
This is a repository copy of Sampling-based path planning for multi-robot systems with co-
safe linear temporal logic specifications.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/122230/

Version: Accepted Version

Proceedings Paper:
Montana, F.J., Liu, J. and Dodd, T.J. orcid.org/0000-0001-6820-4526 (2017) Sampling-
based path planning for multi-robot systems with co-safe linear temporal logic
specifications. In: Critical Systems: Formal Methods and Automated Verification. Joint
22nd International Workshop on Formal Methods for Industrial Critical Systems and 17th
International Workshop on Automated Verification of Critical Systems, FMICS-AVoCS
2017, 18-20 Sep 2017, Turin, Italy. Lecture Notes in Computer Science, 10471 . Springer
Verlag , pp. 150-164. ISBN 9783319671123

https://doi.org/10.1007/978-3-319-67113-0_10

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-
67113-0_10

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Sampling-Based Path Planning for Multi-robot Systems

with Co-safe Linear Temporal Logic Specifications

Felipe J. Montana1(�), Jun Liu2, and Tony J. Dodd1

1 Department of Automatic Control and Systems Engineering, University of Sheffield,

Sheffield, UK

{fjmontanagonzalez1,t.j.dodd}@sheffield.ac.uk
2 Department of Applied Mathematics, University of Waterloo, Waterloo, Canada

j.liu@uwaterloo.ca

Abstract. This paper addresses the problem of path planning for multiple robots

under high-level specifications given as syntactically co-safe linear temporal logic

formulae. Most of the existing solutions use the notion of abstraction to obtain

a discrete transition system that simulates the dynamics of the robot. Neverthe-

less, these solutions have poor scalability with the dimension of the configuration

space of the robots. For problems with a single robot, sampling-based methods

have been presented as a solution to alleviate this limitation. The proposed solu-

tion extends the idea of sampling methods to the multiple robot case. The method

samples the configuration space of the robots to incrementally constructs a tran-

sition system that models the motion of all the robots as a group. This transition

system is then combined with a Büchi automaton, representing the specification,

in a Cartesian product. The product is updated with each expansion of the tran-

sition system until a solution is found. We also present a new algorithm that im-

proves the performance of the proposed method by guiding the expansion of the

transition system. The method is demonstrated with examples considering differ-

ent number of robots and specifications.

1 Introduction

Motion planning based on high-level temporal specifications has become an important

area of research. Several methods have been developed for single robots, e.g., [5, 15, 18,

22]; and for multiple robots, e.g., [2, 6, 19]. The multi-robot path planning problem with

linear temporal logic (LTL) specifications can be categorised into two areas depending

on the final goal: (i) each robot has its own task, or (ii) all the robots act as a team

trying to accomplish a global specification. In general, to find a path that satisfies an

LTL specification, most of the methods use the notion of equivalent abstraction [1] to

create a finite transition system that models the motion of the robot. Then, a product

automaton is created using this transition system and a Büchi automaton that represents

the LTL specification. In this product automaton, a graph search is performed to find

Felipe J. Montana is supported by the Mexican National Council of Science and Technology

(CONACyT). Jun Liu is supported in part by the Natural Sciences and Engineering Research

Council (NSERC) of Canada and the Canada Research Chairs (CRC) program.

a path satisfying the specification. When a single task has to be completed by all the

robots, a parallel composition of the individual transition systems can be created to

model the motion of all the robots as a group. Then, this composition is used to create a

product automaton with the Büchi automaton as in the single robot case. Although this

method can find a solution, it is computationally expensive and scales poorly with the

number of robots [10].

To avoid the parallel composition, in [2], the authors present a method to decom-

pose the global specification into local specifications. Then, individual strategies are

computed for the robots. Using a similar approach, in [12], the problem of gathering

information from an environment while the motion of the robots is constrained by a

temporal logic specification is solved. Distributability has been also used to find robust

paths when the travelling time of the robots is uncertain [20] and for nonholonomic

robots [23]. Although these methods avoid the parallel composition by decomposing

the specification, the approaches fail to find a solution, even if one exists, when the

global specification is not distributable among the robots.

A common similarity of the works aforementioned is the assumption of a transi-

tion system obtained by the process of abstraction described above. A limitation of this

approach is its complexity. They scale at least exponentially with the dimension of the

configuration space of the robots [21]. Using sampling-based methods, this problem

has been addressed by sampling the continuous configuration space and incrementally

constructing a transition system until the specified task can be accomplished. In [8],

the authors use an incremental model checking method to solve the problem when µ-

calculus formulae are used to express the specifications. In [21], a method that uses a

sparse sampling to reduce the number of states in the transition system is presented.

These methods scale well since all the operations performed to find a path increment

only with the number of samples. The previous methods only consider a single robot.

For the multi-robot problem, in [7], a sampling-based method is used to create a tree

that approximates the product automaton. This approximation permits to solve large

problems, in terms of the number of states in the product automaton, that are not solv-

able considering the product automaton itself. Nevertheless, in contrast to the solution

proposed in this paper, they sample states from a transition system representing regions

of the environment and not from the configuration space of the robots.

