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Taking Reductionism to the Limit:

How to Rebut the Antireductionist

Argument from Infinite Limits

Juha Saatsi and Alexander Reutlinger*y

This article analyzes the antireductionist argument from renormalization group explana-

tions of universality and shows how it can be rebutted if one assumes that the explana-

tion in question is captured by the counterfactual dependence account of explanation.

1. Introduction: The Antireductionist Challenge. Statistical and con-
densed matter physics have always been a rich source for antireductionist
arguments. One prominent antireductionist argument turns on the theoreti-
cal role played by infinite limits, such as the thermodynamic and continuum
limits, in the context of renormalization group (RG) explanations. Antireduc-
tionists have appealed to RG explanations of, for example, the occurrence of
phase transitions and the universality of critical exponents. They have argued
that the indispensable explanatory usage of continuum limits in these expla-
nations speaks against reductionism, because such usage reveals a significant
limitation of a more fundamental reductive theory that describes the atomic
constituents of ultimately finite (albeit microphysically absolutely huge) bits
of matter (Batterman 2000, 2001, 2002, 2010, 2011; Morrison 2012, 2015).
In particular, antireductionists have pointed to the indispensable explanatory
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role of the fixed points of RG transformations. These fixed points presuppose
limit assumptions that are arguably in tensionwith reductionism. (Menon and
Callender [2013, 197] nicely summarize: “Thefixed point only appears when
the system has no characteristic length scale. This is why the infinite particle
limit is crucial for the renormalization group approach.”) Thus, taken at face
value, the fixed points (incorporating such limit assumptions) contradict the
finiteness of the physical systems exhibiting universality—a finiteness that is
assumed by the fundamental physical theory to which reductionists allude.
The upshot is that the explanatory indispensability of these fixed points is
thus seen to reveal a philosophically significant limitation of a more funda-
mental theory.

Let us call the antireductionist argument sketched above the “argument
from infinite limits.” This argument can be seen to underwrite a specific
challenge for the reductionists:

Antireductionist Challenge The reductionists ought to show how the

fixed points involved in RG explanations of critical phenomena can be

(a) explanatorily indispensable and, at the same time, (b) compatible with

reductionism.

Our main goal in this article is to show how a reductionist can meet this chal-
lenge. We will assume for the sake of the argument that fixed points (and the
presupposed limit assumptions) are indeed indispensable for RG explana-
tions of universality. By making this assumption, we will try to make the
strongest possible case for antireductionism. Notwithstanding this assump-
tion, wewill argue that the supposed indispensability does not lead to any on-
tological commitments threatening reductionism. We will do so by arguing
that a particular account of explanation—the counterfactual dependence ac-
count—captures the explanatory character of RG explanations and that, in
light of this understanding of RG explanations, the indispensability of fixed
points is not ontologically committing.

Our response to the antireductionist challenge addresses two clear lacunae
with regard to the recent debate. The first lacuna is that the reductionist anal-
yses of the infinite limits (including the fixed points of RG transformations)
have focused on explanations of the occurrence of phase transitions (see,
e.g., Earman 2004; Butterfield 2011a, 2011b, 2014; Norton 2012; Menon
and Callender 2013). These analyses do not address one of the key points
emphasized by the antireductionists, namely, the idea that reductionists can-
not capture RG explanations of universality of macrobehavior of physical
systems undergoing (second-order) phase transitions.1 To address the first la-

1. Exceptions: Hüttemann,Kühn, and Terzidis (2015) andReutlinger (2016, 2017a, 2017b)
address the explanandum of universality. The current article builds on this line of work.
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cuna, we focus on meeting the antireductionist challenge with respect to the
RG explanation of universality.

The second lacuna concerns the fact that relatively little work has been
done to explicate the explanatory character of RG explanations of universal-
ity. On the one hand, the reductionists’ focus has been on intertheoretic reduc-
tion relations (mostly framed as neo-Nagelian reduction). RG explanations,
insofar as these have been discussed at all, have been portrayed—without
much of an argument—in terms of the deductive-nomological (DN) account
of explanations, as befitting a Nagelian approach to reduction (Butterfield
2011a, 2011b; Norton 2012). Portraying RG explanations as exemplifying
the DN model is a controversial and somewhat surprising claim, since most
philosophers of science today agree that the DN account of scientific expla-
nation is deeply problematic. So regarding it as an adequate explication of a
particular scientific explanation requires a good rationale.

On the other hand, although the antireductionists do not advocate the cov-
ering law account, they have not provided a convincing philosophical ac-
count of RG explanations either.Most prominently, Batterman has advocated
a ‘minimal models’ account according to which RG explanations are explan-
atory (roughly) by virtue of showing that the explanandum is completely in-
dependent of all microdetails (Batterman 2000, 2001, 2002; Batterman and
Rice 2014). However, this approach faces serious objections (that are inde-
pendent of the problems of the DN model), and we do not regard it as con-
vincing (see Lange 2015; Reutlinger 2017a; see also Jansson and Saatsi
2017). In effort to address the second lacuna, we will explicate the explana-
tory character of the RG explanation of universality in relation to the coun-
terfactual dependence account of explanation.

The plan of the article is as follows: section 2 reviews the (anti)reduction-
ism debate surrounding RG fixed points. In particular, we highlight a connec-
tion between the antireductionist argument from infinite limits and explana-
tory indispensability arguments. In section 3, we clarify the explanandum at
stake, emphasizing the theoretical context of physics of critical phenomena
that preceded the RG analysis. In section 4, we provide a detailed exposition
of the relevant physics of RG explanans and the role of fixed points (sec. 4.1),
and we argue that the counterfactual dependence account of scientific expla-
nations captures RG explanations of universality (sec. 4.2). In section 5, we
respond to the antireductionist challenge on the basis of the results of sec-
tion 4: we argue that the explanatory appeal to fixed points and limits is
(merely) instrumentally indispensable, and, therefore, it does not lead to an
ontological commitment threatening reductionism. In the end we also discuss
the limitations of our argument vis-à-vis explanatory (as opposed to ontolog-
ical) antireductionism.

2. Antireductionism and Explanatory Indispensability. Let us now ex-
amine the structure of the argument from infinite limits more closely. The
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antireductionists suggest that RG explanations undermine reductionism be-
cause of commitment to the fixed points of RG transformations (and the pre-
supposed limit assumptions). These are often said to ‘control’ critical phe-
nomena, the universality of which is said to ‘rely on the existence’ of fixed
points. The following passage from a leading textbook is typical: “Since
[the behavior of correlation functions] depends only on the fixed-point Ham-
iltonian, the correlation functions corresponding to all Hamiltonians that con-
verge after RG transformations toward the same fixed point, have the same
critical behaviour. Such a universality property thus divides the space ofHam-
iltonians into universality classes. Universality, beyond the quasi-Gaussian
approximation, relies on the existence of large-distance (IR) fixed points of
the RG in the space of Hamiltonians” (Zinn-Justin 2007, 226; our emphasis).
Indeed, the RG framework is, in a sense, all about the fixed points of RG
transformations: their properties, their classification, and the conditions under
which they exist. Insofar as this framework furnishes genuine explanations of
critical phenomena that turns on these fixed points and their properties, and
insofar as these fixed points involve limits of modeling parameters that tran-
scend the finitude associated with the more fundamental theory, there is a
clear prima facie challenge to reductionism here.

