested by Glöckner, Fiedler, Hochman, Ayal, and

Hilbig (2012): when dealing with descriptions, individuals might engage in more complex

computational processes, calculating the expected value of each option; conversely, personal

experiences use simpler, more instinctive, and less demanding integration processes.

Research in other fields has shown similar findings arising from the additional cog-

nitive burden consequent on processing descriptions and a resulting preference for experi-

ences. For example, Gigerenzer and Hoffrage (1995) suggested that individuals are better

at keeping track of sequentially acquired information, such as naturally presented frequen-

cies experienced over time, and worse at processing percentages and probabilities presented

descriptively. According to Hasher and Zacks (1984), individuals are able to learn from

experience incidentally, automatically encoding frequencies with minimal effort and atten-

tion. On the other hand, Erev, Ert, Plonsky, Cohen, and Cohen (2017) have shown, using

computational models, that decisions from descriptions can be explained by individuals

mentally simulating outcomes from descriptions to arrive at expected values, a time con-

suming and costly process. Decision Field Theory, a model proposed by Busemeyer and

Townsend (1993), is based around a similar concept that individuals mentally sample infor-

mation over time until a decision threshold is reached. Overall, descriptions appear to be

more cognitively demanding, whereas humans (and all other animals) are more naturally

adapted to encode and process experiences.

The proposition that descriptions are more costly and effortful to process than ex-

periences seems to support the evidence observed so far that descriptions are typically

discounted in description-plus-experience paradigms, and that individuals prefer to rely on

experiences rather than descriptions. However, we believe that the strength of this prefer-

ence may not necessarily be static and that it is calibrated according to the situation. Some

factors, such as plausibility and description complexity, have already been shown empirically
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to influence the strength of this preference. Less plausible descriptions, in comparison to the

actual experienced feedback, received lower weights than more plausible ones (Weiss-Cohen

et al., 2016). Lejarraga (2010) and Lejarraga and Gonzalez (2011) explored situations where

descriptions were made less attractive to participants by increasing their perceived complex-

ity, therefore making them even harder to process cognitively while keeping the underlying

experiential task unchanged. By increasing the cognitive cost of processing descriptions, the

authors showed an increase in preference for experiences. One limitation of these previous

studies, however, was that the researchers did not change the complexity of the task itself,

only the complexity of the descriptions used to label the same underlying processes by using

simpler or more complex notation.

Task complexity

While complexity can be a subjective construct, and significantly dependent on indi-

vidual differences, it is also related to certain underlying task characteristics that can be de-

fined objectively (Campbell, 1988; Wood, 1986). Halford, Wilson, and Phillips (1998) have

defined complexity as “the number of related dimensions or sources of variation” (p.803),

in terms of cognitive and computational processing loads and its influence on learning dif-

ficulty. The complexity of patterns of data can thus be quantified in relation to the ease

of learning the simplest set of rules, with the minimum number of dimensions (or the most

compressed set of information), which is required to represent all of the data’s potential

sources of variability (Mathy & Feldman, 2012). More complex rules are the ones that

require more information, are not as compressible, and therefore harder to learn (Feldman,

2000). For categorization tasks, for example, complexity increases, and learning deterio-

rates, in proportion to the minimum number of dimensions or components needed to identify

items (Briscoe & Feldman, 2011; Mathy & Bradmetz, 2004). Comparably, memory tasks

can be made more difficult by increasing the number of items that individuals are asked to

recall (Miller, 1956), although if some of those items can be compressed together into fewer

chunks of information, then empirical performance improves, and complexity is deemed to

be lower (Cowan, 2001).

In the decision-making domain, Thorngate (1980) and Johnson and Payne (1985)
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defined task complexity in relation to the number of different alternatives from which par-

ticipants can select, and the number of possible outcomes available from each alternative.

Increasing the number of alternatives and outcomes increases the entropy of the task, which

can be associated with higher task complexity (Fasolo, Hertwig, Huber, & Ludwig, 2009).

Entropy is an objective measure that has been used to quantify task complexity, based

on information theory, with higher entropy associated with higher complexity (Swait &

Adamowicz, 2001). Despite some research dedicated to studying decision making with mul-

tiple alternatives and multiple outcomes (Ert & Erev, 2007; Hills, Noguchi, & Gibbert,

2013; Noguchi & Hills, 2016), most research uses relatively simple tasks, both in descriptive

and experiential paradigms (Hertwig & Erev, 2009; Rakow & Newell, 2010). Building upon

the simple experimental paradigms commonly used to study general decision making, the

extant description-plus-experience research has also utilized relatively simple tasks, based

on two options, each of which has one or two potential outcomes (the single-outcome option

providing a guaranteed result when selecting that option). This canonical preference for

simple tasks, with their associated low costs of learning from experience, might be the driver

behind the limited influence of descriptions on description-plus-experience tasks, and might

explain why participants have shown preference for experiences over descriptions so far.

In this article, we extend the research in the field of decisions from description-plus-

experience into the domain of more complex tasks, increasing both the number of alter-

natives available, and the number of unique possible outcomes from each alternative. We

believe that task complexity will moderate the influence that descriptions have on decisions

from experience. In simple tasks, participants quickly learn to identify the structure of the

environment experientially, and no additional information is needed or desired. Descrip-

tions, if available, are not very useful and do not help participants. These results has been

empirically observed before, with simple tasks (Lejarraga & Gonzalez, 2011; Weiss-Cohen

et al., 2016). Increasing the complexity of the task should make learning experientially

slower, more costly, and more cognitively demanding (Ashby, Konstantinidis, & Yechiam,

2017; Fasolo et al., 2009; Frey, Mata, & Hertwig, 2015). This should make descriptions

relatively more attractive than before, as relying on descriptions should provide an advan-

tage to participants by giving them additional information that reduces learning time by
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lowering the need to explore the environment experientially. Higher task complexity should

lead to situations in which engaging the extra processing effort associated with descriptions

becomes cost-efficient. Therefore, an increase in task complexity should lead to an increase

in the influence of descriptions on behavior.

Furthermore, we do not expect this relationship between task complexity and influ-

ence of descriptions to be monotonic. Task complexity is also closely linked to information

processing, with more complex tasks being defined as those in which there is increased in-

formation loads, diversity and rate of change (Campbell, 1988). Research on information

load has uncovered a non-monotonic inverted U-shape relationship between amount of in-

formation available and decision accuracy (Eppler & Mengis, 2004; Hwang & Lin, 1999).

It has been shown empirically that an increase in information aids the decision-making

process initially, but only up to a certain point, after which any additional information is

actually detrimental and reduces the quality of the decisions (Jacoby, Speller, & Berning,

1974; Jacoby, Speller, & Kohn, 1974). This is commonly called “information overload”, and

describes the negative effects of receiving too much information. Potential causes for infor-

mation overload include complexity of information provided, number of items of information

and number of alternatives, among others (see Eppler & Mengis, 2004, p. 332). Similar

U-shaped patterns peaking for medium complexity tasks have been found across other di-

mensions, such as choice satisfaction (Reutskaja & Hogarth, 2009), purchasing intentions

(Shah & Wolford, 2007), the ability to accurately assess values (Keller & Staelin, 1987),

the extent of information processing (Paul & Nazareth, 2010), and overall effort allocation

(Swait & Adamowicz, 2001).

Consequently, we expect the influence of descriptions on our experiments to reduce

in very complex tasks, after peaking in medium complexity tasks. If the task becomes too

complex, then the descriptions required to summarize the task also become overly complex.

The excess of information available, both in experience and description, should lead to

information overload. Descriptions might also become too unwieldy to process cognitively,

reducing their attractiveness as a source of information. We expect to find the maximum

influence of descriptions in tasks of medium complexity, at the point where performance

starts to suffer but descriptions are still not too complex. It is at this point that descriptions
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should be able to provide the most assistance.

Overview of current research

In the first two experiments, we begin by investigating the effects of introducing de-

scriptions in a relatively complex task which has been widely used to study ambiguous

decisions from experience, the Iowa Gambling Task (IGT: Bechara, Damasio, Damasio, &

Anderson, 1994). The IGT has a particularly complex payoff structure which we believe

can be better exploited with the benefit provided by the presence of descriptions. In this

case, we expect descriptions to influence behavior, speed up learning and lead participants

to perform better on the task, by choosing the advantageous decks earlier and more fre-

quently. We also expect participants to gather less information experientially, by exploring

less when descriptions are available, as descriptions already provide additional information

to participants. In our third experiment, we extend our research into the manipulation

of task complexity itself, comparing the influence of descriptions in tasks with different

levels of complexity. We explored two separate dimensions of complexity, the number of

choices and the number of outcomes from each choice. We tuned Experiment 3 in order

to create substantially simpler and more complex tasks in comparison to Experiments 1

and 2, to empirically test a wide spectrum of complexity. In addition to the experimen-

tal behavioral analysis, we also fit cognitive models to the human data. We present a

description-plus-experience cognitive model that integrates descriptive information into a

reinforcement learning framework, with a novel approach for weighing descriptions using

entropy as a proxy for the complexity of the task.

Experiment 1

Method

Design. The first experiment was based on the original Iowa Gambling Task

(Bechara et al., 1994), with the addition of descriptive information for half of the par-

ticipants in a new experimental manipulation, creating a described IGT (DIGT). The ex-

periment followed a two-way between-subjects design controlling for the presence or absence

of descriptions: in the experience-only (E) condition, participants relied on experience alone
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(in the form of feedback after each trial) to learn about the options available to them, with-

out any descriptions; and in the description-plus-experience (DE) condition, participants

were shown a full description of the distribution of outcomes available for each option, in

addition to the experiential feedback after each trial.

Participants. We recruited 100 participants on-line using Amazon’s Mechanical

Turk service (47 females; age: M=31.0 years, SD=10.5 years), half in each experimental

condition. Participation was restricted to individuals whose location was defined as in the

United States. No participants were excluded from the analysis. Participants were paid

a fixed amount of US$ 0.25 for participating and an additional bonus according to the

outcomes of the choices they made during the experiment, with an average bonus of US$

0.55 (SD=US$ 0.28)2.