In this paper we present a sampling-based method that explores the configuration

space of a group of robots to find a path such that a global specification is satisfied.

The proposed method explores an implicit representation of a composite roadmap that

models the motion of all the robots as a group. During the exploration, a transition sys-

tem is incrementally expanded by adding new states from individual roadmaps. With

each expansion, the product automaton of the transition system and a Büchi automa-

ton is updated. Although a solution can be found by naively exploring the composite

roadmap, this process could require long time. To improve this time, we also present an

algorithm that uses the Büchi automaton of the specification to guide the exploration

of the composition. The main contribution of this paper is a novel method that com-

bines a sampling-based method for multiple robots with a new algorithm that allows

fast computation of solutions.

The rest of the paper is organised as follows. Preliminaries and a formal definition of

the problem addressed are presented in Sect. 2. A detailed presentation of the proposed

method is found in Sect. 3. The method is demonstrated with three examples in Sect. 4

and the conclusion is presented in Sect. 5.

2 Preliminaries and Problem Definition

2.1 Deterministic Transition System

A deterministic transition system is a tuple T = (S,s0,δT ,Π ,L), where:

– S is a finite set of states,

– s0 ∈ S is an initial state,

– δT ⊆ S×S is a transition relation,

– Π is a finite set of atomic propositions,

– L : S→ 2Π is a labelling function.

A run on T is a sequence σ = s0s1 . . . such that for every i≥ 0, (si,si+1)∈ δT . The

trace of a run σ , ω = L(s0)L(s1) . . . , is a word over the power set of Π that defines the

atomic propositions that evaluate true in the states of the run.

2.2 Linear Temporal Logic

We use a segment of LTL, called syntactically co-safe LTL (sc-LTL) [11], to express

the desired system behaviour. LTL formulae are built from atomic propositions π ∈ Π
that indicate whether a property of the system is true or false.

Syntax: The syntax of sc-LTL over Π is defined as follows:

ϕ := π | ¬π | ϕ1∨ϕ2 | ϕ1∧ϕ2 | ©ϕ | ϕ1U ϕ2 ,

where π ∈ Π is an atomic proposition, ϕ is a sc-LTL formula; and ¬, ∨, ∧, © and

U represent the operators negation, disjunction, conjunction, next and until, respec-

tively. Other operators such as the temporal operator eventually, ♦π = TrueU π , can be

derived from the operators presented above.

Semantics: The semantics of LTL are defined over words ω . Given an LTL specifi-

cation ϕ , a run σ = sisi+1 . . . , and the satisfaction relation |=, the semantics are defined

inductively as follows:

si |= π iff π ∈ L(si) ,

si |= ϕ1∧ϕ2 iff si |= ϕ1 and si |= ϕ2 ,

si |= ϕ1∨ϕ2 iff si |= ϕ1 or si |= ϕ2 ,

si |=©ϕ iff si+1 |= ϕ ,

si |= ϕ1U ϕ2 iff ∃ j ≥ i : s j |= ϕ2 and sk |= ϕ1, ∀ i≤ k < j .

LTL formulae in positive normal form, where negations only occur in front of

atomic propositions, and which only use the operators ©, U and ♦, are co-safe for-

mulae [11].

2.3 Büchi Automaton

Given an LTL specification, it is possible to construct a Büchi automaton, which ac-

cepts only words ω that satisfy the specification. A Büchi automaton B is a tuple

B = (Σ ,Q,q0,δB,QF), where:

– Σ = 2Π is a finite alphabet,

– Q is a finite set of states,

– q0 ∈ Q is an initial state,

– δB : Q×Σ → Q is a transition function,

– QF ⊆ Q is a set of accepting states.

A run on B, produced by a word ω over the alphabet Σ , is a sequence ρ = q0q1 . . .
such that for every i≥ 0, there exists πi ∈ Σ and δB(qi,πi) = qi+1. For sc-LTL formulae,

an infinite word ω is accepted if it starts with a prefix such that the produced run ρ
reaches the set QF of final states. An example of a specification and its Büchi automaton

is shown in Fig. 1.

q0

q1

q2

¬π1 ⊤

π2

⊤

π1∧π2

π1

2

1

1

Fig. 1. Büchi automaton of formula ϕ = (¬π1U π2)∧♦π1, where π1,π2 ∈ Σ are atomic propo-

sitions, ⊤ is unconditionally true and U , ♦ are the operator until and eventually, respectively.

The formula indicates that the atomic propositions π2 and π1 have to be satisfied in that specific

order or at the same time. The small numbers on the edges are used to identify each transition

(see Sect. 3.4). The initial and final states, q0 and q2, are indicated with an arrow and a double

circle, respectively.