Batterman argues in this spirit that “there are very good reasons to deny
that [critical] phenomena are reducible to ‘fundamental’ theory” (2011,
1034).2 “The renormalization group explains the universal behavior at crit-
icality essentially by exploiting the divergence (blow up to infinity) of the
correlation length. . . . Most crucial to the renormalization group explanation
is, as noted, the ineliminable appeal to the thermodynamic limit and to the
singularities that emerge in that limit” (1043). The sense of antireductionism
that Batterman supports by pointing to the explanatory indispensability of
the fixed points primarily concerns explanation, not ontology. (The ‘funda-
mental’ theory, Batterman explicitly says, “gets the ontology of blobs of gases
and fluids right” [1034].)

The step from ‘explanatory indispensability’ to ontology is relatively short,
however, and various philosophers are willing to take it. This willingness can
be rooted, in general, in a venerable tradition in the philosophy of science that
associates scientific realists’ ontological commitments tightly with explana-
tory indispensability. Thus, Psillos (2011), for instance, follows Sellars (1963)
in adopting an ‘explanatory criterion of reality’, according to which “some-
thing is real if its positing plays an indispensable role in the explanation of
well-founded phenomena” (Psillos 2011, 15). More generally, philosophers

2. Batterman puts the term ‘fundamental’ in scare quotes because he regards it as am-
biguous: “a theory may be fundamental in that it properly characterizes the detailed con-
stitution of the systems it studies, but can fail to be fundamental in its ability to explain
and provide understanding of the systems it correctly describes” (2011, 1034).
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in the Quinean and Putnamian tradition have argued for realist commitment
to mathematical and other abstracta on the basis of their explanatory indis-
pensability to our best theories of empirical phenomena (see, e.g., Baker and
Colyvan 2011).

Morrison (2012, 2015) has defended ontological antireductionism in this
spirit—both in general and with respect to RG fixed points especially. Re-
garding the ‘explanatory power of fixed points’, in particular, Morrison ar-
gues that the reductionists “ignore a crucial feature of emergence, specifi-
cally the ability to properly explain universal behaviour and . . . the role
of RG in that context” (2015, 110). Namely: “The calculation of values for
critical indices and the cooperative behaviour defined in terms of fixed points
is the foundation of universality. RG is the only means possible for explaining
that behaviour; what happens at finite N is, in many ways, irrelevant. Finite
systems can be near the fixed point in the RG space and linearization around
a fixed point will certainly tell you about finite systems, but the fixed point
itself requires the limit” (110; see also Morrison 2012).

Turning now to the reductionists, the indispensability of RG fixed points
is not by any means denied by them; rather, the issue concerns their status as
(non)representational elements of the less fundamental theory. Thus, Nor-
ton (2012, 222), for example, characterizes them as “points in a diagram:
mathematical pegs on which to hang limit properties.” Norton draws an
apt distinction between a meaningful and well-defined limit of a sequence
of systems, on the one hand, and a limit of a sequence of properties, on the
other. The crux of the distinction is that the latter may not correspond to any
possible system, in which case it cannot function as an ‘idealization’ but at
best as a useful ‘approximation’. According to Norton, RG fixed points are
such approximations, for they “do not arise from an investigation of the
properties of infinite limit systems. They are not idealizations” (222).

However, regardless of its status as an ‘idealization’ or ‘approximation’,
an antireductionist may respond that the very fact that a mathematical limit
plays an indispensable explanatory role is still puzzling from the point of
view of the more fundamental theory. Why is the use of such limits indis-
pensable for explaining the phenomena? Why does the indispensability of
such limits not indicate a feature of critical phenomena that transcends the
ontology of the more fundamental theory?

Moreover, problems arise for Norton regarding his construal of an RG
explanation as a covering law explanation (i.e., DN explanation): “Renor-
malization group methods take the theoretical framework of statistical me-
chanics as the covering law. They select as the particular conditions a broad
class of Hamiltonians pertinent to the materials. They then derive universal-
ity under conditions close to criticality. The renormalization group analysis
simply is a covering law explanation” (2012, 227). There are two difficul-
ties with Norton’s appeal to the DN model here: first, regarding the DN
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model’s assumption that the explanans statements are (approximately) true
and, second, regarding general objections to the DN model.

The DN model, as formulated by Hempel and Oppenheim, incorporates
the truth requirement according to which the explanans of an actual expla-
nation must be true (otherwise we have at best a potential explanation). If
the RG explanans involves an ineliminable appeal to limits, how is this com-
patible with the truth requirement, since it is not literally true that, for instance,
the number of molecules in an actual gas is infinite (as per thermodynamic
limits)? One could try to argue in response (as one referee suggested) that as-
sumptions about the relevant limits in the context of RG explanations, while
not literally true, are nevertheless approximately true in some sense. Admit-
tedly there is a certain amount of leeway in the truth requirement: approxi-
mately true explanans can also support actual explanations. And, indeed, it
seems reasonable to relax the truth requirement from literal truth to approxi-
mate truth, because demanding that all explanantia are true simpliciter would
render all of known physics outright nonexplanatory. But this raises the ques-
tion of how to make sense of the infinite limits in the RG explanation as being
‘approximately true’ with respect to finite systems.

It is far from clear, in particular, how the indispensability of these limits
meshes with the DN model. From the perspective of the DN model it is nat-
ural to expect, as Hempel (1962) does, that explanations improve if the ex-
planantia are closer to the truth, and this is what happens in the case of de-
idealizable ‘Galilean’ idealizations, of course. (For example, an explanatory
deduction that truthfully incorporates a small but nonvanishing friction term
may be more cumbersome, but such de-idealization improves predictive ac-
curacy and, if anything, also provides for a better explanation.) Providing a
sense in which approximately true explanans can underwrite actual explana-
tions hinges on the availability of this kind of story of how the approxima-
tions involved are, strictly speaking, not indispensable for deducing the ex-
planandum. And arguably this kind of story is not forthcoming in the case of
RG explanations.

So, although we deem Norton’s approximation/idealization distinction
justified and appropriate in relation to the RG fixed points, it does not in
and of itself fully respond to the Antireductionist Challenge. The sense in
which the fixed points of the RG explanation are merely instrumental ‘math-
ematical pegs’ needs to be further elucidated, with reference to an appropriate
understanding of the nature of the RG explanation. Norton’s suggestion to
regard the RG explanation as a covering law explanation is problematic,
not only for the reasons given but also because of the more generic criticisms
of the DN model. Hempel identifies explanatory understanding with nomic
expectability (provided by a suitable inductive or deductive argument), but
well-known, extended critiques of the DN model have shown that the provi-
sion of nomic expectability is neither necessary nor sufficient for having an
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explanation (e.g., Salmon 1989, 46–50). Consequently it is increasingly pop-
ular to identify explanatory understanding with knowledge of explanatory
dependence relations that are taken to differ from nomic expectability, even
in cases that are structurally similar to DN deductions (Woodward 2003b;
Strevens 2008). These prominent viewpoints challenge the DN model on
rather general grounds in a way that really puts the onus on those who insist
that the DN model is nevertheless appropriate in the specific context of RG
explanations.