Task. The task closely followed the original IGT (Bechara et al., 1994). The instruc-

tions closely matched the original wording apart from changes needed for the computerized

on-line delivery of this version of the task (Chiu & Lin, 2007). Participants were presented

with four decks of cards (decks A, B, C, and D), side by side on the screen, with the backs

of the cards displayed and their faces hidden (Figure 1). The faces of the cards provided

the feedback after each selection, with the number of points earned or lost associated with

each individual card. The naming of the decks given here was used for analysis only and

not shown to participants. The order of the decks from left to right was randomized for

each participant, as well as the pattern on the back of each deck. Choices were made using

the mouse. To avoid rapid sequential clicking of the same choice repeatedly, participants

were required to move the mouse cursor to a button at the bottom of the screen between

selections. Participants’ choices were financially consequent and accumulated towards their

final pay. Participants started the task with 2,000 points and points earned or lost after

each selection were added to or deducted from their total. Points were converted to money

at a rate of US$ 0.20/1000 points. Accumulated amounts in points and U.S. dollars were

shown on-screen and updated after each choice was made.

The schedule of outcomes from each deck was the same as in the original IGT: The

2Participants in the DE condition received a significantly 66% higher bonus than participants in the
E condition, according to an asymptotic Wilcoxon rank sum test (DE=US$0.68, E=US$0.41, W =1919,
z=4.47, p<.001).
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Figure 1 . Screenshot of the first trial of Experiment 1 in the description-plus-experience (DE) condition,
showing the DIGT (described IGT), with a random presentation of the decks in the order D, A, B, C
from left to right. The patterns on the backs of each deck were also randomized. In the experience-only
(E) condition, the space underneath the cards was left blank, with no descriptions shown, and the second
sentence in the title regarding the combination of cards in each deck was replaced with “Each deck contains
a different combination of cards”. The “HIT” mentioned in the title refers to the terminology employed by
Amazon’s Mechanical Turk service to designate individual tasks on which participants can work, and stands
for Human Intelligence Task.

order of the cards within each deck was not random but instead followed the fixed order

given in the original task, with a repeating pre-defined sequential pattern of 40 cards for

each deck (Bechara et al., 1994, Figure 1). In contrast to the original IGT, which showed

rewards and losses separately for each card (e.g., “You have won 100 points, but you also

have lost 150 points”), we opted to summarize outcomes as single net values (e.g., “–50

points”). This made the task simpler to describe, and circumvented the predictability of

rewards associated with the original study (Steingroever, Wetzels, Horstmann, Neumann,

& Wagenmakers, 2013). Decks A and B have a negative expected value of –25 points for

each card, while decks C and D have a positive expected value of +25 points for each card.

Hence decks A and B are referred to as the disadvantageous decks, and decks C and D are

the advantageous decks. In order to maximize their bonus, participants have to select more
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often from the advantageous decks and avoid the disadvantageous ones.

In the experience-only (E) condition, participants did not receive any further infor-

mation about the decks, and had to learn which decks were the advantageous ones via

the feedback provided after each selection, in what was a close replication of the traditional

IGT paradigm. In the description-plus-experience (DE) condition, a description of the cards

contained in each deck (Table 1) was permanently displayed underneath the relevant deck,

across all trials (Figure 1), in addition to the feedback provided, resulting in a described

IGT (DIGT). After each selection, participants were shown only the outcome in points

of the card from the deck they selected (i.e., partial feedback), and the card selected was

replaced at the end of that deck, with no changes to the card order in the non-selected

decks. Therefore participants learned only about the deck they selected on each trial, with

no new feedback information for unselected decks. Participants were not told beforehand

how many cards they would get to choose, and instead were instructed to choose cards from

decks repeatedly until told to stop, which was after 100 choices. The task was self-paced

and was completed on average in 8.30 minutes (SD=4.35).

Table 1
Actual card composition and wording of descriptions shown underneath each deck in Exper-
iment 1. The expected value for each individual card in decks A and B was –25 points and
in decks C and D was +25 points.

Experience-only condition (E), N=50

Deck A Deck B Deck C Deck D

(blank) (blank) (blank) (blank)

Description-plus-Experience condition (DE), N=50

Deck A Deck B Deck C Deck D

50% of cards: +100 pts 90% of cards: +100 pts 50% of cards: +50 pts 90% of cards: +50 pts
10% of cards: –50 pts 10% of cards: –1150 pts 25% of cards: 0 pts 10% of cards: –200 pts
10% of cards: –100 pts 12.5% of cards: +25 pts
10% of cards: –150 pts 12.5% of cards: –25 pts
10% of cards: –200 pts
10% of cards: –250 pts

Results

Selections from advantageous decks. The main dependent variable was the

frequency of cards selected from the advantageous decks, calculated as the total number of

cards selected from decks C and D for each sequential block of 20 choices (Figure 2A). They
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were analyzed with a linear mixed-effects model using the lme4 package (Bates, Maechler,

Bolker, & Walker, 2014) and post-hoc analyses using the lsmeans package (Lenth, 2016),

with Tukey adjustments, in R (R Core Team, 2014). The fixed effects were the presence or

absence of descriptions (DE or E), the blocks of 20 choices each (with polynomial contrasts),

and their interaction. The model also contained a random intercept for each participant.
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Figure 2 . Experiment 1. (A) Evolution of the average frequency of selection of advantageous decks (Decks
C + D), as a percentage of total for each block. (B) Evolution of the average frequency of switches between
different decks, as a percentage of total for each block. Each block contains 20 trials. Error bars represent
the 95% confidence interval around the mean. Experience-only results are for the traditional IGT, while the
description+experience results are for the DIGT.

The main effect of the presence of descriptions was significant, with participants

selecting from advantageous decks significantly more frequently in the DE condition than in

the E condition, across all block of 20 trials on average, with a large effect size (DE=74.14%,

E=55.90%, χ2(1)=19.78, p<.001, d=0.89). The presence of descriptions helped participants

identify the advantageous decks and select from them more often.

The main effect of block was also significant (χ2(4)=88.65, p<.001). A linear contrast

was positive and significant (b=0.49, t(392)=8.66, p<.001), indicating a higher selection of

advantageous decks over time, while a quadratic contrast was negative and significant (b=–
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0.24, t(392)=3.57, p<.001), indicating that the rate of increase reduces over time, as seen

in Figure 2A. Post-hoc analyses with Tukey adjustments showed a significantly higher se-

lection of advantageous decks in the last block compared to the first block (Block1=51.75%,

Block5=71.85%, t(392)=8.01, p<.001, d=1.13). This increase in selections from the advan-

tageous decks over time is a result of participants gradually learning the task, and being

able to identify which decks are the advantageous ones, as well as learning to avoid the dis-

advantageous ones, in order to extract higher rewards from the task. Most of the learning

however appears in the first two blocks (Block1 vs. Block2: t(392)=4.02, p<.001; Block2

vs. Block3: t(392)=3.01, p=.02), with no significant differences when applying sequential

pairwise comparisons between the last three blocks (pairwise ps>.97). This early stabiliza-

tion of choice preferences is consistent with previous research (Bechara, Damasio, Tranel,

& Damasio, 1997; Ert & Erev, 2007).

The interaction between presence of description and block was not significant

(χ2(4)=8.17, p=.09), suggesting that the selection rate of advantageous decks across time is

similar between the two conditions. In order to exclude this effect of learning, and to focus

on stable behavior, we performed a post-hoc analysis with Tukey adjustments comparing

the two conditions at the last block: in the last 20 trials, the presence of descriptions led to

a 23% significant increase in the selection of advantageous decks, with a medium effect size

(Block5 only: DE=79.40%, E=64.30%, t(230)=2.91, p=.004, d=0.58). Even after partici-

pants had had a chance to learn about the task experientially, the presence of descriptions

still significantly helped them select from the advantageous decks more often.

Switching rates. In addition to the frequency of deck selection, we also analyzed

the switching rates between decks (Figure 2B). A selection was classified as a switch every

time a card was picked from a different deck to that from which the previous card had been

selected. The same model structure was used as in the previous analysis.

The main effect of description was significant, with switching rates being 41% lower

in the DE condition compared to the E condition, in each block of 20 trials (DE=28.82%,

E=48.56%, χ2(1)=14.48, p<.001, d=0.76). Overall participants seemed more uncertain in

the E condition and explored more among the different decks, while in the DE condition

they exploited more their preferred options, switching less often.
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The effect of block was also significant (χ2(4)=38.11, p<.001). A linear contrast was

negative and significant (b=–0.28, t(392)=5.68, p<.001), indicating a reduction in switching

rates over time. Post-hoc analyses with Tukey adjustments showed that switching rates

were lower in the last block compared to the first block (Block1=41.95%, Block5=31.85%,

t(392)=4.51, p<.001, d=0.64). As participants gathered more information from the task,

they explored less and exploited their preferred choices more.

The interaction between presence of description and block was not significant

(χ2(4)=5.85, p=.21), suggesting that the rate of reduction in switching rates were not

influenced by the descriptions. A post-hoc analysis with Tukey adjustments between the

two description conditions at the last block showed that participants switched 43% less

often in the DE condition, a significant difference (Block5 only: DE=23.20%, E=40.50%,

t(161)=2.93, p=.004, d=0.59).

Discussion

When presented with descriptions in the DE condition, participants selected from the

advantageous decks more often than when they had to rely on experience without descrip-

tions in the E condition. Therefore, the presence of descriptions influenced behavior and

helped participants to find the rewarding cards and avoid the loss-generating ones, leading

to 66% higher financial bonuses. This difference in behavior is indicative of participants

integrating the descriptive information into their decision making processes, as descriptions

informed participants about the potential outcomes of their choices, and could be used to

identify the advantageous decks. Furthermore, the behavior observed in the E condition

(without descriptions, therefore a replication of the traditional IGT paradigm) was similar

to that found in previous studies using this task. Frequency of advantageous (good) deck

selection across all trials, M=56%, was similar to a weighted mean from a meta-analysis of

39 studies covering 1,427 healthy participants, M=57% (Steingroever et al., 2013, Table 5).

Better performance across all trials can be partially explained by the availability of

additional descriptive information from the beginning of the task in the DE condition, which

provided an advantage to participants, and could be used to make an initial informed choice

among the available options. Those in the E condition lacked any information about the
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composition of cards within each deck, so their first selection was necessarily a random

uninformed choice between the four decks available. We can attempt to remove this advan-

tage by comparing the behavior after it has stabilized. Even after many trials, in the last

block of 20, deck selection still differed significantly between the E and DE conditions, with

participants in the DE condition choosing 23% more often from the advantageous decks

than in the E condition. At this point, choice behavior had mostly stabilized.

We also expected exploration to reduce when descriptions were available, and this

was observed with lower switching rates in the DE experimental condition. Switching

rates can be seen as proxies for exploration (Ert, Erev, & Roth, 2011), as individuals who

exclusively exploit their preferred option would not need to switch between the options. In

decisions from experience, without descriptions, participants must learn about the decision

environment through exploration and feedback. If descriptions are available, by providing

additional information about the available options, they offer an alternative avenue for

comparing them and finding the most attractive one, reducing the need for exploration.