Given a Büchi automaton B = (Σ ,Q,q0,δB,QF), let |Q|,|q| and AP(q,q′) denote

the cardinality of Q, the number non self-transitions from state q and the set of atomic

propositions required for a transition from q to q′, i.e., AP(q,q′) = π if δB(q,π) = q′.

2.4 Product Automaton

Given a transition system T and a Büchi automaton B, the product automaton P =
T ×B is defined by the tuple P = (SP ,sP,0,δP ,SP,F), where:

– SP = S×Q is a finite set of states,

– sP,0 = s0×q0 is an initial state,

– δP ⊆ SP ×SP is a transition relation, where ((s,q),(s′,q′)) ∈ δP iff (s,s′) ∈ δT

and δB(q,L(s′)) = q′,

– SP,F = S×QF is a set of accepting states.

2.5 Problem Formulation

We consider R robots operating in a workspace containing obstacles and areas of in-

terest, defined by disjoint regions, that are associated with atomic propositions. These

atomic propositions are used to define sc-LTL formulae such as ϕ1 = ♦π1 or ϕ2 =
¬(π1∨π2)U (π1∧π2). Formula ϕ1 indicates that a robot has to visit the area associated

with the atomic proposition π1 while the formula ϕ2 indicates that the areas π1 and π2

cannot be visited until they are reached at the same time step.

Let X i ⊂R
n be a compact set defining the configuration space of a robot i, where i is

an element of the set ℜ = {1, . . . ,R} that indexes the robots and R
n is the n-dimensional

Euclidean space. Each robot has an obstacle-free configuration space X i
free. The config-

uration space of the full system is denoted as X = ∏i∈ℜ X i. The obstacle-free space

Xfree = ∏i∈ℜ X i
free does not include states where collision between robots occurs. Let

xxx = x0x1 . . . , where x j = (x1
j , . . . ,x

R
j) for all j ≥ 0, be a sequence of configurations de-

scribing a path followed by the full system. A path is collision free if x j ∈ Xfree for all

j ≥ 0. To interpret atomic propositions over the configuration space X , let L : X → 2Π

be a function that maps a configuration x to the atomic propositions satisfied by the con-

figuration. Hence, a word ω = L(x0)L(x1) . . . expresses a path xxx in terms of the atomic

propositions. We say that the path xxx satisfies the sc-LTL specification ϕ if the word ω ,

produced by xxx, is accepted by the Büchi automaton that accepts words satisfying ϕ .

Problem definition: Given a group of R robots with initial configuration xi
0 for i ∈ℜ

and a sc-LTL specification ϕ , find a collision-free path xxx such that ϕ is satisfied.

3 Solution

This section firstly presents an overview of the proposed method followed by a de-

tailed explanation. The main idea of the method is to create a graph, called transition

system, modelling the motion of all the robots as a single system. Each vertex of the

graph represents a combination of single configurations of all the robots. Edges repre-

sent collision-free paths between these configurations. Initially, the graph contains only

one vertex, the initial configuration of all the robots. Then, this graph is incrementally

expanded by adding a new vertex and transitions. To obtain the new vertex, individual

graphs, called roadmaps, that model the motion of each robot are used. The process of

expanding the graph is repeated until the specification can be satisfied by a path in the

graph. To improve the required time to find a solution, the method uses an algorithm that

guides the expansion of the graph. Section 3.1 explains the creation of the individual

roadmaps. In Sects. 3.2 and 3.3, the incremental construction of the transition system

and the search for a path satisfying the specification are presented. In Sect. 3.4, the al-

gorithm that guides the expansion is explained in detail. Finally, illustrative examples

and conclusions are presented in Sect. 4 and 5, respectively.

3.1 Probabilistic Roadmap

The first step of the proposed method consists of creating probabilistic roadmaps [9]

for each robot i ∈ℜ. A roadmap of a robot i models a subset of the possible trajectories

of the robot and is formed by a set of sampled configurations x ∈ X i
free connected by

collision-free paths. A graph Gi = (V i,E i) is used to represent the roadmap of the robot

i. Each vertex v ∈V i is associated with an unique robot configuration x ∈ X i
free. This as-

sociation is given by the function χ : V i→ X i. Connectivity between two configurations

is represented by an edge (v,v′) ∈ E i. We refer to all the vertices v′ that share an edge

with v as neighbours of v. To verify the satisfaction of a specification using only the

atomic propositions that are true in each state of the transition system, see Sect. 3.3, we

limit the edges between vertices to those edges that intersect the boundary of a region

in the workspace at most once [21]. Moreover, we reduce the size of the roadmaps by

constructing sparse roadmaps [4]. Since each vertex v ∈V i is associated with a config-

uration x ∈ X i
free, with abuse of notation, we use L(v) to denote the atomic propositions

satisfied by χ(v). The set of vertices on a roadmap Gi that satisfy an atomic proposition

π ∈Π is denoted by JπKi.