In a spirit similar to Norton, Menon and Callender (2013) admit that RG
fixed points are an indispensable part of the explanatory resources needed to
account for critical phenomena and also that fixed points transcend the rep-
resentational resources of the more fundamental, finite, reducing theory. Yet
they go on to suggest that we can account in reductive terms for why the
explanatory appeal to fixed points is warranted. Their discussion makes lit-
tle connection with physicists’ explanations of universality, however, and
they offer no analysis of the nature of physicists’ RG explanations. Their
account thus unfortunately leaves open the indispensable role that RG fixed
points play in actual scientific accounts of universality and exactly why this
role can be regarded as ontologically innocuous. These issues that are not
addressed by Menon and Callender are precisely the target of this article.3

There are also some other insightful reductionist commentaries on the
theoretical role of fixed points in the RG analysis of critical phenomena,
but we find these similarly lacking in perspicuity regarding the fixed points’
explanatory role. For example, while we are largely in agreement with Hütte-

3. More specifically, Menon and Callender point to finite-size crossover theory as explain-
ing why a particular finite system can be treated as an infinite system, indicating that it is
very difficult or perhaps impossible to empirically distinguish between a system flowing
to the critical point as opposed to flowing close to it. Regarding the indispensable use of
infinite limits in explanations of universality, they summarize their argument: “When we
try to explain the universality of critical behavior in finite systems, we do have to employ
the infinite idealization, but aswe have seen, this idealization is not irreducible if we can use
the topological structure of system space in our reductive explanation. We can de-idealize
for particular systems, and see why they can be treated as if they flow to the critical point.
Understanding the behavior of infinite systems is crucial to explaining the behavior of finite
systems, since we only get the fixed points by examining the behavior of infinite systems,
but this in itself does not imply emergence. We agree with Batterman (2011) that mathe-
matical singularities in the renormalization group method are information sources, not in-
formation sinks. We disagree with his contention that the renormalization group explana-
tion requires the infinite idealization, and is thus emergent. It requires consideration of the
behavior of infinite systems, but it does not require us to idealize any finite system as an
infinite system. Any actual infinite idealizations in a renormalization group explanation
can be de-idealized usingfinite-size crossover theory. Locatingfixed points does not require
an infinite idealization, it just requires that our microscopic theory can talk about infinite
systems, and indeed it can” (Menon and Callender 2013, 221–22).
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mann et al. (2015), we do not think they go far enough in responding to the
antireductionist challenge by virtue of leaving the explanatory role of RG
fixed points unanalyzed. And we see little reason to analyze RG explanations
simply as DN explanations, as Butterfield (2011a, 2011b) and Norton (2012)
do. It is against this context that we now aim to do better.

3. The RG Explanandum. The RG framework furnishes a number of ex-
planations regarding critical phenomena. The first order of business is to
precisify the explanandum that we have chosen to focus on: the universality
of critical exponents. Making this explanandum more precise contributes to
addressing the first lacuna presented in the introduction.

Critical phenomena involve continuous (second-order) phase transitions in
macroscopic systems near the critical point, where large-scale collective be-
havior becomes significant. Standard examples of systems exhibiting critical
phenomena include liquid vapor and magnets. Dynamically generated collec-
tive behavior is quantified by the correlation length, characterizing the scale at
which a collective behavior is observed. At the critical point the correlation
length diverges (in the models of critical phenomena), indicating that near
this point it becomes very large, capturing system-wide macroscopic proper-
ties. Near the critical point, macroscopic, thermodynamic properties obey
characteristic power laws as a function of reduced temperature t, proportional
to the distance from critical temperature: t 5 (t 2 tc)=tc. It is remarkable that
microphysically very different systems, such as liquid vapor and ferromagnets,
can have similar power laws, with identical critical exponents. This is an in-
stance of the kind of universality that comprises the explanandum at stake.

Consider, for example, the scaling laws obeyed by ferromagnets, on the
one hand, and simple liquids, on the other. (Here we have magnetic suscep-
tibility x, heat capacity CH, and magnetization M; compressibility k, heat
capacity CV, and liquid and gas densities rl, rg.)

4

x ∝ tj j2g

CH ∝ tj j2a

M ∝ tj jb

k ∝ tj j2g

CV ∝ tj ja

rl 2 rgð Þ ∝ tj jb

It is crucial to be clear on the precise nature of universality in question. It
is not the case that all different systems exhibiting critical phenomena are
exactly similar in this way. Rather, simple liquid vapor and ferromagnetic
systems have the same critical exponents by virtue of belonging to the same

4. The critical exponents a, b, g furthermore obey a simple (Rushbrooke) inequality
a 1 2b 1 g ≥ 2, showing that they are not independent from one another. This is an-
other explanandum for the RG framework.
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universality class (i.e., the ‘Ising class’, also containing the theoretical spin-
1/2 Ising model). Other universality classes describe systems with different
critical exponents. In general, a specific universality class, identified by its
critical exponents, depends on the following variables: spatial dimensional-
ity, the symmetry of the order parameter (also called the ‘spin dimensional-
ity’), and the range of the microscopic interactions. We will return to this cen-
tral issue regarding what universality depends on below.

The real explanandum of the RG analysis is this kind of curtailed univer-
sality, with systems falling within a relatively small number of distinct uni-
versality classes. A blunt notion of universality—that microphysically dif-
ferent systems can obey power laws with identical critical exponents—is
not at issue, as it can be established by ‘classical’ (non-RG) methods of mean-
field theory and Landau, and it indeed had already been established before
the development of RG analysis (see, e.g., Als-Nielsen and Birgeneau 1977;
Kopietz, Bartosch, and Schütz 2010, chap. 2). These classical methods yield
estimates of critical exponents that do not fare well empirically, however,
and they failed to indicate the dependence of the critical exponents on sys-
tems’ spatial dimensionality in particular. The celebrated explanatory contri-
bution of the RG analysis must be appreciated and understood in this (pre-RG)
theoretical context. This is something that many expositions of the RG anal-
ysis emphasize quite explicitly:

The starting point is mean field theory which allows us to describe phase

transitions and explore the neighbourhood of the critical temperature. In

the case of second order phase transitions, continuous phase transitions

where the correlation length diverges, this leads to the concept of super-

universality. The latter is summarized in Landau’s theory of critical phe-

nomena. A number of quantities, like the exponents which characterize

the singular behaviour of physical observables near the critical tempera-

ture, are universal, i.e. independent of the system (provided it has only

short range interactions), and even the dimensions of space. However, em-

pirical evidence, exact solutions of 2D models, and finally an analysis of

corrections to mean field theory, had shown that a universality of such

general nature could not be true. . . . The existence of even a more re-

stricted universality was puzzling. It took many years to develop the

[RG] which explains the origin of universality: it relies on the existence

of IR fixed points of RG transformations. (Zinn-Justin 2002, 218)

What we are emphasizing here, along with Zinn-Justin, is the fact that in
the pre-RG context of mean field and Landau theories what really needed
explaining was not universality per se—how microscopically very different
systems could be similar in their macroproperties—but the observed depen-
dence of critical exponents and universality classes on the systems’ spatial
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dimensions and the other features that carve the nature into these ‘univer-
sality kinds’. So, the question was this: how does it follow from the laws of
statistical mechanics, including the dynamical laws and the partition function
connecting the micro- and macrolevels, that the properties exhibiting univer-
sality depend on the variables outlined above? The explanatory contribution
of the RG analysis has been to answer this question by deriving the values of
the critical exponents for large classes ofHamiltonians in away that brings out
the explanatory dependencies as their logico-mathematical consequence for
systems of sufficiently many components.5 Furthermore, this framework pro-
vides an understanding of the nature of the dependence in question as a col-
lective probabilistic matter, having to do with the way in which chancy fluc-
tuations across a huge range of scales relate and contribute to the macroscopic
properties.6

4. The RG Explanans. In this section, we reconstruct the relevant physics
of the explanans of RG explanations in detail (sec. 4.1). Then, in response
to the second lacuna presented in the introduction, we suggest that the coun-
terfactual dependence account of explanation nicely captures the explana-
tory character of RG explanations (sec. 4.2).

4.1. The Physics of the RG Explanans. After some preliminaries, we
will focus on the sense of coarse-graining associated with the renormaliza-
tion operation (sec. 4.1.2), the notion of a fixed point of the renormalization
operation and its explanatory role (sec. 4.1.3), and the notion of a universal-
ity class of Hamiltonians (sec. 4.1.4).