Exploration still remains however, as uncertainty is not fully eliminated, and participants

still need to confirm that descriptions are true throughout the task. In addition, participants

might be exploring to avoid the boredom of selecting the same alternative repeatedly, or to

select a mix strategy across their preferred alternatives.

Overall, the presence of descriptions influenced behavior in a complex task such as

the DIGT. However, we were concerned that the usage of a pre-determined fixed schedule

of outcomes, as in the original IGT, was not being truly represented by the descriptions.

While the descriptions were a true representation of the frequency of the cards within each

deck, there was no mention of the actual sequence in which the cards appeared, which might

have led participants to believe that cards were shuffled and their order was random. While

the original pre-determined sequence is one of the many potential sequences in which the

cards would appear if the outcomes were randomized, since they were actually previously

known and fixed, descriptions could have also shown participants the sequence of cards. In

order to make descriptions a truer representation of the experience, in the next experiment

we replaced the fixed schedule with a randomized ordering of cards within each deck.
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Experiment 2

Method

Design. The aim of Experiment 2 was to replicate the results found in Experiment

1, and confirm that the presence of descriptions influence behavior in complex tasks with

congruent descriptions. As before, there were two conditions: experience-only (E) and

description-plus-experience (DE). The only alteration to the paradigm was in the ordering

of cards within each deck. Instead of using the original pre-determined sequence of cards

from Bechara et al. (1994), we used a pseudo-randomized approach within blocks of 40.

This approach should make the experience a truer representation of the descriptions. Since

the actual order of cards was not known until the computer randomized it, information

about the sequence could not have been provided in the descriptions to participants.

Participants. We recruited 100 participants on-line using Amazon’s Mechanical

Turk service (42 females; age: M=36.7 years, SD=11.8 years), 49 in the experience-only

(E) condition and 51 in description-plus-experience (DE). Participation was restricted to

individuals whose location was defined as in the United States. No participants were ex-

cluded from the analysis. Participants were paid a fixed amount of US$ 0.25 for participating

and an additional bonus according to the outcomes of the choices they made during the

experiment, with an average bonus of US$ 0.52 (SD=US$ 0.33)3.

Task. The task was a replication of Experiment 1, and closely followed the original

IGT (Bechara et al., 1994). Participants in the experience-only (E) condition did not

receive any additional information, while participants in the description-plus-experience

(DE) condition were shown a description of cards underneath each deck. The only alteration

from Experiment 1 was in the ordering of cards within each deck. In Experiment 1, the

order was always fixed and known beforehand, following the set sequence from the original

IGT study, with each participant observing the same ordering of cards. In Experiment

2, we abandoned this pre-determined fixed ordering and opted for a pseudo-randomized

approach (Camilleri & Newell, 2011). The frequency of cards within each deck was the

3Participants in the DE condition received a significantly 78% higher bonus than participants in the
E condition, according to an asymptotic Wilcoxon rank sum test (DE=US$0.66, E=US$0.37, W =1922,
z=4.49, p<.001). In addition, there was no significant difference in bonus between Experiments 1 and 2
(W =5122.5, z=0.72, p=.76)).
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same as in Experiment 1 (Table 1), but their order was shuffled. Each participant observed

a newly randomized ordering of cards. Pseudo-randomization was used to ensure that

within each set of 40 cards, participants experienced the same frequency of cards as that in

the descriptions, but in a random order. For example, for Deck D, there would always be

36 cards of +50 and 4 cards of –200 points within each set of consecutive 40 cards, with a

newly randomized order in each set. The actual sequence was not known until the computer

randomized it. The reason for choosing 40 cards is to replicate the original IGT which was

also based on sets of 40 cards. This approach is similar to using a deck of 40 cards, which

is initially shuffled and revealed in order without replacement. Once all 40 cards of a deck

have been shown, the computer would re-shuffle and start again. The task was self-paced

and was completed on average in 8.82 minutes (SD=4.12).

Results

As before, the main dependent variable was the frequency of cards selected from the

advantageous decks, calculated as the total number of cards selected from decks C and

D for each sequential block of 20 choices (Figure 3). They were analyzed with a linear

mixed-effects model as in Experiment 1, with the same fixed and random components.

The main effect of the presence of descriptions was significant, with participants

selecting from advantageous decks significantly more frequently in the DE condition than in

the E condition, across all block of 20 trials on average, with a large effect size (DE=74.67%,

E=54.02%, χ2(1)=16.75, p<.001, d=0.82). The presence of descriptions helped participants

identify the advantageous decks and select from them more often.

The main effect of block was also significant (χ2(4)=18.51, p<.001), with an increase

in selection of advantageous decks over time (Block1=58.00%, Block5=69.55%, t(392)=4.03,

p<.01, d=0.57), albeit with a smaller effect size when compared to Experiment 1. A linear

contrast was significant with a positive slope (b=0.27, t(392)=4.19, p<.001). The interac-

tion between presence of description and block was not significant (χ2(4)=2.01, p=.73).

We also performed a post-hoc analysis with Tukey adjustments comparing the two

experimental conditions at the last block: in the last 20 trials, the presence of descriptions

led to a 33% significantly higher selection of advantageous decks, with a medium effect size
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Figure 3 . Experiment 2. Evolution of the average frequency of selection of advantageous decks (Decks
C + D), as a percentage of total for each block. Each block contains 20 trials. Error bars represent the
95% confidence interval around the mean. In Experiment 2 the order of the cards within each deck was
pseudo-randomized, the only change in the task in comparison to Experiment 1.

(Block5 only: DE=79.41%, E=59.69%, t(211)=3.17, p=.002, d=0.63). Even after partici-

pants had had a chance to learn about the task experientially, the presence of descriptions

still significantly helped them select from the advantageous decks more often.

Discussion

We replicated the findings from Experiment 1 in Experiment 2, with very similar

effect sizes for results comparing the presence of descriptions4. Participants presented with

descriptions selected from advantageous decks more often, and obtained higher financial

bonuses. In this experiment the descriptions were a truer representation of the experience,

since the actual order of cards was not previously known, until the computer shuffled and

randomized them. Only the frequency of the cards within each deck was known, but not

their ordering. Because of pseudo-randomization, the frequency described was an exact

4We combined the data from Experiments 1 and 2 into one single analysis to evaluate the main effect of
Experiment as a proxy for the ordering of cards. There was no significant effect of Experiment (χ2(1)=0.04,
p=.83). There was no significant interaction between Experiment and presence of descriptions (χ2(1)=0.14,
p=.71). Therefore, the use of a pre-determined schedule or a pseudo-randomized order of cards had no
influence on the selection of advantageous decks overall (Exp1=65%, Exp2=64%), or on the impact of
descriptions (E: Exp1=56%, Exp2=54%, t(196)=0.41, p=.68; DE: Exp1=74%, Exp2=75%, t(196)=0.12,
p=.91).
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representation of the actual experience, within each set of 40 cards revealed by participants.

While in Experiment 1 a true description could have included the actual sequence of cards,

this was not possible in Experiment 2.

Across the first two experiments, which were complex decisions-from-experience tasks

based around the IGT, the presence of congruent descriptions influenced behavior and

helped participants, whether the sequence of card was pseudo-randomized or followed the

original fixed schedule. These findings initially appear to go against previous studies using

simpler tasks that have shown no influence of congruent descriptions on behavior (Lejarraga

& Gonzalez, 2011; Weiss-Cohen et al., 2016; Yuviler-Gavish & Gopher, 2011). We propose

that it was the increased complexity of the task, with its four options and multiple outcomes,

that led to descriptions being taken into account by participants in our experiment, while in

previous studies the tasks were simpler, using two options with fewer outcomes. In the next

experiment, we sought to analyze how complexity influences behavior in a more controlled

experimental set-up, by creating a task that reconciles our results in Experiments 1 and 2

with those in previous research of description-plus-experience.

Experiment 3

Method

Design. In the first two experiments we observed the influence of descriptions in a

relatively complex task, and considered the contrast between our results and those obtained

in previous research using simpler tasks. In this experiment we manipulated complexity

directly. The aim was to start with simple tasks, similar to those used in earlier description-

plus-experience research, and then to increase the complexity within the same experimental

framework, therefore directly observing how task complexity moderates the influence of

descriptions on behavior. To achieve this, we modified Experiment 2 by manipulating the

complexity of the task while maintaining the same basic set-up of selecting cards from

different decks with and without descriptions throughout. The task followed a 3 × 3 × 2

between-subjects experimental design. We controlled task complexity across two different

dimensions: the number of decks of cards available for participants to choose, which was 2, 4,

or 6; and the number of potential outcomes within each choice (i.e., the number of different
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types of card that composed each deck), which was also 2, 4, or 6. This created a matrix of

3 × 3 tasks (see Figure 5). Within each cell of this matrix, different participants were given

either an experience-only task (E), with no descriptions, or a description-plus-experience

task (DE), with descriptions.

When comparing the complexity of this experiment with the previous ones, Experi-

ments 1 and 2 closely matches the central cell of the new experimental matrix of Experiment

3. The previous experiments, based on the IGT, had a total of 14 potential outcomes across

its 4 different choices, each choice having an average of 3.5 outcomes. The central cell

in the new experiment has a total of 16 outcomes split across 4 different choices with 4

outcomes each (see Table 2). Therefore the new experiment creates both a simpler task (2

choices × 2 outcomes) and a more complex task (6 choices × 6 outcomes) in comparison

to Experiments 1 and 2 (4 choices × 3.5 outcomes on average). The simplest task of the

new experiment, with 2 choices and 2 outcomes is similar to previous research in the field

of description-plus-experience (Lejarraga & Gonzalez, 2011; Weiss-Cohen et al., 2016). The

most complex task, with 6 choices and 6 outcomes is considerably more complex than what

has been researched before in this field.

The reason for expanding the experiment into highly complex tasks is because we

believe that the relationship between task complexity and the influence of descriptions

is non-monotonic. As observed in earlier research, in simple tasks, descriptions have no

perceptible influence on behavior (Lejarraga & Gonzalez, 2011; Weiss-Cohen et al., 2016).

In Experiments 1 and 2 we noticed that by increasing task complexity, descriptions provide

useful information to participants and assist behavior, because the task is now more complex

and learning experientially is no longer trivial. However we also believe that when the task

becomes overly complex, the descriptive information becomes too extensive and therefore

also difficult to decipher. In this case, we expected overall performance to suffer in the

experience-only condition, and also did not expect much improvement due to the addition

of description.