To consider the configuration of all the robots, a composite roadmap [17] G =
(V,E) is constructed as the tensor product of the individual roadmaps {Gi}R

i=1. For-

mally, ν = (v1, . . . ,vR) is a vertex of G if vi ∈ V i for all i ∈ ℜ and χ(ν) ∈ Xfree. Let

ν = (v1, . . . ,vR) and ν ′ = (v
′1, . . . ,v

′R) be two vertices in G. In a tensor product, an

edge (ν ,ν ′) ∈ E is defined if for every i ∈ ℜ, (vi,v
′i) ∈ E i. The projection of a com-

posite vertex ν ∈ V onto the vertex vi ∈ V i of robot i is denoted by ν ↓i, i.e., ν ↓i= vi.

The atomic propositions satisfied by a vertex ν = (v1, . . . ,vR) is the union of the atomic

propositions satisfied by the individual vertices forming ν , i.e., L(ν)=∪R
i=1L(vi), where

vi = ν ↓i.

As explained in Sect. 1, it is possible to find a path for each robot satisfying a spec-

ification by creating a product automaton of the composite roadmap G and the Büchi

automaton B of the specification ϕ . Nevertheless, this procedure is only applicable

for small problems due to its poor scalability; the number of vertices in G is |V |R. In-

stead, we implicitly represent G and perform a sampling of it until a solution is found.

Algorithm 1, explained in the rest of Sect. 3, shows this procedure.

Algorithm 1 IncrementalExpansion ({Gi}R
i=1,B)

1: S← s0 = (v1
0,v

2
0, . . . ,v

R
0)

2: P = T ×B

3: while sP = (s,q) /∈ SP : q ∈ QF do

4: T ← Explore({Gi}R
i=1,T)

5: P,S′
P
← Update(P ,B,T)

6: T ← LocalConnector({Gi}R
i=1,B,T ,S′

P
)

7: while new connection do

8: P,S′
P
← Update(P ,B,T)

9: T ← LocalConnector({Gi}R
i=1,B,T ,S′

P
)

3.2 Composite Roadmap Exploration

In this subsection, the incremental exploration of the composite configuration space G is

presented. First, a transition system T is initialised with only the vertex corresponding

to the initial configuration of all robots, i.e., s0 = ν0 = (v1
0,v

2
0, . . . ,v

R
0), where χ(vi

0) =
xi

0 ∀i ∈ ℜ (Alg. 1, line 1). Vertices ν added to the transition system are represented

as s. In each iteration of Alg. 1, a new state is added to T using the idea of discrete

rapidly-exploring random trees [16] as follows (Alg. 1, line 4).

Unless some conditions, explained in Sect. 3.4, are satisfied, a state s=(v1, . . . ,vR)∈
S is randomly selected from the transition system T . Consider a single vertex vi form-

ing s and recall that vi, j is a neighbour of vi in Gi if (vi,vi, j)∈ E i. The rays ρvi,vi, j , for all

j ∈ {1, . . . , l}, that start from vi and pass through the l neighbours of vi are computed.

Then, a configuration xsample is sampled from X i
free and the ray ρvi,xsample

is calculated.

To choose a neighbour of vi in direction of xsample, the angles between the ray ρvi,xsample

and each of the rays ρvi,vi, j are computed. The neighbour vertex that generates the ray

with the smallest angle is selected and denoted as vi
new, Fig. 2. This process is repeated

for all the vertices forming s, resulting in a candidate state snew = (v1
new, . . . ,v

R
new).

Before adding snew to T , it is verified whether collision between robots exists. To

avoid collisions during the transitions (vi,vi
new) for all i ∈ ℜ, priorities are assigned

to each robot according to the following rules [3]: (i) if robot i, transitioning from vi

to vi
new, causes a collision with robot j, located in v

j
new, the robot i receives higher

priority than j; (ii) if robot i collides with robot j placed in v j during the transition

30 40 50 60 70 80 90

50

60

70

80

90

100

110

vi
vi,1

vi,2

vi,3

vi,4

xsample

α

Fig. 2. Selection of vertex and edge in roadmap Gi. The states and transitions in T are illustrated

with black vertices and edges. The roadmap Gi is shown in grey. To choose which neighbour

{vi, j}4
j=1 of vi is added to the T , a configuration xsample is randomly sampled from X i

free. The

rays starting from vi and passing through xsample and the neighbours are shown as red and blue

dotted lines, respectively. The angles between the ray of the sample and the rest of the rays are

computed. The smallest angle, α in the figure, determines which neighbour and edge are added

to T , neighbour vi,2 in this example.

(vi,vi
new), then, robot i receives lower priority than j. The state snew is discarded if

there is no ordering such that collisions are avoided. Otherwise, the state is added to

T with the transitions (s,snew) and (snew,s). Note that by choosing only neighbours of

each individual vertex vi, (v1
new, . . . ,v

R
new) is an element of the composite roadmap G.

Intuitively, the transition system T represents the explored part of G. An example of

such exploration, for the case R = 1, is shown in Fig. 3.