4.1.1. Preliminaries. An RG analysis of collective behavior near criti-
cality brings out a network of dependencies between the critical exponents,
on the one hand, and (i) spatial dimensionality, (ii) the dimensionality of the
spin parameter, and (iii) certain qualitative features of the Hamiltonians that
characterize systemsmicrophysically, on the other.7AnRG analysis explains

5. One should not overplay the rigor and precision here: because of the level of abstrac-
tion and mathematical intractability, RG ‘derivations’ involve various approximation
schemes and plausibility considerations, yielding approximate values for the measured
critical exponents.

6. Ignoring the importance of fluctuations is where the mean field theoretical approaches
to critical phenomena go wrong. This is particularly critical for systems with the spatial
dimensionality below ‘upper critical dimensionality’, which is typically 4. It can be
shown that for systems of larger dimensionality, mean field theories, despite their crude
approximations, yield the correct universal critical exponents.

7. This set of dependencies is unlike those represented by the ideal gas law, e.g., in that the
explanans’ variables cannot be grasped independently of the microlevel description. Even

464 JUHA SAATSI AND ALEXANDER REUTLINGER



by showing how the critical exponents (i.e., the explanandum) depend on
i–iii and how this network of dependencies mathematically follows from sta-
tistical mechanics. The RG framework accomplishes this by various means.
First, there are extremely general RG analyses that treat spatial dimensionality
and the dimensionality of the spin parameter as variables and determine how
RG fixed points depend on these variables (e.g., Zinn-Justin 2007). Second,
there aremore circumscribed RGanalyses of specific classes ofHamiltonians,
regarding systems of specific spatial dimensions and spin parameters.We will
focus on the latter.

Recall that a Hamiltonian, or energy function, characterizes the energy of
the interactions between the system’s components and also the energetic ef-
fect of the external conditions (e.g., magnetic field) on the system. For ex-
ample, for a very simple spin-1/2 Ising model, the Hamiltonian function is
given by

H 5 2J o
<ij>

SiSj 2 ho
i

Si: (1)

Here Si is the ‘spin’ parameter (Si 5 ±1) ranging over all lattice sites, the first
summation is over all interacting pairs of spins, and the coupling constant J
gives the interaction energy. The energetic contribution of an external mag-
netic field is represented by h. The lattice of spins can be a one-dimensional
string, two-dimensional square lattice, three-dimensional cubic lattice, or
(more abstractly) d-dimensional hypercubic lattice.

For this class of models, the spin parameter Si has only one component,
and the model has global Z2 symmetry: in the absence of an external mag-
netic field, the Hamiltonian is invariant under Si →2Si ð8 i). We can en-
large the set of possible interactions by allowing the spin parameter to have
further possible values or more components. For instance, in spin-1 Ising
models Si ∈ f1, 0,21g, and in q-state Potts models Si ∈ f0, 1, 2, ::: , qg.
The spin parameter can also be a vector instead of scalar. For example, in
XY models the spin parameter has two components, Si 5 (Sx

i , S
y
i ), and in

n-vector models Si has n components. Changes in these features of the spin

spatial dimensionality has to be understood in a particular way, as it matters only insofar as
it tracks the connectivity of systems’ elementary degrees of freedom. For example, a three-
dimensional ‘magnet’ made of effectively two-dimensional slabs, the spins of which do
not interact across the slabs, does not count as three-dimensional in this respect. Similarly,
an anisotropic d-dimensional lattice where the energy parameters connecting the lattice
points in the direction of one axis tend to zero is, from the point of the connectivity of el-
ementary degrees of freedom, effectively (d 2 1)-dimensional. The relevance of spatial
dimensionality can be qualitatively understood in probabilistic terms. Classical, pre-
RG approaches of critical phenomena underestimate the importance of statistical fluctu-
ations, the probability of which increases along with spatial dimensionality (see, e.g.,
Stanley 1999, S365).
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parameter can change the symmetry of the Hamiltonian (depending on how
it has been defined in terms of the various spin-spin interactions), resulting
in different critical exponents.

The dependence of the critical exponent on spatial dimensionality and
the dimensionality of the spin parameter can be studied by RG analyses of
specific models, involving specific (classes of ) Hamiltonians, and specific
spatial dimensions and spin parameters. Such model-specific RG analyses
collectively contribute to showing how critical exponents depend on the
specific dimensionalities and symmetries. One can, for example, compare
the results of RG analyses of two-dimensional versus three-dimensional
spin-1/2 Ising models. Or one can compare RG analyses of n-dimensional
spin-1/2 versus spin-1 models. In the context of these models, one can fur-
thermore show that a specific Hamiltonian is not responsible for the value of
the critical exponent, since there is much leeway in the exact form of the
Hamiltonian, as long as the essential parameters—spatial dimensionality and
dimensionality of the spin parameter—are kept fixed. This establishes a local
universality in relation to such specific models: critical phenomena are inde-
pendent of the details of the originalmicroscopic interaction, since the specific
modeling Hamiltonian can be perturbed without changing the features that
factor into the calculation of critical exponents.8

4.1.2. Coarse-Graining and Renormalization. More generally, RG anal-
yses show that the different Hamiltonians in a given universality class are
similar in that they exhibit similar collective behaviors under sufficient
‘coarse-graining’: when it comes to long-distance physics near the critical
point, the differences in the microphysical couplings wash out. The sense
in which the different Hamiltonians are similar in this way is provided in
terms of mathematical RG transformations. The behavior of Hamiltonians
under iterated RG transformations can be used to determine the critical ex-
ponents near the critical point, as we will explain. Roughly speaking, uni-
versality with respect to variation in the specific Hamiltonian then follows
from different systems’ similarity in this respect, and the RG analysis pro-
vides a sense in which a given universality class depends on the Hamilto-
nians in that class having this feature (in addition to depending on spatial
dimensionality and the dimensionality of the spin parameter).

In order to flesh out this sketch, and to pinpoint the role played by RG
fixed points in finding out about this dependence, we now present a sche-

8. There are limits to how much a Hamiltonian can be changed without affecting critical
phenomena. It matters, in particular, how short-/long-range the microinteractions are.
Again, this can be studied by case-specific models, looking, e.g., at spin-1/2 Ising mod-
els for interaction H 5 2Jo<ij>(1=rqij )SiSj as a function of q, with rij the distance be-
tween lattice sites i, j (e.g., Cannas 1995).
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matic outline of an RG analysis.9 The gist of the (very broadly applicable)
RG framework is to explore ways of reexpressing—‘renormalizing’—a set
of relevant modeling parameters in terms of another (possibly simpler) set
of parameters, and then rescaling the system, in a way that keeps unchanged
some physical aspects of interest. In the context of critical phenomena, a re-
normalization transformation amounts to the coarse-graining of the short-
distance degrees of freedom, while keeping a system’s long-distance phys-
ics fixed.10 This is achieved, in particular, by ensuring that the partition
function is left intact by the reparameterization.