Participants. We recruited 540 participants on-line using Amazon’s Mechanical

Turk service (239 females; age: M=33.2 years, SD=10.1 years), 30 in each experimental

condition. Participation was restricted to individuals whose location was defined as in the
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Figure 4 . Screenshot of the first trial of Experiment 3 in the 4-deck × 4-outcome condition with description-
plus-experience (DE). In the 2-deck condition only the two middle card positions were used, while in the
6-deck condition an additional two cards were shown in the leftmost and rightmost empty spaces. The order
of the decks and the patterns on the back of each deck were both randomized. In this example, from left
to right, the decks are C, D, A, and B. Descriptions were not shown in the E condition, and the second
sentence in the title was also changed to “Each deck contains a different combination of cards”.

United States. No participants were excluded from the analysis. Participants were paid

a fixed amount of US$ 0.25 for participating and an additional bonus according to the

outcomes of the choices they made during the experiment, with an average bonus of US$

0.44 (SD=US$ 0.32)5.

Task. The task closely followed Experiment 2, with randomized outcomes, apart

from changing the number of options available and number of potential outcomes from each

option. Each participant was allocated to a single experimental condition across number

of decks, number of outcomes, and presence of descriptions. Participants were presented

with either 2, 4, or 6 decks of cards. We created a total of 6 decks of cards, with decks

A, B, C, and D relatively similar to their IGT counterparts (Table 2). Participants in the

2-deck condition were presented with decks A and C; participants in the 4-deck condition

were presented with decks A, B, C, and D; and all decks were presented to participants in

the 6-deck condition. The order of presentation of the decks was randomized, as well as

5Participants in the DE conditions received a significantly higher bonus than participants in the E con-
dition, according to an asymptotic Wilcoxon rank sum test (DE=US$0.50, E=US$0.39, W =44825, z=4.47,
p<.001).
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the patterns on the back of the decks. Decks of cards were shown side by side, with the 2-

and 4-deck conditions using only the central 2 and 4 positions, respectively (Figure 4). To

ensure that participants could see all the decks at the same time, the size of the window used

was recorded, and no participant had a window size smaller than the minimum required.

Table 2
Schedule of outcomes used in Experiment 3, written as pairs of “probability: points”. In the
2-choice conditions, decks A and C were used. In the 4-choice conditions, decks A, B, C
and D were used. In the 6-choice conditions, all decks were used. The actual description
text presented to participants followed that of Experiment 1, in the form of “—% of cards:
— pts” (see Figure 4). The expected value for each individual card in decks A, P, and B
was –25 points (the disadvantageous decks), and in decks C, Q, and D it was +25 points
(the advantageous decks).

2 outcomes

Deck A Deck P Deck B Deck C Deck Q Deck D

50%: +200 70%: +200 85%: +200 50%: +100 70%: +100 85%: +100
50%: –250 30%: –550 15%: –1300 50%: –50 30%: –150 15%: –400

4 outcomes

Deck A Deck P Deck B Deck C Deck Q Deck D

50%: +200 70%: +200 85%: +200 50%: +100 70%: +100 85%: +100
20%: –50 10%: –150 5%: –750 20%: –25 10%: –50 5%: –200
20%: –250 10%: –550 5%: –1300 20%: –50 10%: –150 5%: –400
10%: –650 10%: –950 5%: –1850 10%: –100 10%: –250 5%: –600

6 outcomes

Deck A Deck P Deck B Deck C Deck Q Deck D

20%: +255 30%: +250 40%: +280 20%: +135 30%: +125 40%: +140
20%: +200 30%: +200 25%: +200 20%: +100 30%: +100 25%: +100
10%: +90 10%: +50 20%: +40 10%: +30 10%: +25 20%: +20
20%: –50 10%: –150 5%: –750 20%: –25 10%: –50 5%: –200
20%: –250 10%: –550 5%: –1300 20%: –50 10%: –150 5%: –400
10%: –650 10%: –950 5%: –1850 10%: –100 10%: –250 5%: –600

Each deck had either 2, 4, or 6 potential outcomes according to the experimental

condition. In contrast to Experiment 2 in which each deck had a different number of

outcomes, resembling the payoff schedule of the original IGT, all decks in Experiment 2

had the same number of outcomes within each condition (either 2, 4, or 6 outcomes). The

outcomes within each deck were adapted from Chiu and Lin (2007) and are shown in Table

2. Decks A, B, and P have a negative expected value of –25 points for each card, while

decks C, D and Q have a positive expected value of +25 points for each card. Hence

decks A, B and P were considered the disadvantageous decks, and decks C, D and Q were

considered the advantageous decks. Similarly to the IGT, decks A and C were balanced
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in terms of wins and smaller losses, decks B and D had frequent wins and infrequent but

larger losses, and the new decks P and Q were a compromise between them. The schedule

of outcomes was pseudo-randomized in sets of 20: within each 20 cards, there was a full

representation of all cards for that deck, in the correct proportions, but in randomized order.

For example, for Deck A with 2 outcomes, there would always be 10 cards of +200 and

10 cards of –250 within each set of consecutive 20 cards, with a newly randomized order

in each set. Participants were either given description-plus-experience or experience-only.

Each participant made 100 selections and the task was completed on average in 8.4 minutes

(SD=4.1).

Results

The main dependent variable was the frequency of cards selected from the advanta-

geous decks, calculated as the total number of cards selected from decks C, Q and D for

each sequential block of 20 choices (Figure 5). It was analyzed with a linear mixed-effects

model as in Experiments 1 and 2. The fixed effects were the number of decks (2, 4, or 6),

the number of outcomes in each deck (2, 4, or 6), the presence or absence of descriptions (E

or DE), the blocks of 20 choices each (with polynomial contrasts), and their interactions.

The model also contained a random intercept for each participant. Post-hoc analyses were

Tukey adjusted.

The main effect of the presence of descriptions was significant, with participants select-

ing from advantageous decks significantly more frequently in the DE condition than in the E

condition, on average across each block of 20 trials (DE=63.47%, E=55.90%, χ2(1)=14.75,

p<.001, d=0.33). The presence of descriptions helped participants identify the advanta-

geous decks and select from them more often. There was also a significant main effect of

number of decks (χ2(2)=24.43, p<.001), indicating that an increase in task complexity, as

measured by number of decks, led to a decrease in selection from advantageous decks, as the

task became harder and more difficult to identify the advantageous decks (2-decks: 66.42%,

4-decks: 57.59%, 6-decks: 55.04%). There was no significant main effect of number of out-

comes (χ2(2)=4.71, p=.09), with no influence of number of outcomes on selections from ad-

vantageous decks (2-outcomes: 61.69%, 4-outcomes: 60.65%, 6-outcomes: 56.72%). There



TASK COMPLEXITY MODERATES THE INFLUENCE OF DESCRIPTIONS 24

2 decks 4 decks 6 decks

● ● ● ●
●

●
●

● ●

●

●
●

● ●
●

●
● ●

● ●

●
●

● ●
●

● ●
● ●

●

●
●

●
●

●

●

●
● ● ●

●

●
● ●

●

20%
30%
40%
50%
60%
70%
80%
90%

100%

20%
30%
40%
50%
60%
70%
80%
90%

100%

20%
30%
40%
50%
60%
70%
80%
90%

100%

2 outcom
es

4 outcom
es

6 outcom
es

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Blocks of 20 trials

F
re

qu
en

cy
 o

f s
el

ec
tio

ns
 fr

om
 a

dv
an

ta
ge

ou
s 

de
ck

● Description+Experience Experience−only

Figure 5 . Experiment 3. Evolution of the average frequency of selection of advantageous decks (Decks C +
D + Q), as a percentage of total for each block. Each block contains 20 trials. Each data point represents
an average of 30 participants, for a total of 60 participants in each cell of the matrix. Error bars represent
the 95% confidence interval around the mean.

was a learning effect, as seen by the main effect of block (χ2(4)=105.68, p<.001), confirmed

by a post-hoc analysis that showed higher selection of advantageous decks in the last block

when compared to the first block (Block1=53.25%, Block5=63.85%, t(2088)=9.64, p<.001,

d=0.59), with a significant positive linear contrast (b=0.24, t(2088)=9.68, p<.001), and

significant negative quadratic contrast (b=–0.08, t(2088)=2.61, p=.009).

To further elucidate what drives the influence of descriptions, we analyzed the 2-

way interactions between descriptions and the two complexity manipulations separately.

The interaction between number of outcomes and presence of description was significant

(χ2(2)=9.15, p=.01). In a post-hoc analysis for number of outcomes, we observed the

largest difference in selection of advantageous decks between E and DE in the middle 4-
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outcome condition, a smaller but still significant difference in the 2-outcome condition,

and no significant difference in the 6-outcome condition (DE–E difference in each condi-

tion: 2-outcomes=9.98%, t(522)=2.92, p=.004, d=0.44; 4-outcomes=13.39%, t(522)=3.92,

p<.001, d=0.58; 6-outcomes=–0.63%, t(522)=0.18, p=.85, d=0.06). There was no signifi-

cant interaction between number of decks and presence of description (χ2(2)=3.58, p=.17).

However, in a post-hoc analysis for number of decks, we observed the same pattern of a larger

difference in selection of advantageous decks between E and DE in the middle 4-deck con-

dition (DE–E difference in each condition: 2-decks=3.11%, t(522)=0.91, p=.36, d=0.14; 4-

decks=12.26%, t(522)=3.59, p<.001, d=0.53; 6-decks=7.37%, t(522)=2.16, p=.03, d=0.32).

None of the other 2-, 3-, and 4-way interactions were significant (all ps ≥ .11). As in

Experiment 1, we did not observe an interaction between presence of description and block

(χ2(4)=3.90, p=.42), which would indicate no difference in learning due to the presence or

absence of descriptions. In other words, changes in selections of the advantageous options

progressed similarly across blocks regardless of the presence or absence of descriptions.
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Figure 6 . Experiment 3. Average frequency of selection of advantageous decks (Decks C + Q + D) in the
last 20 trials (Block 5). Error bars represent the 95% confidence interval around the mean.