π1 π2

π3 π4

π1 π2

π3 π4

Fig. 3. Incremental construction of a transition system. The roadmap of the robot is shown in

grey. The transition system, representing the explored part of the roadmap, is shown in black. The

green areas, identified by the atomic propositions π1, π2, π3 and π4, are regions of interest. The

proposed method iteratively adds vertices and edges from the roadmap to the transition system

until the specifications can be satisfied. In this example, the specification is to visit the four green

areas. The initial configuration of the robot is shown as a red vertex.

Since each vertex ν of G is associated with a configuration x ∈ Xfree, a run σ =
s0s1 . . . on T represents a path of the full system in the configuration space Xfree. Hence,

this exploration continues until a path that satisfies the specification ϕ is found. The

procedure to determine whether the current transition system contains such a path is

presented in the next subsection.

3.3 Product Automaton Update

Based on model checking techniques, the verification of a run σ satisfying the sc-LTL

specification ϕ is made on the Cartesian product P = (SP ,sP,0,δP ,SP,F) of T and

the Büchi automaton B obtained from ϕ . States sP ∈ SP are formed by pairs (s,q),
where s = (v1, . . . ,vR) ∈ S is a state of T and q ∈ Q is a state of B.

The product automaton P is firstly created when the transition system contains only

the initial state s0 (Alg. 1, line 2). Since the transition system T changes with each new

state snew, the product P requires to be updated (Alg. 1, line 5). The procedure to

incrementally update P [21] and to search for a path satisfying ϕ is now presented.

When a new state snew is added to T with the transition (s,snew) and (snew,s),
the set S′

P
of states s′

P
= (snew,q

′), such that δB(q,L(snew)) = q′ and (s,q) ∈ SP , is

computed. Then, for each state s′
P
∈ S′

P
, it is verified if s′

P
is already in SP . If that

is not the case, the state is added to P and is removed from S′
P

. Moreover, the set of

states s′′
P

= (s′,q′′), such that (snew,s
′) ∈ δT and δB(q′,L(s′)) = q′′, is computed. If a

state s′′
P

is not already in SP , s′′
P

is added to SP and to S′
P

. This recursive procedure

continues until the set S′
P

is empty.

By construction, if a run on P , starting from sP,0, reaches the set SP,F of accepting

states, the language produced by the run σ on T generates a word ω that is accepted

by the Büchi automaton B computed from the sc-LTL formula. In other words, a run σ
on T satisfies the specification if a run on P reaches the set of accepting states. Hence,

the process of exploring B and updating P continues until a state sP = (s,q) is added

to P such that q ∈ QF (Alg. 1, line 3).

A solution to the problem defined in Section 2.5 would be eventually found by

repeating the process described above. Nevertheless, depending on the number of robots

and the specification, this process could take an impractical amount of time. In the next

subsection, an algorithm that improves the required time by guiding the exploration of

G is presented.

3.4 Guided Expansion

In this subsection, we present a new algorithm, called local connector, which selects the

states in T that must be expanded in order to satisfy the sc-LTL specification. The main

idea is to find the shortest path, in terms of transitions, in the Büchi automaton to an

accepting state and to search for vertices in the individual roadmaps {Gi}R
i=1 satisfying

the atomic propositions required to progress in such a path.

Before explaining the algorithm, some concepts and notation are introduced. The

algorithm monitors which transitions of the Büchi automaton have been satisfied by the

current transition system. To achieve this, each state and non-self transition of the Büchi

automaton are identified by an index, Fig. 1. When one of the |qi| outgoing transitions

from state qi ∈ Q is satisfied, the index that identifies the transition is added to the set

Di
δ . Once all the outgoing transitions of a state qi ∈ Q are satisfied, i.e., |Di

δ |= |qi|, the

index i is added to the set Dq.

Depending on the transition, one or more atomic propositions have to be satisfied

at the same time. Since each robot can satisfy one atomic proposition at a time, when

more than one proposition is required, collaboration between robots is needed. Consider

the transition (q0,q2) in the Büchi automaton shown in Fig. 1 as an example. To make

this transition, the atomic propositions π1 and π2 have to be satisfied, i.e., AP(q0,q2) =
{π1,π2}. The algorithm verifies if a robot i is able to satisfy any of the propositions by

finding a local path from its current configuration to a configuration in Gi satisfying one

of the atomic propositions. If, for instance, a path exists to a vertex v ∈ V i satisfying

π1, i.e., v ∈ Jπ1Ki, the atomic proposition π1 is added to the set DΠ and the index that

identifies the robot is added to the set WR. The set WR identifies the robots that are

waiting for other robots to satisfy the remaining atomic propositions required to make

the transition in the Büchi automaton. Moreover, this set is used to guide the expansion

of T as presented below. To identify which transition is tried to be satisfied when a

robot is added to WR, the index identifying the state q and its outgoing transition are

Algorithm 2 LocalConnector ({Gi}
R
i=1,B,T ,S′

P
)