The RG analysis operates on a large (possibly infinitely dimensional) ab-
stract space of possible ‘models’, or parameters, with a different dimension
for each possible parameter of the Hamiltonian (e.g., couplings between im-
mediate neighbors, next neighbors, etc.), as well as for each ‘control’ pa-
rameter that can be tuned in an experiment (e.g., temperature, external mag-
netic field, chemical composition). The RG framework studies the way in
which this high-dimensional space of parameters maps into itself under a
renormalization operation Rb of the relevant parameters: u0

5 Rb(u).
11 Iter-

ation of the renormalization operation induces a ‘flow’ in the parameter
space, whereby a ‘model’ u, specified by particular parameter values, gets
mapped to a different point u0.

u→ Rb uð Þ→ Rb
2
uð Þ→⋯→ Rb

n
uð Þ→⋯

Analyzing the structure of such a flow in the space of parameters is the es-
sence of the RG analysis: it qualitatively explains why the long-distance
physics (especially with respect to scaling laws) for microscopically differ-
ent systems S1, S2, S3, . . . is similar near their respective critical points, and it
quantitatively allows for a calculation of critical exponents. (We will focus
on the qualitative explanation below. See the appendix for comments on the
quantitative aspects.)

10. Much of the ingenuity in the development of the RG framework has gone into tech-
niques that can be used to implement with sufficient rigor this kind of coarse-graining
(e.g., real-space RG, momentum space RG, Monte Carlo RG).

11. A renormalization operation Rb is associated with a scaling factor b, which determines
the rescaling of the system’s length scale by 1/b. A generic Hamiltonian is written as the
sum of products of parameters un and ‘operators’ (i.e., microscopic degrees of freedom)
On :H 5 onunOn 5 onu � O. For example, in eq. (1) the coupling constants J and h
are parameters, and SiSj and Si are operators. Renormalization transformations form a
semigroup: u00

5 Rb2
(u0) 5 Rb2Rb1(u) 5 Rb1b2(u).

9. We only provide a schematic presentation of the key concepts involved in an RG anal-
ysis; for further details see, e.g., Fisher (1983, 1998), Wilson (1983), Cardy (1996), Mc-
Comb (2004), Sethna (2006), Zinn-Justin (2007), Pathria and Beale (2009), and Nishimori
and Ortiz (2010). Our presentation is mostly drawn from the Nishimori and Ortiz (2010).
See the appendix for further details.
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A rough idea of qualitative RG understanding of universality near criti-
cality can be given as follows. Let us assume that two Hamiltonians H1 and
H2 in the space of parameters display similar flow behavior and end up close
to one another under repeated RG transformations; that is, the physics cap-
tured by those Hamiltonians can be modeled, at a sufficiently coarse-grained
level, by effective Hamiltonians that are close to one another in the space of
parameters. Then the two systems captured by H1 and H2 have a similar
long-distance behavior. It is an extraordinary fact that large classes of possi-
ble systems (i.e., classes of possible Hamiltonians) in this way lead to similar
long-distance behavior near criticality. The RG analysis brings out this fact
by revealing broad structural features exhibited by RG flows in the space
of parameters. It is here that an indispensable theoretical role is played by
the fixed points of RG flows.

4.1.3. Fixed Points. A fixed point u* (in the space of parameters) is de-
fined as a point (or more generally, a submanifold) that gets mapped to itself
under renormalization, thereby terminating the RG flow (since further RG
transformations do not flow to a different point): u* 5 Rb(u*). Prima facie,
it seems possible that RG flows might exhibit wildly unstable, even chaotic,
behavior, indicating very fine-tuned dependence of a system’s large-scale be-
havior on its microscopic couplings. It turns out that this is not so (at least for
very large classes of Hamiltonians of interest): instead, in the space of pa-
rameters there are points—the fixed points of RG transformations—toward
which RG flows are ‘attracted’. There is thus much structure and regularity
to the way in which different Hamiltonians ‘coarse-grain’ so as to give rise
to similar macroscopic properties. In particular, under repeated RG transfor-
mations the effective, coarse-grainedHamiltonians ‘gravitate’ close to a fixed
point, as long as the starting point of the iterated RG transformations—fixed
by an original microphysical Hamiltonian and some given values of the con-
trol parameters—is sufficiently close to a broad basin of attraction of the
fixed point. RG fixed points and their associated basins of attraction thus give
the abstract space of parameters an interesting topological structure.

The theoretical resources involving the fixed points and their basins of at-
traction are indispensable (in the current state of physics at least) for grasping
this topological structure exhibited by the space of parameters and for study-
ing its repercussions on those models that, from the perspective of the more
fundamental theory, can be taken to faithfully represent a system of interest
approaching a critical point. When universal scaling phenomena are demon-
strated and measured in the laboratory, they concern (from the reductionist
perspective, at least) finite systems. Not all points in the abstract space of pa-
rameters correspond to these finite systems: for the points at criticality, in par-
ticular, the correlation length y diverges, in blatant contradiction with the fi-

468 JUHA SAATSI AND ALEXANDER REUTLINGER



nitude of the actual systems of interest. Thus, for the reductionist these points
are best construed as mathematical approximations of properties of sequences
of corresponding finite models, having these points as limits (see Norton 2012).

Under renormalization the correlation length transforms as y½u0�5 b21y½u�
because of rescaling by factor b. Thereby, the RG flow is away from critical-
ity upon each successive operation of Rb, assuming y is finite to begin with
(see fig. 1). Therefore, in order for the renormalization flow to terminate, a
fixed point must have a divergent correlation length (critical fixed point), or
else it must vanish (trivial fixed point). Clearly the correlation length must
also be divergent for all the points in the basin of attraction of a critical fixed
point. This basin is the critical manifold. The points in the parameter space
that correspond to finite models are not on this manifold—they do not flow
to a (critical) fixed point under RG transformations. Rather, the basin of at-
traction of a (critical) fixed point comprises points in the space of parameters
that are at criticality, featuring control parameters (e.g., temperature or ex-
ternal magnetic field) that have been taken to the critical point in the corre-
sponding phase space. Since the correlation length diverges at a (critical)
fixed point and everywhere on its associated critical manifold, and since

Figure 1. Schematic depiction of renormalization group flow. The thick, straight
line through the ‘physical critical point’ h, tc is the ‘physical line’.
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the correlation length cannot diverge without taking a thermodynamic limit,
the latter is needed to connect statistical mechanics to the RG fixed point.

For concreteness’ sake, consider a trajectory in the abstract space of mod-
els, induced by smoothly changing one of the control parameters, t (see fig. 1).
This ‘physical line’ captures how a system modeled by a given Hamiltonian
changes as the control parameter moves ever closer to the critical point Tc,
where the correlation length diverges. This point Tc is sometimes called the
‘physical critical point’, but one should not read too much into this label:
a reductionist takes the divergence of the correlation length to indicate, of
course, that this point in the space of parameters is at best an idealization
of the finite physical system, or perhaps merely a vehicle for approximating
some of the properties represented by the points outside of criticality T <Tc.
This ‘physical line’ in the space of models is not an RG flow, and the chang-
ing macroscopic properties of a system that tracks such trajectory can be
measured in the laboratory, for example, when critical indices are measured.
But these macroscopic changes along a physical line cannot be studied the-
oretically because of the intractability of the huge number of correlations and
interactions at different scales due to fluctuations near criticality.

The RG framework deals with this intractability by renormalizing the rel-
evant modeling parameters, yielding more and more coarse-grained effective
models in a way that keeps the macroscopic physics unchanged. Any point on
the ‘physical line’ can be taken as the starting point of iterated RG transforma-
tions, which induce a corresponding flow in the space of models. Unlike the
‘physical line’, these flows do not correspond to any physical change of the
system, but rather capture equivalence classes of models that share the same
long-distance physics. Of all the points on the physical line, the ‘physical crit-
ical point’ is special, since it (and only it) flows to a (critical) fixed point upon
successive iterations of the renormalization transformation (i.e., this point be-
longs to the critical manifold).