To exclude the effect of learning, and to focus on more stable behavior, we per-

formed a post-hoc analysis at the last block only (Figure 6), with Tukey adjustments. In

the last 20 trials, the presence of descriptions led to an overall 16% significant increase in
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the selection of advantageous decks, with a medium effect size (Block5 only: DE=68.48%,

E=59.22%, t(1101)=3.84, p<.001, d=0.33). The small difference and low effect size hide the

underlying interactions between the complexity manipulations and the presence of descrip-

tion. The influence of description was highest in the middle condition for number of out-

comes (Block5 only, DE–E difference in each condition: 2-outcomes=10.83%, t(1101)=2.59,

p=.01, d=0.39; 4-outcomes=18.67%, t(1101)=4.46, p<.001, d=0.67; 6-outcomes=–1.72%,

t(1101)=0.41, p=.68, d=0.06). The influence of description was also highest in the

middle condition for number of decks (Block5 only, DE-E difference in each condition:

2-decks=8.39%, t(1101)=2.01, p=.045, d=0.30; 4-decks=11.67%, t(1101)=2.79, p=.005,

d=0.42; 6-decks=7.72%, t(1101)=1.85, p=.07, d=0.28). We observed a non-monotonic in-

verted U-shaped pattern of influence of description across both complexity manipulations

(Figure 7).

Discussion

We observed the same overall influence of the presence of descriptions in Experiment

3 as in Experiments 1 and 2. As before, participants who were presented with descriptions

selected from the advantageous decks 14% more often than participants who did not receive

descriptions. These figures are lower than the comparable results in Experiments 1 and

2 because they hide the intricate underlying relationship between task complexity and the

influence of descriptions, which followed a non-monotonic inverted U-shaped pattern (Figure

7), as predicted.

In simple tasks, in which the payoffs were relatively easy to learn experientially,

participants did not benefit from the presence of descriptions. They performed well with

experience alone, finding the advantageous decks, and performance did not improve sig-

nificantly by adding descriptions. This lack of influence from descriptions in simple tasks

replicated findings in previous similar research using two alternatives (Lejarraga & Gonza-

lez, 2011; Weiss-Cohen et al., 2016). In very complex tasks, the payoff structure was not

only considerably more difficult to learn experientially, but it also required very long and

verbose descriptions. Reading, analyzing, and deciphering the written descriptions very

likely presented a substantial cognitive challenge. In these situations, participants were not
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Figure 7 . Experiment 3. Difference in frequency of selection of advantageous decks (Decks C + Q + D) in
the last 20 trials (Block 5) due to the presence of description (DE–E). The values for the significance level
(p-values) and effect size (Cohen’s d) for each difference are shown next to each data point. The highest
influence of description can be observed in the middle condition: 4-decks x 4-outcomes.

as proficient in finding the advantageous decks as in the simpler tasks, leading to lower per-

formance via experience alone, and complicated descriptions did not provide any significant

assistance.

It was in the medium complexity tasks that descriptions most helped participants. In

the middle cell of Experiment 3 (4 choices × 4 outcomes), descriptions led to a 39% increase

in overall selections of advantageous decks (43% in the last block), and an 82% increase in

the final financial bonus, the highest across all conditions and similar to the results from

Experiments 1 and 2, which closely matches this task in terms of overall complexity. These

medium complexity tasks were too complex to be learned via experience alone, but not

overly complex to be described succinctly and for these descriptions to be analyzed by and

provide useful information to participants. Descriptions are most influential in decision

making when they provide additional information to participants that cannot be as easily

and efficiently gathered in a timely fashion via experience alone.

Cognitive modeling

In order to theoretically model the role of descriptions in decisions from experience,

and their interaction with task complexity, a set of cognitive computational models was

fitted to the experimental data. Our aim was to evaluate how descriptions influence tra-

ditional reinforcement learning models, and how the descriptive information is represented
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and integrated into the decision-making process.

We start by fitting a reinforcement learning (RL) model to the observed human be-

havior in the experience-only conditions of Experiment 3. RL models that rely solely on

experience via feedback have been extensively and successfully used to explain behavior in

decisions from experience in the past (Erev & Barron, 2005; Yechiam & Busemeyer, 2008;

Yechiam & Ert, 2007), and the IGT is paradigm commonly explored with these models

(Ahn, Busemeyer, Wagenmakers, & Stout, 2008; Busemeyer & Stout, 2002; Dai, Kerestes,

Upton, Busemeyer, & Stout, 2015; Worthy, Pang, & Byrne, 2013; Yechiam & Busemeyer,

2005). Based on their past performance in similar tasks, we would expect RL models to fit

our behavioral data well in the experience-only conditions of the current experiments. With

regards to tasks combining descriptions and experience, Lejarraga and Gonzalez (2011)

have shown that a simple RL model can also explain behavior well in simple tasks with

descriptions, and we expect to replicate their findings here in our simple tasks. However,

given the observed difference in behavior when description was added to these paradigms in

more complex tasks, and our previous modeling efforts (see Weiss-Cohen et al., 2016), we

predict that traditional experience-only RL models will perform poorly in the description-

plus-experience conditions. As shown here by the observed empirical results, descriptions

can sometimes influence behavior and can provide additional useful information for partic-

ipants to perform better in their tasks. These situations should be conducive for a model

that combines descriptions and experience.

Below, we present a description-plus-experience model that combines both descriptive

and experiential information, which should help explain the observed differences in behavior

in the description-plus-experience conditions. Our previous attempt at a description-plus-

experience model combined the two sources of information with different weights, and the

weights determined the importance given to each source depending on the experimental

condition (see Weiss-Cohen et al., 2016). Since the influence of descriptions in Experi-

ment 3 appeared to have been moderated by the complexity of the task, we will vary these

weights according to a complexity measure, based on entropy. In comparison with tra-

ditional experience-only RL models, we expect the description-plus-experience model to

provide a better fit for the observed human behavior in description-plus-experience tasks,
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in particular in more complex tasks, with little or no difference in the simpler tasks.

The models

The aim of fitting a cognitive model to the data was to assess and formalize how

the two sources of information, descriptive and experiential, are combined. We fitted two

models to the behavioral data: an experience-only prospect-valence learning (PVL) model

and a description-plus-experience adaptation of that model (D-PVL). The PVL model is a

reinforcement-learning model that relies on experiential information alone, using the feed-

back provided after each trial (Ahn et al., 2008; Fridberg et al., 2010). The D-PVL model

built upon that, combining the experience-only RL component from the PVL model with

a representation of the descriptive information. The descriptive component was calculated

as the expected value of the information presented to participants underneath each choice.

The two sources of information were combined using a weight, which was determined via

entropy, a proxy for task complexity. Crucially, the experiential part of the D-PVL model

was based around the same RL model as the PVL model. Therefore the D-PVL model

added descriptions to a traditional experience-based RL model, and we are particularly

interested in how this integration was performed. We start by describing the PVL model,

which formed the basis of both models.

Experience-only model (PVL)

We build our models upon one successful RL model from the literature, a prospect-

valence learning (PVL) model using a prospect-theory utility function and a delta-learning

rule. This model has been extensively and efficiently used in the decisions-from-experience

literature, in particular using the IGT, and shown to perform better than competing models

when fitting experimental data to simulated participants, which is the approach we used

here (Ahn et al., 2008; Ahn, Krawitz, Kim, Busemeyer, & Brown, 2011; Dai et al., 2015;

Fridberg et al., 2010; Worthy et al., 2013; Yechiam & Busemeyer, 2005, 2006).

Firstly, observed payoffs are evaluated by a prospect-theory type of utility function

(Kahneman & Tversky, 1979), U(·), defined as:
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U(rj(t)) =















(rj(t)/100)α, if vj(t) > 0.

−λ(−rj(t)/100)β , if vj(t) < 0.

where rj(t) is the payoff received from selection option j at time t. Payoff values were divided

by 100 to reduce the magnitude of the observed feedback and realign them closer to their

monetary payoffs. The free parameters α and β, both ranging between 0 and 2, determine

the curvature of the value function for positive and negative payoffs, respectively. Lower

values of α and β reduce the distance between extreme values of payoffs, while higher values

magnify the distances. The loss aversion parameter, λ, is the free parameter (0 ≤ λ ≤ 10)

that determines higher sensitivity to losses in comparison to gains. The higher the value of

λ, the higher the importance given to losses over gains.

Secondly, expectancies for the value of rewards for each option are formed via a

learning rule, which integrates the experienced feedback after each trial. The learning

rule used was a delta rule, which uses a learning rate that determines how much the new

information gathered via feedback, in the form of prediction error, influences the updating of

the expectancies at each trial (Speekenbrink & Konstantinidis, 2015; Konstantinidis, Ashby,

& Gonzalez, 2015; Sutton & Barto, 1998; Yechiam & Busemeyer, 2005, 2006). Feedback

observed is integrated after each trial, to arrive at the experienced expectancy Ej(t) for

option j at time t:

Ej(t) = Ej(t − 1) + φ · δj(t) · [U(vj(t)) − Ej(t − 1)],

where φ is the free learning rate parameter (0 ≤ φ ≤ 1), which is a weight given to new

information observed, with lower values resulting in slower learning. The variable δj(t) is a

dummy variable, which is equal to one if option j was chosen on trial t, and zero otherwise.

The model only updates the value Ej(t) of an option when that option has been selected

and its feedback has been observed. When the option has not been selected, the Ej(t)

remains unchanged. The initial value for Ej was set to zero6.

6Attempts to change this to the value of descriptions, Dj , in the description-plus-experience model, led
to worse fitting models, as it resulted in more constant behavior over time with a flatter learning curve. This
is likely due to the participants exploring their options in the beginning of the task even when descriptions
were present, a behavior that would have been suppressed by a model with a non-zero starting Ej .
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Finally, the model-predicted probability of selecting a given option j at time t is

determined by a time-dependent Softmax rule (Sutton & Barto, 1998) that combined the

expected values Ej across all options J :

P̂jt =
eΘ·Ej(t)

∑

J eΘ·EJ (t)
,

where Θ is the choice sensitivity. If Θ = 0, the model randomly guesses between the options

regardless of their expectancies, while higher values of Θ will lead to more deterministic

maximization behavior. Θ itself is time-dependent and varies according to t, and is deter-

mined by the free parameter θ, (0 ≤ θ ≤ 2):

Θ = (t/10)θ,

this allows choice sensitivity to increase over time, making selections more random in the

beginning and more deterministic as time progresses, to reflect the natural tendency of

individuals to explore more in the beginning of tasks and less as the task progresses and

they have gathered more information from the environment. Values of θ below 1 make the

shape of the choice sensitivity over time concave, while values above 1 make it convex, and

linear when θ = 1.

Description-plus-experience model (D-PVL)

In the description-plus-experience (D-PVL) model, a representation of descriptions

for each choice j, Dj , was combined with the experience, Ej , at each trial t, as follows:

EDj(t) = ωc · Dj + (1 − ωc) · Ej(t).

