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Analysis of the pressure requirements for silk
spinning reveals a pultrusion dominated process
James Sparkes 1 & Chris Holland 1

Silks are remarkable materials with desirable mechanical properties, yet the fine details of

natural production remain elusive and subsequently inaccessible to biomimetic strategies.

Improved knowledge of the natural processes could therefore unlock development of a host

of bio inspired fibre spinning systems. Here, we use the Chinese silkworm Bombyx mori to

review the pressure requirements for natural spinning and discuss the limits of a biological

extrusion domain. This provides a target for finite element analysis of the flow of silk proteins,

with the aim of bringing the simulated and natural domains into closer alignment. Supported

by two parallel routes of experimental validation, our results indicate that natural spinning is

achieved, not by extruding the feedstock, but by the pulling of nascent silk fibres. This helps

unravel the oft-debated question of whether silk is pushed or pulled from the animal, and

provides impetus to the development of pultrusion-based biomimetic spinning devices.
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The ability to artificially produce silk fibres has great com-
mercial, industrial and scientific implications. Much has
been made of natural silk’s remarkable mechanical prop-

erties1–5, but few have considered how they are imparted onto the
initially liquid silk feedstock during the spinning process6. This
study attempts to bridge this gap in our knowledge by exploring
how internal pressure affects fibre production. Such efforts are
important, both in terms of understanding the flow conditions in
natural silk spinning and as design criteria for larger-scale
manufacture of both bioinspired products7, 8 and biomimetic
fibres1.

Silks are a family of natural protein biopolymers produced by
spiders, silkworms and many other arthropods9–13. They are used
in a multitude of environments, for many different tasks,
including building cocoons, lining burrows, catching and pre-
serving prey, and as swaddling cloth for their offspring10. Yet
unlike other biological materials, they are defined as being spun
rather than grown, with spinning taking place at the point of
delivery2, 6, 14, 15.

Although silk can be (and is) reeled from live animals, it is
time, space and labour intensive, making industrial upscaling
difficult9, 15–26. Through forced reeling of Bombyx mori silk-
worms, fibres can be extracted whose mechanical properties are
much closer to those exhibited by spider dragline silks1 22, 27, 28,
29, suggesting that processing, as well as the feedstock, plays a
major role in silk fibre properties26, 30. In this study, we will focus
on the use of B. mori as a reference system, due to the breadth of
knowledge surrounding this species, and the existing commercial
market for silkworm silks.

Prior to spinning, silk is stored inside the animal as a con-
centrated aqueous protein solution in a specialised organ known
as the silk gland2, 14 (Fig. 1). In the rear of the gland, the primary
component is fibroin, which forms the solid core of the resultant
fibres. Fibre formation is the result of fibroins flowing along the
gland31, being coated in successive layers of additional proteins32

—sericins—before reaching a tapering duct where fibrillation is
thought to be induced through a combination of changes in both
pH and ionic environment2, 31, 33–39, and mechanical
shear10, 33, 40, 41, arriving as a fibre when exiting the animal.
However, the mechanism by which this flow occurs is not fully
understood, and the roles of geometry15, 42, 43 and chemical
changes have only been briefly explored19, 29, 34–39, 44–46.

There have been multiple attempts to create silk protein
feedstocks47–49, but they have generally been frustrated by pro-
blems with molecular length50, aggregation51 and concentra-
tion52, with the fibres produced so far being comparable to
synthetic textiles1, 29. We believe that this is in part due to not
fully understanding how nature processes a silk feedstock, and
that this is key to successfully handling these wilful proteins. Over
the past decade there have been numerous studies on silk
flow4, 29, 37, 44, 49, 53–56, but the recent publication of extensive silk
rheology data57–60 allows us to make progress in this direction.
Therefore one of the further aims of this work is to address the
limitations highlighted in previous silk flow models.

Although several studies have used molecular dynamics
simulations61–68 to explore the flow and aggregation of silk at a
molecular level, and despite pipe flow being a well-established
engineering approach69 to explore the flow of fluids in tubes,
previous attempts to model silk flow at a microscale are described
in just three studies. Kojic et al.70 made the first geometric
approximations of silk spinning ducts, but although industrially
relevant, the geometry used bears little resemblance to the bio-
logical system, and was limited by the absence of high quality
rheological data. Moriya et al.40 produced a three-dimensional
reconstruction from microtomography, but the complexity of the
reported geometry would be extremely challenging to replicate

industrially. Breslauer et al.43 improved on this by using Asakura
et al.'s71 approximation of the tapering duct as a hyperbolic
function (industrially relevant), but was reliant on the same
limited rheological data employed by Kojic et al.70.

Whilst significant progress has been made in the acquisition of
robust rheological data for B. mori57–60, the geometric aspect has
rarely been considered, a notion which provides us with the
impetus for this work. Recent work has shown that the spinning
ducts of both B. mori and Nephila clavipes are reinforced using
chitin in a manner which suggests that they will be less readily
deformable than the initial part of the glands, and that precisely
defined geometry may be important for efficient and effective
fibre spinning42, 72. The use of mathematical functions rather
than data extracted from individual specimens allow control over
this geometry in silico, which can be used to systematically
explore the effect of geometric variation on the pressure
requirements. It is hoped that by considering the pressure
required to induce flow, this study will go some way towards
answering the oft-debated question of how silk flows—is it
pushed, or is it pulled?