4.1.4. Universality Classes of Hamiltonians. Although the basin of at-
traction only comprises points in the critical manifold, there is also a broader
RG flow toward (although not into) a critical fixed point, exhibited by points
outside the critical manifold (see fig. 1). That is, a flow emanating from a point
that is sufficiently close to a basin of attractionwill end up in the vicinity of the
critical fixed point after some finite number of renormalization transfor-
mations, before veering away from it toward a trivial fixed point. In par-
ticular, systems modeled by different off-critical parameters in the ‘critical
domain’—the neighborhood of a critical point where correlation length is
very large with respect to the microscopic scale—will end up flowing close
enough to the critical fixed point for the flow to be examined in terms of lin-
earized RG. This examination formally reveals the aspects of the parameter
space that are relevant for the value of critical exponents, as well as the as-
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pects that are irrelevant, in the sense that change in the irrelevant parameters
is inconsequential to the value of critical exponents (see the appendix for de-
tails). Systems with different Hamiltonians that only differ in the irrelevant
parameters therefore exhibit the same long-distance behavior near their crit-
ical point. They belong to the same universality class.

With the distinction between relevant and irrelevant parameters, we can
capture an important mathematical fact about the behavior of a large class
of Hamiltonians under a given renormalization transformation. Once we fix
the laws of statistical physics and an appropriate renormalization transfor-
mation, the fact that two systems A and B are in the same universality class
follows with mathematical necessity. For want of a better analogy, consider,
for example, composition of forces. Assume that two different sets of force
vectors {f1, f2} and {f3, f4} result in the same total force f 1 1 f 2 5 F 5

f 3 1 f 4. The fact that both sets are similar in this way—they both belong
to the same ‘universality’ class of component vectors that add up to F—fol-
lows with mathematical necessity, once we fix the law of force composition.
Similarly, a given universality class depends on its Hamiltonians in the same
way: the fact that two systems with different Hamiltonians only vary in the
irrelevant parameters follows with mathematical necessity, once we fix a re-
normalization transformation.12

4.2. The Counterfactual Dependence Account of RG Explanations.

Having summarized the key concepts of the RG explanans, let us now con-
sider the philosophical issue at stake in the second lacuna: which philosoph-
ical account of explanation best captures RG explanations?We think a prom-
ising approach to RG explanations is the counterfactual dependence
account of scientific explanation. This approach takes as its starting point
the key idea behind Woodward’s counterfactual account of causal explana-
tion: “An explanation ought to be such that it enables us to see what sort of
difference it would have made for the explanandum if the factors cited in
the explanans had been different in various possible ways” (2003b, 11). Un-
derstanding explanatory relevance in terms of counterfactual dependence is

12. Some philosophers have classified this kind of dependence as clearly not causal andRG
explanation as a kind of ‘noncausal’ explanation (this point has been elaborated by Lange
[2009, 2013]). Lange’s notion of ‘distinctively mathematical’ explanations is one possible
way of interpreting this mathematical aspect of RG explanations (see Lange 2013). How-
ever, although we think that the RG explanation is noncausal and mathematical, we dis-
agree with Lange’s analysis of the explanatoriness of these kinds of ‘distinctively mathe-
matical’ explanations. As we will argue in sec. 4.2, one can also view this explanation
from the perspective of the counterfactual dependence account of explanation, according
to which it is the counterfactual dependences between the explanandum and the explanans
that drives the explanation, not the fact that the explanandum is mathematically necessary
given the explanans (see also Jansson and Saatsi 2017).
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not necessarily tied to a causal interpretation. The basic idea can be extended
from causal to noncausal explanations, as Woodward himself indicates in
terms of “what-if-things-had-been-different questions”: “The common ele-
ment in many forms of explanation, both causal and non-causal, is that they
must answer what-if-things-had-been-different questions” (221).

Proponents of a counterfactual dependence account of explanation have
developed and made precise the idea Woodward expresses. They hold that
both causal and noncausal explanations are explanatory by virtue of exhibit-
ing how the explanandum counterfactually depends on the explanans. The
global motivation for defending this approach to scientific explanation stems
from its unificationist or monist prospects—that is, it is attractive to have one
single theory of explanation for two types of explanation (causal and non-
causal). In the recent literature, the counterfactual dependence account of ex-
planation has been articulated and explored in application to various exam-
ples of noncausal explanations (Frisch 1998; Bokulich 2008; Kistler 2013;
Saatsi and Pexton 2013; Pexton 2014; Reutlinger 2016; Saatsi 2016a; Jans-
son and Saatsi 2017; French and Saatsi 2018; Woodward 2018).

We will now argue in more detail why we think the counterfactual depen-
dence account applies to RG explanations. To do so, we focus on the core of
the account consisting of two necessary conditions for being a scientific ex-
planation (we follow the exposition in Reutlinger [2016]). We ignore other
necessary conditions here on which proponents of this account of explanation
differ.

First, the counterfactual dependence account requires that one can infer
the explanandum from the explanans (where this inference may be deductive
or statistical-inductive). In the case of RG explanations, this condition is sat-
isfied because the RG explanans (consisting of Hamiltonians and the theoret-
ical framework of statistical mechanics, RG transformations, the determina-
tion of a fixed point, etc., as described in sec. 4.1) deductively entails the RG
explanandum. We take the satisfaction of this condition to be the kernel of
truth in Butterfield’s and Norton’s claims that RG explanations are DN expla-
nations (see sec. 2).

Second, the counterfactual dependence account also requires that the ex-
planans allows us to evaluate counterfactuals of the following form as true:
“if some variables figuring in the explanans had specific different values
(which typically corresponds to assuming that the initial conditions of a phys-
ical system are different from how they actually are), then the explanandum
phenomenon would also be different in some specific way.” RG explanations
satisfy this condition, since the RG explanans enables us to determinewhether
a physical system Swould be in a different universality class if certain features
of S were different from how they actually are. In other words, the RG ex-
planans conveys what being in a specific universality class counterfactually
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depends on. For instance, the RG explanans supports the following explana-
torily relevant counterfactuals:

• If a physical system S had a different spatial dimensionality than it ac-
tually has, then S would be in such-and-such a different universality
class than it actually is in.

• If a physical system S had a different symmetry of the order parameter
than it actually has, then S would be in such-and-such a different uni-
versality class than it actually is in.

• If a physical system S had a (sufficiently) different range of the micro-
scopic interactions than it actually has, then S would be in such-and-
such a different universality class than it actually is in.

As we have seen in previous sections, it is a central purpose of the RG
framework to underwrite such conditionals. First, as discussed in section 3,
the key explanandum regarding universality that was left outstanding in the
pre-RG context of mean field and Landau theories was the observed depen-
dence of critical exponents and universality classes on those features of the
world that seem to carve the nature into these broad kinds. Second, as dis-
cussed in detail in section 4.1, the RG framework provides the means to bring
out the relevant dependencies, by virtue of showing exactly how critical ex-
ponents depend on spatial dimensionality, dimensionality of the spin param-
eter, and the range of microinteractions.

Let us highlight the crucial point encoded in the two necessary condi-
tions of the counterfactual dependence account: the RG framework does
not only deductively entail that many physical systems with different orig-
inal microphysical Hamiltonians display the same macrobehavior (as re-
quired by the first condition). In addition, the RG framework provides a
wealth of modal information regarding what being in a specific universality
class depends on (thereby satisfying the second necessary condition).

In sum, we take it that the counterfactual dependence account of expla-
nation has a good claim to capture the explanatory character of RG expla-
nations (see Reutlinger [2016] for an in-depth discussion). This addresses
the second lacuna. We are now in a position to use the assumption that the
counterfactual dependence account applies to RG explanations to rebut the
antireductionist challenge.