The experience component, Ej(t), was calculated using the same PVL approach as in

the experience-only model, although new parameters were fitted. A representation of the

descriptive information is included via Dj as the subjective expected value of the descriptive

information for choice j, calculated using cumulative prospect theory (CPT), based on the

descriptions provided to participants underneath each alternative. According to Tversky

and Kahneman (1992), the CPT value is calculated using a value and a probability-weighting
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function, W (·) and U(·) respectively,

Dj =
∑

m

W (pjm)U(vjm),

where pjm are the probabilities and vjm are the potential values for each outcome m of

option j. U(·) is the same function as defined above for the PVL model, using the same

parameters. W (·) is the probability weighting function, defined as:

W (p) =
pγ

(pγ + (1 − p)γ)
1

γ

,

where γ is the free parameter (0 ≤ γ ≤ 2) that determines the sensitivity to probabili-

ties via the curvature of the probability weighting function. Values of γ below 1 lead to

overweighting of rare events, while values above 1 lead to underweighting of rare events.

Experience, Ej(t), and description, Dj , are combined using ωc which determines the

weight given to description, and its compliment given to experience (Weiss-Cohen et al.,

2016). The ωc weight changes according to experimental condition c, and is calculated as

follows:

ωc = 1 − e(−ξ/Sc),

where ξ is a free parameter which determines the strength of the weight given to descriptions

(0 ≤ ξ ≤ 3), divided by the entropy Sc, for each condition c, which was calculated according

to the choices available to participants. Entropy has been used before to quantify task

complexity, with higher entropy associated with higher complexity (Swait & Adamowicz,

2001). According to the weighting formula used, the weight given to descriptions decreases

when entropy increases, therefore ωc is higher in simpler experimental conditions such as 2

× 2 and lower in more complex ones such as 6 × 6. An exponential relationship was used

to ensure that the weight ωc remained bounded between 0 and 1, regardless of the values

of Sc.

Entropy for condition c, denoted by Sc, was calculated in two different ways, and

the two approaches will be compared in the results section. Entropy was initially defined

according to the probabilities displayed to participants on the descriptions:
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Sc = −
∑

jm

[pjm · log2(pjm)],

for all probabilities pjm for every outcome m of option j for that condition.

However while this approach provided a relatively good fit, it did not provide the best

fit to the observed behavioral results. We believe this is because the basic RL model with

partial feedback already captures some of the idiosyncrasies of having different numbers of

alternatives from which to choose. The more alternatives available, the less an individual

learns about the environment after each selection, since only information about one choice

is revealed at each trial. These findings will be discussed in more detail in the results section

below.

We therefore propose an alternative approach to calculating entropy. We divided the

total entropy for each condition by the number of alternatives, or number of decks of cards,

in that condition, denoted as Ac, which resulted in an average entropy per alternative:

S′

c = −
1

Ac

∑

jm

[pjm · log2(pjm)].

Alternatively, S′

c can be considered as the entropy of one of the alternatives, chosen

randomly between the ones that were available. The model using this averaging entropy

approach will be denoted as D-PVL′. As an example, the value of S′

c for the simplest

condition in Experiment 3, condition 2 × 2, which had two options and each option had

two outcomes with 50% probability each, was S′

c = −1/2 · (0.5 · log2(0.5) + 0.5 · log2(0.5) +

0.5 · log2(0.5) + 0.5 · log2(0.5)) = 1.0. In comparison, entropy for the middle condition, 4 ×

4, was S′

c = 1.3, and for the most complex condition, 6 × 6, it was Sc = 2.3. S′

c was mostly

influenced by the number of alternatives. In comparison, the values for the total Sc were

higher, and increased much faster as task complexity increased.

The same Softmax choice rule from the PVL model is used for the D-PVL models,

replacing Ej with EDj , although as before, new parameters are fitted.
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Model fitting

Data sets containing 100 simulated participants were generated for each of the 9

experimental conditions in Experiment 3 (number of decks: 2, 4, or 6 × number of outcomes:

2, 4, or 6), with the same pseudo-randomized methodology used to generate actual data

sets for the experiments in blocks of 20.

We started by fitting the experience-only PVL model to the observed human behavior

in the 9 different experience-only (E) experimental conditions of Experiment 3. This model

was not allowed to take into consideration the descriptive information, as the participants

also did not have access to any descriptions. A total of 900 modeled simulated participants

were confronted with 270 observed human participants. All simulated participants across

all underlying experimental conditions shared the same set of free parameters. The best

fit parameters were found by minimizing the multinomial log-likelihood (LL) between the

average observed proportions of choice from each deck and the average model-predicted

proportions for each of the individual conditions separately, with each condition receiving

the same weight (Erev & Barron, 2005):

LLc = −2
∑

jt

ln

(

Nc!
∏

njt!

∏

(P̂jt)
njt

)

where Nc is the total number of participants in each condition, njt is the number of partic-

ipants who chose option j at trial t, and P̂jt is the model-predicted probability of choosing

option j at trial t.

To allow for behavioral differences between the E and DE experimental conditions,

we also fitted the PVL model to the DE conditions in Experiment 3. Any changes in

the parameters could be explained by a different approach that individuals might have

taken towards the task when description was available. However this model still does

not allow for the descriptive information itself to be integrated into the decision-making

process. We check if the descriptive information was used by participants by fitting the

two alternative D-PVL models (with total entropy and with average entropy) against the

description-plus-experience (DE) experimental conditions of Experiment 3. The same 100

simulated participants were used as above, but now the model was also allowed to take into
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account the descriptive information, since this was available to participants. The D-PVL

models were fitted in the same way as the PVL model above against the observed human

behavior, minimizing the LL.

Because of the different number of parameters between the models, the Bayesian

Information Criterion (BIC), which penalizes for additional parameters, was calculated to

compare the models, BICc = LLc +f · ln(N), where f is the number of free parameters and

N is the number of fitted observations for each evaluation (100 trials). Lower BIC values

represent better fitting models. We report the mean BICc which is the mean across all 9

conditions.

Model evaluation and results

Three models were evaluated, with four sets of parameters fitted in total: the

experience-only PVL model, which did not account for the influence of descriptive informa-

tion, with five free parameters, was fitted twice, against human behavior in the E (called

PVLe) and the DE conditions (PVLde), separately, allowing for two sets of different pa-

rameters; and the two description-plus-experience (D-PVL) models, one with total entropy

and one with the alternative average entropy approach (D-PVL′), which combined both de-

scriptive and experiential information, both with seven free parameters, were fitted against

human behavior in the DE conditions only.

The results of the model fitting analysis were in line with the behavioral results

(Figure 8). The PVLe model fitted against the human behavior in the E experimental

conditions proved a relatively good fit (mean BIC by condition MBIC = 1, 283). This

model was considerably better than a null model, which randomly selects decks of cards at

each trial among the available options, returning an MBIC = 1, 484 in the E conditions. As

expected, when comparing the PVLe model to the human behavior in the DE conditions,

the fit was substantially worse overall (MBIC = 1, 403). This is because of the behavioral

differences observed in the experiment, likely a result of the introduction of descriptive

information, while the model was not allowed to integrate that new information. It was

still considerably better than a random behavior null model in the DE conditions (MBIC =

1, 624). The higher random BIC for the random null model in the DE conditions indicate
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Figure 8 . Comparison of observed human data, and the three cognitive models fitted against them, for each
of the 18 experimental conditions. The experimental conditions above each cell can be identified as number
of decks × number of outcomes followed by E for experience-only and DE for description-plus-experience.
The text within the DE cells identify which was the best fitting model for that particular condition (only
one PVLe model was fitted against the E conditions). The best-fitting model overall was the alternative
D-PVL′ model using the average entropy approach, in particular in the higher complexity conditions. In
medium-complexity conditions, the total entropy model D-PVL provided a better fit. The PVL models
fitted better in one condition each, both simpler conditions with 2 decks.

that participants were behaving less randomly when description was present, and therefore

a model that predicts random behavior is a poorer predictor of human behavior in the

DE condition, but a better predictor in the E conditions, when participants were behaving

closer to random.

The fit results were substantially improved by refitting the experience-only model

to the behavior in the DE conditions (PVLde), with new parameters (MBIC = 1, 316), as

shown in Table 3. The new PVLde model still did not include any descriptive information,

and relied on experience alone. While the original parameters fitted against the E condi-
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tions would provide a poor prediction for behavior in the DE conditions, the newly fitted

parameters accommodate for some of the differences in observed behavior. However as we

will confirm later in a generalization test against Experiments 1 and 2, this is likely a result

of overfitting.

Finally, by fitting the D-PVL model that was allowed to take descriptions into account,

and using total entropy to moderate the weights given to description, there was an additional

improvement in the fit against the DE conditions, with a 2% reduction in BIC (MBIC =

1, 294), compared to the PVLde model. The alternative model D-PVL′, using the average

entropy approach, resulted in an even better fit (MBIC = 1, 271), with an additional 2%

reduction in BIC. While the parameters did not change across experimental conditions, we

can split the results according to them, and verify in which conditions each model performed

better. The D-PVL models were the best performing models with lower BICs in 7 out of

the 9 experimental conditions, in particular the conditions with higher task complexity.

The two conditions in which they were outperformed by the PVL models were both 2-deck

conditions (with 2 and 6 outcomes). In these relatively simple 2 × 2 and 2 × 6 conditions,

the experience-only PVL model proved a better fit for the observed behavior, replicating the

finding from Lejarraga and Gonzalez (2011), who also showed that a simple experience-only

RL model without descriptions provided a good fit for human behavior in simple tasks. It

is only in more complex tasks, where we predicted that descriptions would be more useful

for participants, that the D-PVL models outperformed the PVL models.

The alternative model using average entropy, D-PVL′, returned considerably better

fits in comparison to the total entropy D-PVL model. Average entropy can be interpreted

as the entropy of a single alternative, or deck of cards, selected at random from the ones

available. Because all the alternatives in our paradigms contained the same number of

potential outcomes, their average entropies did not differ considerably. Comparing the

models using Schwarz weights (Wagenmakers & Farrell, 2004) showed a strong preference

for D-PVL′, with w(BICDP V L′) > .9999, which can be interpreted as the probability that

this is the best model among the models presented here (Lewandowsky & Farrell, 2011).

We believe that employing average entropy as a moderator of weights given to descriptions

yielded better fitting models because the experience component of our models (Ej) already
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Table 3
Best fit parameters of the three cognitive models, PVL (fitted twice, against E and DE
observed human data in Experiment 3), D-PVL and D-PVL′ (fitted against DE data only),
and mean BICs. Lower BICs represent better fits. n.a.=not applicable.