1: gi←{s : (s,qi) ∈ S′
P
, ∀i ∈ {1, . . . , |Q|}}

2: for i ∈ sorted(qi) : i ∈ {1, . . . , |Q|},gi 6= /0 and i /∈ Dq} do

3: for j ∈ {ℜ : j /∈WR} do

4: for n = 1→ |gi| do

5: vs = sn ↓ j , sn ∈ gi ⊲ Vertex to be connected

6: for k ∈ sorted(δB(qi, ·)) : k ∈ {1, . . . , |qi|,Wδ 6= /0→ k ∈Wδ and k /∈ Di
δ
} do

7: Πreq = AP(qi,qk) ⊲ Set of AP required

8: for m ∈ {1, . . . , |Πreq| : m /∈ DΠ} do

9: for h = 1→ |JπmK j| do

10: vt = vh, vh ∈ JπmK j ⊲ Target vertex

11: if Connect (vs,vt) then

12: if |Πreq|= 1 then

13: snew = s , s ∈ gi

14: snew ↓ j= vt ⊲ New state of T

15: Di
δ
← Di

δ
∪ k

16: else if |DΠ |< |Πreq|−1 then

17: WR←WR∪ j ⊲ robot j can satisfy πm

18: Wq←Wq∪ i

19: Wδ ←Wδ ∪ k

20: DΠ ← DΠ ∪m

21: v j,next = vt ⊲ Vertex satisfying πm

22: else if |DΠ |= |Πreq|−1 then

23: snew = s , s ∈ gi

24: snew ↓p= vp,next , ∀p ∈WR

25: snew ↓ j= vt ⊲ New state of T

26: Di
δ
← Di

δ
∪ k

27: WR = /0,Wq = /0,Wδ = /0,DΠ = /0

added to the sets Wq and Wδ , respectively. We now explain the algorithm in detail, see

Alg. 2.

The algorithm receives as input the Büchi automaton B and the set S′
P

of states

added to the product automaton P after the last update. These states have the form

(s,q), where s = (v1, . . . ,vR) ∈ S and q ∈Q. The states are divided into different groups

depending on their Büchi state component (Alg. 2, line 1). In other words, for each

state qi in the Büchi automaton, a group gi containing states s = (v1, . . . ,vR) such that

sP = (s,qi) ∈ S′
P

is created. The algorithm eliminates the group gi if there is no re-

maining outgoing transitions from the Büchi state qi to be satisfied, i.e., i ∈ Dq. Then,

the algorithm sorts, from shortest to longest, the different paths from the initial state

q0 ∈ Q to the closest accepting state q ∈ QF in the the Büchi automaton B.

Using these sorted paths, the algorithm tries to reach atomic propositions required

in the paths, starting from the shortest path (Alg. 2, line 2). An exception to the order is

made when of one the robots is waiting for another atomic proposition to be satisfied,

i.e., WR 6= /0. In this case, all the Büchi states are ignored except the states in the set Wq.

For each state s in gi, the individual vertices of non-waiting robots forming s, i.e.,

s ↓ j for j ∈ ℜ \WR, are considered to be connected to vertices in G j satisfying the

required atomic propositions in the Büchi automaton transition. An individual vertex,

denoted as vs, is considered for connection in each iteration (Alg. 2, lines 3-5). If a

robot is waiting, all the transitions are ignored except the transition indicated by the

set Wδ . Otherwise, the transition is selected based on the sorted paths (Alg. 2, line 6).

The required atomic propositions in the transition are assigned to the set Πreq (Alg. 2,

line 7). Then, all the vertices in the roadmap G j that satisfy an atomic proposition that

cannot be satisfied by a waiting robot, i.e., πm ∈ Πreq \DΠ , are assigned as a target of

the connection and are denoted as vt (Alg. 2, lines 8-10). The algorithm then tries to find

a path between the vertices vs and vt . By connecting the transition system to vertices

satisfying atomic propositions required for the specification, the time needed to solve

the proposed problem is reduced.

In order to find a path between the vertices vs and vt any method can be used. How-

ever, because this process is constantly repeated, a method that sacrifices completeness

for speed is preferred. In this work, the algorithm attempts to connect two vertices if the

Euclidean distance between them is less than a pre-established value. If the path, given

by a line between the vertices, is collision free, the connection is considered success-

ful (Alg. 2, line 11). Depending on the number of atomic propositions in the selected

transition in B, three different situations can occur:

Case 1: Only one atomic proposition is required in the transition, i.e., |Πreq| = 1

(Alg. 2, lines 12-15). In this case, if robot j can satisfy the required atomic proposition

through the connection, a new state snew =(v1, . . . ,vR), where vi = s ↓i for i∈{ℜ : i 6= j}
and vt otherwise, is created. Intuitively, the new state has the same components as the

composite state s, except the element of robot j that is replaced by vs. If the new state

is not in the transition system T , the state is added with the transitions (s,snew) and

(snew,s). Finally, the index k of the satisfied transition is added to Di
δ

indicating that the

transition k from state qi has been satisfied.