5. How to Meet the Antireductionist Challenge. Recall the antireduc-
tionist challenge motivated by the argument from infinite limits: to show
how the fixed points involved in RG explanations of critical phenomena can
be both (a) explanatorily indispensable and, at the same time, (b) compat-
ible with reductionism. How should the reductionist respond?
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Our response, in light of our analysis of the RG explanation, is to argue
that even if reference to fixed points is indispensable for RG explanations, it
plays a merely instrumental role and does not lead to an ontological com-
mitment in tension with reductionism. This argument rebuts ontological
antireductionism of the sort most explicitly defended by Morrison (2012,
2015) in particular. At the end of this section, we consider the residual issue
of explanatory (anti)reductionism.

Let us now go through this argument in detail. To begin with, we grant
the antireductionists (at least for the sake of the argument) that reference to
fixed points is indispensable for RG explanations of universality. Indeed,
fixed points are in a profound sense at the heart of our best understanding
of critical phenomena, which in many ways turns on the classification of
fixed points and examination of their properties.

However, the actual physical systems of interest—being finite both spa-
tially and with respect to the number of microphysical components—cannot
be represented by the fixed point Hamiltonian itself, or the points on the crit-
ical manifold for that matter, since the correlation length diverges for these
points. But although the fixed point Hamiltonian cannot be taken to represent
the finite target system, reference to the fixed point can be explanatorily in-
dispensable. In particular, fixed points are instrumentally indispensable for
finding out and expressing facts about those ‘models’ in the space of param-
eters that lie in the critical domain but outside of criticality—facts that are ex-
planatorily relevant for critical phenomena. It is these off-critical ‘models’
that represent the features of the world on which the critical exponents and
universality classes depend, and RG analyses explain by virtue of (and to
the extent they succeed in) providing correct information about such depen-
dencies (see below).

Although fixed points do not, in and of themselves, represent anything
about the finite systems exhibiting critical phenomena, reference to fixed
points is nevertheless indispensable. There are at least two reasons for this.
First, the RG analysis provides a method for calculating the critical expo-
nents through an analysis of the nature of the RG flow in the neighborhood
of the fixed point. Obviously, we cannot speak of the neighborhood of a fixed
point without speaking of the fixed point itself, so analyzing the structure of
the equivalence classes of Hamiltonians (i.e., the RG flows) in the neighbor-
hood of the fixed point naturally involves a reference to the fixed point (see
secs. 4.1.3 and 4.1.4). But here the reference to the fixed point is merely play-
ing the role of determining that we are operating in the critical domain, where
the correlation length is large enough with respect to the microscopic scale
for the linearized RG analysis to be valid (see the appendix). This kind of ref-
erence to critical fixed points in connectionwith specificmodels is indispens-
able for doing the calculations that contribute to showing how the critical ex-
ponents depend on the relevant explanatory parameters.
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Second, reference to critical fixed points is indispensable for expressing
the explanatorily relevant feature shared by all possible Hamiltonians in a
given universality class. This is done by reference to the mathematical fact
that upon renormalization they all end up in the vicinity of the same fixed
point, where their further coarse-graining is similarly dependent only on a
few relevant variables (see sec. 4.1.4). Although it is necessary to make ref-
erence to the fixed point in expressing and theorizing about this feature that
the Hamiltonians share, one can again adopt an instrumentalist attitude to
the fixed point itself, while using it to express the explanatorily relevant fea-
ture regarding the physical Hamiltonians’ behavior under coarse-graining.

If we thus grant that reference to fixed points is indispensable, how do
we avoid an ontological commitment that is in tension with reductionism,
and how do we justify the claim that fixed points are merely instrumentally
indispensable? Our response relies on the assumption that the counterfac-
tual dependence account captures the explanatory character of the RG ex-
planation. If this is correct, then we naturally relate an RG explanation’s on-
tological commitments with those (and only those) variables on which the
explanandum depends. Relative to the framework of the counterfactual de-
pendence account, we can draw a distinction between those aspects of an
explanation that feature in (or represent) explanatory counterfactual depen-
dence relations, on the one hand, and those aspects that play some other role,
for example, in communicating or facilitating the explanation, on the other.
Given such a distinction, an explanation’s ontological commitments are nat-
urally associatedwith the former aspects. That is, only those factors onwhich
the explanandum counterfactually depends carry ontological import.

Much more has been said about this broad philosophical stance toward
explanations’ realist commitments (e.g., in Saatsi 2016b), which provides a
more general analysis of explanatory indispensability with a view to dis-
tinguishing between ontologically committing (‘thick’) and instrumental
(‘thin’) explanatorily indispensable assumptions. According to Saatsi, the
precise content of the thin/thick distinction is relative to a given account
of scientific explanation. Saatsi then argues, in the context of different coun-
terfactual dependence and modal accounts of explanation, that the explan-
atory indispensability of mathematics is insufficient for ontological com-
mitment to mathematics.13 (This satisfies the fairly minimal veridicality
criterion that Woodward and others have associated with counterfactual de-
pendence accounts: actual [as opposed to merely potential] explanations
should get right the explanatory modal facts. Yet at the same time it leaves

13. In a similar spirit, Saatsi (2017) argues for an instrumentalist attitude toward ‘strange
attractors’ and certain other mathematical features that are indispensable in explanations
provided by dynamical systems theory (see also Woodward 2003a).
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room for instrumentalism about explanations’ other aspects, regardless of
their ‘indispensability’ or otherwise.)

Hence, assumptions about RG fixed points can be indispensable without
being ontologically committing in a way that poses a threat to reductionism,
if the RG explanandum does not counterfactually depend on the fixed points.
We will now argue that this is the case.

In light of the counterfactual dependence account of explanation, we see
that the RG explanation works by bringing out how the explanandum (i.e.,
critical exponents) counterfactually depends on features such as the spatial
dimensionality, the symmetry of the order parameter, and the range of the
microscopic interactions. And these are all the explanatory dependencies in-
volved in RG explanations. In particular, there is no analogous counterfac-
tual dependence of the RG explanandum on the fixed points. In the context
of the RG explanations, a fixed point is simply not considered to be a ‘var-
iable’, with different possible values, that we can associate, via RG trans-
formations, with different possible states of the explanandum variable. In-
stead, if one accepts that fixed points are indispensable for RG explanations
of universality (as antireductionists do), then one is committed to the claim
that it is impossible to consider counterfactual variations of the relevant as-
sumptions about fixed points (e.g., through de-idealization) without losing
explanatory power. Indeed, everyone in the debate agrees that it is not part
of an RG explanation to exhibit what would happen if the fixed points were
different.14 Similarly, it is not a part of RG explanations to license counter-
factual assertions about what would happen if the laws of statistical me-
chanics were different.

If this reasoning is sound, then the ontological reductionist is able to main-
tain an instrumentalist attitude toward RG fixed points; reference to them in
the RG explanations of universality does not have an ontological commit-
ment. In particular, the kind of explanatory indispensability at stake does
not suggest any ontological commitment to facts that are beyond the domain
of statistical mechanics.