Free parameter Exp. only Exp. only Description+ Alternative
E data Refit DE data Experience Descr.+Exp.
(PVLe) (PVLde) (D-PVL) (D-PVL′)

α (curvature of pos. values) 1.23 0.51 1.60 1.26
β (curvature of neg. values) 0.44 0.47 0.53 0.60
λ (weight of neg. values) 1.83 1.82 9.58 2.73
γ (curvature of probabilities) n.a. n.a. 0.92 0.84
φ (learning rate) 0.31 0.27 0.02 0.06
θ (choice sensitivity) 0.14 0.06 0.22 0.20
ξ (description’s weight) n.a. n.a. 0.59 2.12
No. of free parameters 5 5 7 7
Mean BIC 1,403 1,316 1,294 1,271
No. of conditions best fit 1 1 3 4

incorporated the deleterious influence of additional alternatives, but it is not influenced by

the number of outcomes. The performance of traditional experience-only RL models already

deteriorates considerably when dealing with a larger number of alternatives (Konstantinidis

et al., 2015). This is specially the case when only partial feedback is available, as the

RL model can only update the expectancy of the most recently selected alternative, for

which feedback was presented. This results in a smaller reduction of uncertainty about

the environment after each trial when more alternatives are available, slowing down the

differentiation between the alternatives and, consequently, the ability to identify the better

ones. Similar patterns were shown by Ashby et al. (2017). When there are only two

options, with each selection, half of the alternatives are updated. With six options, only

one sixth is updated. Therefore it takes longer to reduce uncertainty with a traditional

RL model when there are more alternatives. There is no similar mechanism for number of

outcomes from each alternative, with the RL model incorporating new information in the

same manner regardless of the number of outcomes. Traditional RL models as the ones

used here are therefore sensitive to number of alternatives but insensitive to number of

outcomes. Therefore we believe that by adding an entropy measure that is mostly related

to the number of outcomes, not alternatives, we have breached this remaining gap in our

D-PVL models, without taking into consideration the effect of number of outcomes twice,

which is the case when total entropy is used.
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Since we observed a non-monotonic U-shaped curve in the relationship between pres-

ence of description and task complexity in the human behavior from Experiment 3, a cogni-

tive model that captures human behavior appropriately should also replicate that finding.

We compared the modeled predictions for the last block of trials for the PVLe and the

D-PVL′ models (Figure 9). The inverse U-shaped pattern that was observed in the human

behavior was also replicated with cognitive models. Increasing the number of outcomes

increased the entropy monotonically, but influence of description, moderated by a weight

determined by the inverse of entropy, was non-monotonic.
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Figure 9 . Difference between selection of advantageous decks as predicted by the cognitive models and
human behavior, for each experimental condition, in the last block of 20 trials. The modeled difference is
the prediction of the experience-only model subtracted from that of the description-plus-experience model.

The best fit parameters were relatively consistent across the different models (Table

3). A few parameters changed in reaction to the presence of descriptions. In particular, the

learning rate φ was lower in the D-PVL′ model (φDP V L′ = 0.06) compared to the PVLe

model (φP V Le = 0.27). As participants had access to descriptive information, they did not

need to learn as much from feedback after every trial, and updated their expectancies more

slowly in the reinforcement learning component of the model. We also observed that the

weight given to negative rewards λ, was higher in the D-PVL′ model (λDP V L′ = 2.73) than

in the PVLe model (λP V Le = 1.83). We believe that this is due to the increased relevance

of losses when constantly presented in textual descriptions, as they appear more salient and

ever-present than the occasionally observed feedback, similar to the “mere presentation”

effect (Erev, Glozman, & Hertwig, 2008). The choice sensitivity parameter θ was higher in
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the D-PVL′ model (θDP V L′ = 0.20) than in the PVLe model (θP V Le = 0.14). Higher choice

sensitivity translates into more deterministic behavior, and it is likely that the presence

of descriptions reduced uncertainty, and allowed participants to be more secure in their

decisions, behaving less randomly in their choices. Finally, the weights given to description

for the D-PVL′ model, based around the best fitting ξ parameter and calculated according

to the ωc formula above with average entropy, varied between 0.57 for the most complex

conditions and 0.92 for the simplest conditions.

Model generalization test

A good computational model should not only be able to agree with the observed data,

but also facilitate a priori predictions and generalizations into new environments and under

altered circumstances (Shiffrin, Lee, Kim, & Wagenmakers, 2008). In order to generalize

well, such models must avoid overfitting of task-specific effects, idiosyncratic strategies and

heuristics adopted in relation to the experiment against which they were originally calibrated

(Konstantinidis, Speekenbrink, Stout, Ahn, & Shanks, 2014), and be able to reliably predict

behavior in a new experimental design.

We conducted a generalization analysis of the models, calibrating their parameters

with the human data from Experiment 3 (as per the previous sections), and then testing

the fitted results against the human data in Experiments 1 and 2, using the generalization

criterion methodology in Busemeyer and Wang (2000). We simulated new model predictions

with the fitted parameters from Table 3 using the two IGT paradigms from Experiments 1

and 2 as the new generalization designs. Two hundred simulated participants were created

using the outcomes from the IGT, half using a fixed schedule and half a random schedule.

According to Busemeyer and Wang (2000), the best model is the one that produces the

smallest discrepancy between model predictions and human data, in our case using mean

log-likelihood (MLL), also used for generalizing by Erev and Haruvy (2005).

The PVLe model was a relatively good predictor for the E conditions in Experiments

1 and 2 (MLL = 2, 284), which can also be observed in the two E plots in Figure 10. This

is not surprising as this model has been extensively used before to predict behavior in the

traditional IGT. As in Experiment 3, the PVLe model was not a good predictor for the DE
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Figure 10 . Model predictions tested against the IGT simulated data from Experiments 1 and 2, both with
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3. E refers to experience-only (traditional IGT) and DE to description-plus-experience (DIGT). When
descriptions were available, the D-PVL′ model returned much better predictions, ahead of the D-PVL and
PVL models.

conditions, with a considerably worse fit (MLL = 2, 492). The re-fitted PVLde model showed

an improvement against the human behavior in the DE experimental conditions, with the

new parameters capturing some of the effects of the presence of descriptions (MLL = 2, 238).

The D-PVL models were again better predictors of the behavior in the DE conditions of

Experiments 1 and 2, both outperforming the experience-only PVLde model, by much larger

margins than in Experiment 3 (DE plots in Figure 10). As before, the alternative model

D-PVL′ provided the best fit across all models (MLL = 1, 885), while the D-PVL was also

better than PVLde, but with a smaller improvement (MLL = 2, 038). Overall, the D-PVL′

model was a much better predictor of human behavior in the DIGT of Experiments 1 and

2 than the PVL model, which was expected given the complexity of this task and the

empirical differences in human behavior observed between the E and DE conditions. The

models returned a much better fit than the random null model against the IGT, which

performed worse in the E conditions (MLL = 2, 778), and considerably much worse in

the DE conditions (MLL = 3, 968), given how much participants’ behavior diverged from

random under the latter paradigms. The generalization criterion methodology used here
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showed that the D-PVL′ model generalized well into a new task design, from Experiment 3

into Experiments 1 and 2, showing a good model fit, despite the added complexity of this

model. The simpler PVLde did not generalize as well, despite its relatively good performance

earlier, likely as a result of specious overfitting of the PVLde parameters against the specific

behavior in Experiment 3.

Discussion on cognitive modeling

Overall, the description-plus-experience D-PVL′ model proved a better fit of the ob-

served human behavior, in particular in the higher complexity experimental conditions.

The model also generalized well, from being calibrated against the design of Experiment 3,

into the different new designs of Experiments 1 and 2. While previous attempts to model

description-plus-experience tasks with congruent information had shown that a traditional

experience-only model PVL could be used to explain behavior relatively well (Lejarraga &

Gonzalez, 2011), we believe that this was only the case because the tasks used were simple.

Simple tasks should be easy to learn experientially, and the addition of descriptive infor-

mation did not influence behavior, or modeling predictions significantly. This finding has

been replicated here in our simplest experimental condition 2 × 2 (and also 2 × 6), with

the experience-only PVL models providing good fits for the observed human behavior and

little difference between predicted model results between PVL and D-PVL (see Figure 9).

However when complexity is increased, then descriptions can provide useful information for

participants, helping them make better decisions. This was shown empirically in the behav-

ior data, and confirmed with cognitive modeling. If descriptions had not been taken into

account by participants, then the best fitting parameters for the PVLe model from the E

conditions should predict behavior in the DE conditions well, which was not the case. Even

the re-fitted experience-only model PVLde did not provide a much improved fit: this might

have been a result of over-fitting, as shown by the generalization analysis of the models

against the IGT tasks in Experiments 1 and 2.
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General discussion

Previous research has shown that introducing congruent descriptions to decisions from

experience did not influence behavior (Lejarraga & Gonzalez, 2011; Weiss-Cohen et al.,

2016). However we believe that this was because the tasks used previously were relatively

simple, and that descriptions might only be taken into consideration by individuals when

it is advantageous to do so, given the higher cognitive cost associated with processing

them, compared to the easier processing of experiential information (Glöckner et al., 2012;

Lejarraga, 2010). The aim of our current study was to show that congruent descriptions

influence behavior in more complex tasks, where the addition of descriptions is advantageous

given the higher cognitive effort required to decipher the task. The presence of descriptions

helped participants perform better in the described DIGT in Experiments 1 and 2, enabling

them to choose the advantageous decks more often and sooner. In our current research,

given the complexity of the task, it was cognitively advantageous for participants to use

descriptions, which in turn influenced behavior. This did not occur in previous research,

where the task was relatively simple and relying on experience alone was sufficient.

In Experiment 3, we showed that the influence of descriptions on decisions from expe-

rience is moderated by task complexity. Descriptions helped participants’ performance the

most in tasks of medium complexity, where the experience is relatively too complex to be

learned easily and efficiently, but descriptions are still relatively simple and can be processed

without too much additional effort. When the task was very simple, participants were able

to learn about the task experientially, which requires lower cognitive effort than analyzing

the descriptions. Participants mostly seemed to have neglected descriptions, replicating

results observed in previous research conducted with similarly simple tasks (Lejarraga &

Gonzalez, 2011; Weiss-Cohen et al., 2016). Increasing the task complexity too much, how-

ever, led to a situation in which both experience and descriptions were overly complex.