Case 2: More than one atomic proposition is required and at least one more is still

required after the connection (Alg. 2, lines 16-21). When a robot j can satisfy one of the

required atomic propositions but at least another is needed for the transition in the Büchi

automaton, the robot stays in the vertex vs waiting for the remaining robots to satisfy

the other atomic propositions. To indicate that the robot is waiting, the index j is added

to the set WR. The set WR restricts the states that can be selected in the exploration of G.

The selected state in the exploration must be formed by the vertices vi, where i ∈WR.

Moreover, the next state snew to be added to the transition system must have the same

vertices. After adding the index j of the robot to the set WR, the vertex that can be

reached, i.e., vt , is saved in v j,next to be used once all the atomic propositions of the

transition are satisfied. Then, the index m of the atomic proposition that can be satisfied

is added to the set DΠ to skip this atomic proposition the next iteration of Alg. 2. Note

that the restriction explained above guides the sampling process of G.

Case 3: The last required atomic proposition is satisfied with the connection (Alg.

2, lines 22-27). Similar to case 1, when a robot j can satisfy the last required atomic

proposition, a new state snew is created with the saved states vi,next, i.e., snew ↓i= vi,next

for all i∈WR, vt for i= j and s ↓i otherwise. This state is added to T with the transitions

(s,snew) and (snew,s). The index k of the satisfied transition is added to Di
δ

and the sets

WR, Wq and Wδ and DΠ become empty indicating that all the robots can move again and

any non-satisfied state and transition in the Büchi automaton can be selected.

Every time a new state snew is added to T , the product automaton P is update (Alg.

1, lines 7-9) and the process is repeated. As mentioned in Sect. 3.3, Alg. 1 stops once a

product state with a final state q ∈ QF is added to P .

3.5 Implementation

This subsection presents how a solution is obtained from P and the implementation

of it in the robots. Once the condition to stop Alg. 1 is satisfied, the shortest path σ =
sP,0 . . .sP,n on P , where sP,n ∈ SP,F , is sought. Since a state sP is formed by the pair

(s,q), only the first element of each state is considered to create the path xxx that satisfies

the sc-LTL specification. The function χ is used to define the configurations in X that

defines xxx. Finally, each configuration in xxx is projected to the individual configuration

spaces X i to define a path for each robot.

To execute the path, each robot stores a list of the vertices to visit in its roadmap

Gi together with the configurations where the robot has to wait for other robots before

performing a transition. When a robot finishes a transition, it broadcasts a unique iden-

tifier number and a signal indicating that the transition has been completed. If a robot

needs to wait for other robots, the transition is not performed until the robot receives

the signal of all the robots with higher priority.

4 Examples

The proposed method is illustrated with different sc-LTL specifications and number of

robots. We consider a differential wheeled robot, called e-puck [14], in a workspace

with 4 areas associated with the atomic propositions π1, π2, π3 and π4, Fig. 4. The

computation of the path is implemented in MATLAB on a computer with a 3.1 GHz

i7 processor and 8GB of RAM. The dynamics of the e-pucks are simulated using Enki

[13].

We present three examples, considering two, three and four robots, respectively:

1. Regions π1, π2 have to be visited at the same time as well as π3, π4 with the same

restriction, Fig. 4.

2. Regions π1, π2 and π3 must be visited in the presented order.

3. Regions π1, π2, π3 and π4 cannot be visited until all of them are visited at the same

time.

Recall that the number of vertices in G is equal to |V |R, where |V | is the number

of vertices in the roadmap and R is the number of robots. In the example with four

robots, the parallel composition G has more than 96 million vertices. Nevertheless,

Table 1 shows that only a small portion of G is explored before finding a solution.

This result can be attributed to the guided search performed by the local connector

algorithm. For comparison, we compute a solution to the first specification without

Alg. 2. That is, we only expand the transition system using the idea presented in Sect.

π1

π2

π3

π4

Fig. 4. Illustration of the path followed by two robots satisfying the specification ϕ = ♦(π1 ∧
π2)∧♦(π3 ∧π4). This sc-LTL specification requires the robots to visit areas marked as π1 and

π2 at the same time and the areas π3 and π4 with the same restriction. The colour of the robots

changes, from darker to lighter blue, over time to show that the atomic propositions are satisfied

at the same time step.

Table 1. Average number of states in T and required time to solve the problem over 20 different

runs.

Specification Robots States in T Time (seconds)

♦(π1∧π2)∧♦(π3∧π4) 2 278.55 6.30

♦(π1∧©♦(π2∧©♦(π3))) 3 6457.9 372.37

¬(π1∨π2∨π3∨π4)U (π1∧π2∧π3∧π4) 4 270.4 7.48

3.2. In average, the solution is found in 1057.91 seconds and require the exploration

of 7242.43 vertices. This comparison shows that Alg. 2 reduces the exploration or G

and, as a consequence, the required time to find a solution. A direct comparison with

other sampling-based methods for multiple robots, e.g., [7], is not possible because our

method samples the continuous configuration space instead of a discrete representation

of the robots mobility.