Admittedly, there is still room here for an explanatory antireductionist to
protest that we have not given a full reductionist story, purely in terms of the
‘nuts and bolts’ of the microconstituents and their interactions and why
in the first place the mathematical space of parameters has an interesting to-

14. Note that we restrict this claim to RG explanations of universality of critical phenom-
ena. Given the extremely broad-ranging applicability of RGmethods in statistical physics
and quantum field theory, we consider it an open question whether there are other RG
theories that underwrite explanatory counterfactuals with an RG fixed point as a variable,
such that they cannot be thought of as capturing an explanatory dependence of the
explanandum in question on features of finite physical systems in the vicinity of the fixed
point.
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pological structure shaped by the fixed points and critical surfaces.15 This
raises deep issues that require not only a solid grasp of the nature of RG
explanations but also a careful analysis of the nature of explanatory (anti-)
reductionism itself. What exactly does it take to underwrite, purely in terms
of the ‘nuts and bolts’ of the reducing theory, an explanatory use of novel
theoretical concepts like RG fixed points? What exactly is the explanatory
antireductionist (thus construed) asking from the reductionist? These issues
require further work, but in our view there is a real risk that explanatory ir-
reducibility turns out to be a thesis that is so undeniable and widespread that
it seriously reduces the interest of specific considerations turning on RG ex-
planations of universality. For instance, consider a popular example from the
current literature on explanation: Königsberg’s bridges’ property of being
non-Eulerian. This is a novel theoretical concept that is explanatorily in-
dispensable (with respect to the bridges’ traversability), and it is not at all
clear how we could hope to give a full reductionist account of the property
of being non-Eulerian, purely in terms of the ‘nuts and bolts’ of the physics
that describes the bridges at the microlevel.16 If one takes this as an argument
for some kind of explanatory antireductionism, then explanatory antireduc-
tionism seems undeniable given how quickly examples of this sort multiply,
and it is no longer clear what particular contribution is made by the RG expla-
nation of universality.

6. Conclusion. We have provided a strategy for meeting the antireduc-
tionist challenge and for rebutting the argument for ontological antireduc-
tionism from infinite limits in the context of RG explanations of universal-
ity. This strategy is broadly in agreement with Norton’s metaphor of fixed
points as a ‘mathematical peg’ and also with Menon and Callender (2013).
But we think it is critical that an analysis of the explanatory role of fixed points
is properly couched in the context of a fitting philosophical account of the ex-
planation at stake. Insofar as the counterfactual dependence account of expla-
nation provides a fitting account, a reductionist can happily admit the explan-
atory indispensability of the limits involved in RG fixed points.

The challenge of explanatory antireductionism, raised by Batterman in
particular, requires more discussion than we are able to provide here. In
our view the issue at stake is clouded by the current lack of clarity as to the
exact nature of explanatory antireductionism—this is why we have chosen

15. We appreciate an anonymous referee pressing us on this.

16. A connected graph G is Eulerian if and only if every vertex has an even degree. In
connection with this now well-worn example, the philosophical discussion has taken an
explicitly ontological turn (e.g., Pincock 2007). Indeed, explanatory antireductionism is
more or less taken for granted, the only issue of real interest being ontological.
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to focus on an explicitly ontological construal of the antireductionist chal-
lenge. For example, Menon and Callender (2013, 210) characterize explana-
tory irreducibility, reasonably, as taking place “when the explanation of a
higher-level phenomenon requires a conceptual novelty, yet the reducing
theory does not have the resources to explain why the conceptual novelty
is warranted.” In the context of the RG explanation of universality, the ques-
tion then is whether the more fundamental theory has the resources to ex-
plain why the explanatory appeal to fixed points and critical surfaces of
RG space is warranted. As discussed at the end of the previous section, it
is not clear to us what this question amounts to exactly—what is being
asked by way of providing reductionist warrant for novel theoretical con-
cepts. But we do maintain that this question cannot be answered without
taking properly into account the nature of the RG explanation, and the pre-
ceding analysis contributes to this task. To recall, we claim to have shown
how the reductionist can understand how RG fixed points and critical sur-
faces are instrumental in approximating aspects of finite physical systems
near criticality and how they function as indispensable instruments in bring-
ing out explanatory dependencies between physical variables. But explan-
atory indispensability notwithstanding, the reductionist can consistently
maintain that the fixed points and critical surfaces do not represent anything
at all in the finite systems that exhibit universality.

Appendix

Linearized RG

In the vicinity of the fixed point, RG transformations can be linearized in a
way that supports the distinction between relevant and irrelevant parameters
(e.g., Nishimori and Ortiz 2010; linearized RG analysis also supports quan-
titative calculation of critical exponents). Consider a renormalization trans-
formation from u to u0

5 Rb(u) in the vicinity of the fixed point. Writing
these two points in terms of small deviations from the fixed point, we have
u 5 u* 1 du and u0

5 u* 1 du0. In the neighborhood of the fixed point, Rb

(u) can be expanded to first order:

u
0
5 u* 1 du0

5 Rb u* 1 duð Þ 5 Rb u*ð Þ 1
∂Rb

∂u

�

�

�

�

u*

� u 1 ⋯

This yields a linearized renormalization equation

du0
5 Tb u*ð Þ � du,

where Tb(u*) is a matrix with components
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Tb u*ð Þ½ �ij 5
∂u0

i

∂uj

�

�

�

�

u*:

It turns out that critical exponents can be calculated from the eigenvalues
{li} and eigenvectors {fi} of this linear transformation Tb. The small devi-
ations from the fixed point, du and du0, can be written as

u 5 u* 1o
i

gifi, u
0
5 u* 1o

i

g0
ifi,

where gi are the scaling variables that characterize the properties of the pa-
rameter space near the fixed point. An eigenvalue can be expressed as a
power of the rescaling factor b, as

li bð Þ 5 b yi ,

where the exponent yi characterizes the parameter flow near the fixed point.
Remarkably, critical phenomena can be determined from these exponents
and the scaling variables.

In the vicinity of the fixed point u*, where the linearized RG theory is valid,
the nature of the parameter space is characterized by the scaling variables gi, as
well as the exponents yi (associated with the eigenvalues li). In relation to the
local axes given by fi, the scaling variables identify certain directions of the
parameter space as relevant for its critical behavior, namely, the directions of
the eigenvectors fi for which yi > 0. The scaling variables in these directions
are the relevant variables. The scaling variables with negative exponents
(yi < 0) are irrelevant, and the variables with yi 5 0 are marginal. Critical
fixed points must have both relevant and irrelevant scaling variables, in order
to be associated with phase transitions and critical points: the critical man-
ifold is spanned by the eigenvectors associated with the irrelevant scaling
variables, forming the basin of attraction of the fixed point. The relevant
scaling variables can in turn be identified with the control parameters, the
tuning of which is relevant to critical phenomena (e.g., t and h in magnetic
systems).

This distinction between relevant and irrelevant scaling variables delin-
eates the explanatorily critical features of non-renormalized, physical Ham-
iltonians—the features on which the critical exponents depend. The critical
exponents depend only on the relevant variables, in the following sense. In
the vicinity of the fixed point the relevance of these variables amounts to the
fact that the RG flow veers away from the fixed point, in directions that are
“orthogonal” to the criticalmanifold.A universality class depends on theway
in which RG flows from different starting points (different physical Hamilto-
nians) are similar in this way (see, e.g., Pathria and Beale 2009, 436ff.). The
irrelevance of the irrelevant variables, however, amounts to the fact that in the
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vicinity of the fixed point changes in the irrelevant variables do not determine
a system’s scaling properties under coarse-graining; only changes in the rel-
evant variables matter. The only explanatory relevance that we can associate
with the irrelevant variables turns on the fact that systems that differ only in
the irrelevant variables, within a given universality class, are similar the sense
that their coarse-grained descriptions asymptotically coincide: if the relevant
scaling variables vanish (i.e., if the relevant control parameters are tuned to
criticality), then any change in the remaining, irrelevant parameters is imma-
terial to the large-distance properties, since iterated renormalization of any
Hamiltonian on the critical manifold flows to the same critical fixed point.
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