Learning via experience in complex tasks is more difficult, but processing the complicated

written information required to describe such a complex task is also taxing and demand-

ing. In these very complex tasks, the addition of descriptions did not help participants’

performance. This created a non-monotonic inverted U-shaped pattern for the relationship

between task complexity and influence of descriptions: highest for tasks of middle complex-



TASK COMPLEXITY MODERATES THE INFLUENCE OF DESCRIPTIONS 44

ity, and lower in both extremes of low and high complexity (see Figure 7). Similarly shaped

relationships between task complexity and decision performance had been observed before

in other domains (Eppler & Mengis, 2004; Hwang & Lin, 1999; Streufert & Driver, 1965).

They suggest that too much information can lead to cognitive overload, with deleterious

influences on performance, similar to what was observed here. A limitation of our current

experiments is that descriptions were always present on screen and constantly available to

participants, which might have contributed to information overload. As a future avenue of

research, the timing and frequency of the presence of descriptions should be manipulated.

A cognitive model that combined representations of both descriptive and experien-

tial information was also fitted to the behavioral data in Experiment 3. The combined

description-plus-experience model provided better fitting results than a more traditional

experience-only model that relied on experience alone, and did not consider any additional

descriptive information, in particular in the more complex experimental conditions. In the

simpler conditions of Experiment 3, the combined model was no better than the tradi-

tional model, a result that was previously shown both in Lejarraga and Gonzalez (2011)

and Weiss-Cohen et al. (2016), where an experience-only model fit the behavioral data

relatively well for simple tasks. We observed that as task complexity increased, the addi-

tion of descriptive information into the model led to better fitting results. The combined

description-plus-experience model also returned the same inverted U-shaped pattern for the

relationship between task complexity and performance improvement due to the addition of

descriptions, as observed behaviorally. The description-plus-experience combined model fit-

ted against Experiment 3 also provided good predictions for the behavior observed in the

DE conditions of Experiments 1 and 2 in a generalization test. An analysis of the best

fitting parameters showed that individuals pay more attention to losses, learn more slowly

and choose less randomly when descriptions are available to them. The proxy for complexity

used in the model was entropy, and while an overall task entropy was envisaged initially, the

best fitting model resulted from the use of an average entropy for each alternative, which

varied mostly due to the change in the number of outcomes. We believe this to be the case

because traditional reinforcement learning models using partial-feedback already indirectly

take into account the number of alternatives available, since only one can be updated at a
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time.

Continuous exploration in the presence of descriptions

The traditional experience-only IGT is a task based on trial and error, as partici-

pants explore the options available to them to gather information about the composition

of the cards within each deck, thereby reducing the uncertainty about the unknown char-

acteristics of the task. By adding additional information in the form of descriptions to the

task, the need for exploration is considerably reduced. An ideal agent who wanted to max-

imize their financial gains in our task could analyze the descriptive information available

at the beginning of the task, decide which is their preferred alternative, and exploit that

option across all trials, thus avoiding costly exploration. This was not observed and, while

participants switched less often between decks when descriptions were present, they did

not completely eliminate the switching behavior. This exploratory behavior, even after a

considerable amount of information had been collected about the task, has been observed

before, with many underlying explanations proposed.

Exploration is well adapted to dynamic environments, where full exploitation can

leave the individual ignorant of changes in the reward structures of non-explored options

(Knox, Otto, Stone, & Love, 2012; Speekenbrink & Konstantinidis, 2015). In such dynamic

situations, descriptions are actually detrimental (Rakow & Miler, 2009). While our current

task was static and not dynamic, perhaps human cognitive mechanisms for gathering in-

formation are better adapted to dynamic situations, which are more often encountered in

real life, and not to static environments, which normally characterize artificial laboratory

experiments. Shanks, Tunney, and McCarthy (2002) proposed that this sub-optimal type

of exploratory behavior could be due to boredom, as participants did not want to choose

the same option repeatedly, despite of the costs associated with diverging from optimal be-

havior. Alternatively, participants might have been selecting a mixed strategy where their

preferred selection pattern was to diversify across different decks with a certain frequency,

rather than having a single favorite option (Ashby et al., 2017; Konstantinidis et al., 2015).

In decisions from description-plus-experience, exploration might be partly a result of partic-

ipants’ need to confirm the veracity of descriptions via direct personal experience. Perhaps
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this was driven by limited trust in the descriptions, and further research is necessary to

establish the relationship between the influence of descriptions and the trustworthiness of

their sources.

Implications for research on warnings

This research has important implications in the field of creating more effective warn-

ings. Warnings can be seen as descriptions introduced to well-experienced situations. And

while extensive research on warnings has investigated their physical characteristics such

as color, placement, shape, size, tone, and symbology, very limited research has looked at

the interaction between warnings and personal experience, and even those that did focused

on familiarity and prior, not concurrent or posterior, experiences (for reviews, see Argo &

Main, 2004; Rogers, Lamson, & Rousseau, 2000). We propose that the lack of usefulness of

descriptions in overly complicated tasks might be due to the complexity of the descriptions

themselves which are used to describe these tasks, making them hard to interpret. Perhaps

if simpler descriptions could have been provided, even in complex tasks, then these would

have influenced behavior more. Analogously, simpler warnings should be more efficient and

increase compliance, while in reality it seems that warnings are becoming longer and more

complex over time, as shown by the example of patient information leaflets distributed

with medications which provide too much information that can be difficult to understand

(Bandesha, Raynor, & Teale, 1996; Bradley, McCusker, Scott, & Li Wan Po, 1995). And

while most real-life tasks are considerably more complex than the experiments presented

here, it might be that individuals perceive certain tasks to be simpler than they are, perhaps

by habituation, reducing their acceptance for and compliance with additional information

in the form of descriptions or warnings. Further research on description-plus-experience

should investigate how complexity influences the effectiveness of warnings in the form of

descriptions interacting with experiences, and attempt to manipulate the two dimensions

separately, for example by introducing simple descriptions into complex tasks and vice-

versa. Description-plus-experience paradigms, such as the DIGT employed here, are useful

tools for measuring how much impact descriptions (and by extension warnings) have on

behavior, while assessing individual differences and their moderators.
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Appendix A

Analyses for individual decks

Most of the research on the Iowa Gambling Task typically combines the two “advantageous”

decks together (decks C+D) into a single metric for analysis, according to their positive long-

term outcome potential, but disregarding individual deck characteristics (see Steingroever et

al., 2013, for a review). The same approach was used here in our studies. However this hides

any variation of choices among the individual decks. IGT studies show that participants tend

to prefer the decks with less frequent losses, regardless of long-term rewards (“frequency-of-

losses effect”: Ahn et al., 2008). A consequence of this effect is that they tend to select from

deck B more frequently than expected, given it has negative EV, the highest volatility, and

the largest losses (“prominent deck B effect”: Lin, Chiu, Lee, & Hsieh, 2007), and select

from deck C less frequently than expected, given it has positive EV, the lowest volatility,

and the smallest losses (“sunken deck C effect”: Chiu & Lin, 2007). In this appendix, we

have examined whether the same effects were present in our studies by re-analyzing the data

at the level of individual decks and investigated how the addition of descriptions might have

disrupted these earlier findings (Figure A1).

We re-analyzed the data from Experiments 1 and 2, together with the 4-deck ×

4-outcome conditions of Experiment 3. These conditions were selected to make them com-

parable, as the total of 16 outcomes in the latter conditions closely resembles the former

two, both with 14 outcomes each. The choice proportions of selections for each of the four

decks within each sequential block of 20 trials were analyzed in four individual linear mixed-

effects models. The fixed effects were the presence or absence of descriptions (E or DE),

the blocks of 20 trials each, and their interaction. The models also contained a random

intercept for each participant. A single model combining all decks was also generated for

pairwise comparisons between decks. Post-hoc pairwise comparisons were Tukey adjusted.

In the experience-only conditions, the deck-level findings typically associated with

IGT were also observed (Figure A1, rightmost panels), such as the prominent deck B effect,

with participants selecting from deck B significantly more than all other decks (pairwise

ps<.006). We also observed the sunken deck C effect, with participants selecting from deck

C as frequently as from deck D (pairwise p=.11).
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Figure A1 . Evolution of the average frequency of selection from each individual deck, as a percentage of total
for each block of 20 trials, for each experiment. The schedule of outcomes was fixed in Experiment 1 and
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condition. Decks A and B were disadvantageous with negative EV and decks C and D were advantageous
with positive EV. Decks B and D had frequent wins and infrequent (but larger) losses, while decks A and C
were more balanced with 50% wins and 50% losses.

The presence of descriptions creates a much clearer separation between selections

from the advantageous and disadvantageous decks (Figure A1, leftmost panels). Descrip-

tions helped participants identify deck A as the most disadvantageous sooner, and signifi-

cantly reduced the overall selections from that deck (Means and 95% C.I. shown: E=13.5%

[12.1,14.9], DE=6.9% [5.5,8.3], t(258)=6.48, p<.001, d=0.80). Descriptions also greatly

reduced selections from deck B (E=33.2% [29.6,36.7], DE=20.5% [16.7,24.1], t(258)=4.96,

p<.001, d=0.62), which were no longer the most often selected deck, thus eliminating

the “prominent deck B effect”. Despite an increase in selections from deck C (E=25.0%

[20.1,29.9], DE=37.6% [32.7,42.5], t(258)=3.58, p<.001, d=0.44), the effect size was smaller,
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and the “sunken deck C effect” still remained with descriptions. This effect was exacerbated

by the even smaller influence of descriptions on deck D (E=28.3% [24.0,30.7], DE=35.0%

[30.7,39.3], t(258)=2.15, p=.03, d=0.27), with a small effect size. It seems that participants

are still affected by the frequency-of-losses effect, which would lead them to select deck D

more often than expected, because of its low frequency of (large) losses, in the end select-

ing relatively equally often from the two advantageous decks (p=.29). The main effect of

block was significant for all decks, in the direction expected, with selections increasing over

time for the two advantageous decks, and decreasing over time for the two disadvantageous

decks (all ps < .005), but not influenced by the presence of descriptions, with non-significant

interactions (all ps ≥ .18).

Overall the main contributions of descriptions at individual deck level were to strongly

reduce the “prominent deck B” effect, as deck B was no longer the most often selected deck,

and help participants identify the disadvantageous deck A, with relatively smaller increases

in selections from decks C and D, which sustained a lingering “sunken deck C” effect.
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Appendix B

Supplementary material

The data from all studies have been made publicly available for download via the Open

Science Framework and can be accessed at https://osf.io/rzadn/.
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