5 Conclusions

In this paper, we have introduced a new method to find collision-free paths for a multi-

robot system that satisfy syntactically co-safe linear temporal logic formulae. Most of

the work in the literature consider methods with low scalability with respect to the

dimension of the robot’s configuration space. We extend sampling-based methods, pre-

viously proposed to alleviate the scalability problem, to multi-robot systems. The pro-

posed method explores a composite roadmap modelling the possible behaviour of all

the robots. This exploration stops when a path satisfying the specification is found. Ad-

ditionally, we have presented a new algorithm that guides the exploration to reduce the

time required to find a solution. Numerical results show that only a small portion of the

composite roadmap is explored as a result of using this algorithm. The proposed method

is focused on obtaining a result in the shortest possible period of time regardless of its

optimality. Hence, a possible direction for future work is the inclusion of a cost function

to find optimal paths.

References

1. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid sys-

tems. Proc. of the IEEE 88(7), 971–984 (2000)

2. Chen, Y., Ding, X.C., Belta, C.: Synthesis of distributed control and communication schemes

from global LTL specifications. In: Proc. of CDC-ECC. pp. 2718–2723. IEEE (2011)

3. van Den Berg, J., Snoeyink, J., Lin, M.C., Manocha, D.: Centralized path planning for mul-

tiple robots: Optimal decoupling into sequential plans. In: Robotics: Science and systems.

vol. 2, pp. 2–3 (2009)

4. Dobson, A., Bekris, K.E.: Sparse roadmap spanners for asymptotically near-optimal motion

planning. The International Journal of Robotics Research 33(1), 18–47 (2014)

5. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning

for dynamic robots. Automatica 45(2), 343–352 (2009)

6. Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under local LTL specifica-

tions. The International Journal of Robotics Research 34(2), 218–235 (2015)

7. Kantaros, Y., Zavlanos, M.M.: Sampling-based control synthesis for multi-robot systems

under global temporal specifications. In: Proc. of ICCPS. pp. 3–13. ACM (2017)

8. Karaman, S., Frazzoli, E.: Sampling-based motion planning with deterministic µ-calculus

specifications. In: Proc. of CDC/CCC. pp. 2222–2229. IEEE (2009)

9. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path

planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Au-

tomation 12(4), 566–580 (1996)

10. Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from temporal

logic motion specifications. IEEE Transactions on Robotics 26(1), 48–61 (2010)

11. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods in System

Design 19(3), 291–314 (2001)

12. Leahy, K., Jones, A., Schwager, M., Belta, C.: Distributed information gathering policies

under temporal logic constraints. In: Proc. of CDC. pp. 6803–6808. IEEE (2015)

13. Magnenat, S., Waibel, M., Beyeler, A.: Enki: The fast 2d robot simulator. URL http://home.

gna. org/enki (2011)

14. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zuf-

ferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engi-

neering. In: Proc. of ICARSC. pp. 59–65. IPCB (2009)

15. Montana, F.J., Liu, J., Dodd, T.J.: Sampling-based stochastic optimal control with metric

interval temporal logic specifications. In: Proc. of CCA. pp. 767–773. IEEE (2016)

16. Solovey, K., Salzman, O., Halperin, D.: Finding a needle in an exponential haystack: Discrete

RRT for exploration of implicit roadmaps in multi-robot motion planning. The International

Journal of Robotics Research 35(5), 501–513 (2016)

17. Švestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Robotics and

autonomous systems 23(3), 125–152 (1998)

18. Svoreňová, M., Křetı́nský, J., Chmelı́k, M., Chatterjee, K., Černá, I., Belta, C.: Tempo-

ral logic control for stochastic linear systems using abstraction refinement of probabilistic

games. In: Proc. of HSCC. pp. 259–268. ACM (2015)

19. Tumová, J., Dimarogonas, D.V.: A receding horizon approach to multi-agent planning from

local LTL specifications. In: Proc. of ACC. pp. 1775–1780. IEEE (2014)

20. Ulusoy, A., Smith, S.L., Ding, X.C., Belta, C., Rus, D.: Optimality and robustness in multi-

robot path planning with temporal logic constraints. The International Journal of Robotics

Research 32(8), 889–911 (2013)

21. Vasile, C.I., Belta, C.: Sampling-based temporal logic path planning. In: Proc. of IROS. pp.

4817–4822. IEEE (2013)

22. Wolff, E.M., Topcu, U., Murray, R.M.: Optimal control of non-deterministic systems for

a computationally efficient fragment of temporal logic. In: Proc. of CDC. pp. 3197–3204.

IEEE (2013)

23. Zhang, Z., Cowlagi, R.V.: Motion-planning with global temporal logic specifications for

multiple nonholonomic robotic vehicles. In: Proc. of ACC. pp. 7098–7103. IEEE (2016)