To resolve this issue and define silk’s processing space, finite
element (FE) simulations have been carried out in COMSOL
Multiphysics 5.2 to explore the internal pressure required to
generate flow at a given rate through a range of geometries. By
treating inlet pressure as the unknown variable rather than as a
known parameter as in previous studies40, 43, 73, we can explore
the full range of pressures required for the known physiological
spinning speeds of B. mori. Experimental validation was under-
taken through a practical fibroin extrusion apparatus (pushing)
and the application of a forced reeling technique (pulling), both
of which support our simulations and seek to define the physical
limits of natural spinning and guide the future development of
biomimetic spinning devices. We report that the pressure
required for flow is significantly higher than silk producers can
generate in their haemolymph, and conclude that rather than
being an extrusion based system, the process of silk spinning is
dominated by pultrusion effects, which act via the solidity gra-
dient induced as fibrillation occurs.

Results
Comparison of existing silk geometries. There have only been
three previous studies which have modelled the flow of silk, of
which only two used geometries that can be considered

Silk gland

Haemocoel
surrounding
silk gland

To other
silk gland

Spun fibre
Silk duct

Fig. 1 Anatomical overview of the B. mori silk gland. Diagram depicting the
silk spinning apparatus of B. mori, highlighting the gland (blue) surrounded
by the haemocoel (green). Direction of silk flow during spinning is indicated
by the blue arrows
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industrially applicable. Two were described by a hyperbolic
function (Asakura et al.71 and Breslauer et al.43), while the third
used a linear approximation (Kojic et al.74, Fig. 2a). Since both
hyperbolic functions were derived from the same data, this
effectively leaves just two geometric models. Asakura’s, with an
eightfold reduction, and Kojic’s, with a fifty fold reduction from
an inlet half the size of the natural system. Kojic’s outlet diameter
is marginally smaller than is seen in an individual B. mori fibre
(~10 µm), whereas Asakura’s is 2.5 times larger.

Comparison of existing silk viscosity models. Several different
generalised viscosity models have been applied to empirically
measured fibroin data4, 37, 40, 44, 54, 55, 57, 58, 73–75 in previous
studies; these can be grouped as either Newtonian75, or non-
Newtonian37, 40, 44, 54, 55, 57, 58, 73. Contemporary studies are in
agreement that fibroin behaves, as expected of a polymeric
solution, as a non-Newtonian fluid, but the methods used to
describe this behaviour vary4, 37, 40, 44, 54, 57, 58, 73–75. The
response of silk to an increasing shear rate can be described in
four distinct regimes (Fig. 2b).

The mathematical models that have been used to describe the
viscoelastic behaviour of fibroin are both complex and not well
defined, particularly at higher shear rates where fibre formation is
known to begin. Early attempts to describe this behaviour used a
different power law function to describe each of phases 1–4 in
Fig. 2b37, 40, 44, 73. However, as we are not yet concerned with the
fibrillation region (Fig. 2b, regions 3 and 4) (a biomimetic design
limit—premature fibrillation will be naturally selected against, as
duct blockages would prevent further spinning), models which
describe the behaviour at shear rates below this point (regions 1
and 2 in Fig. 2b) are considered adequate. As such, the Carreau-
Yasuda model76 (Equation 1) is now the preferred model as it
describes regions 1 and 2 in a single equation.

The rheological properties of the silk feedstock used in the
simulations are based on a range derived from literature values
obtained over the past 40 years4, 37, 40, 44, 54, 57, 58, 73–75, 77, 78.
Their proposed low shear viscosities (≤1 s−1) are shown in Fig. 3.

The viscoelastic properties of the fluid are described using the
Carreau-Yasuda model76, typically written as:

η _γð Þ ¼ η1 þ η0 � η1ð Þ 1þ λ _γð Það Þn�1
a ð1Þ
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Fig. 2 Geometric and rheological considerations. a Previous geometric approximations of silk ducts showing the variation in radius as a function of distance
along the duct. Curves represent Asakura (orange dashes) and Breslauer’s (blue line) hyperbolic approximations, along with the linear model employed by
Kojic (green dots). The equations describing each curve can be found in Supplementary Table 1. b – Exemplar rheological response of silk feedstock to
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Fig. 3 Variation in wild and domesticated silkworm feedstock viscosities.
Measured values of the low shear viscosity of wild (circles) and
domesticated (triangles) silkworm feedstocks from previous rheological
studies4, 33, 37, 40, 54, 55, 57, 58, 73–75, the highlighted regions show the mean
(green line), and ranges proposed by Laity’s 2015 (orange dots)57 and 2016
(blue dashes)58 studies (data labels provide references). This suggests that
a large sample size is key to understanding the variability in the viscosity of
silkworm feedstocks
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Here, the dynamic viscosity η _γð Þ is modelled as a function of
shear rate _γ, which varies between two Newtonian plateau regions
—the zero (η0) and infinite (η∞) shear viscosities—between which
lies a region of non-Newtonian, shear thinning, behaviour which
is curve-fitted using a and n. Note that λ represents the fluid’s
relaxation time.

We simplify this model by assuming that since the feedstock
will gel above a certain shear rate, there is no need to include the
infinite shear viscosity η∞, as it does not have physical
significance, and thus the model simplifies to:

η _γð Þ ¼ η0 1þ λ _γð Það Þn�1
a ð2Þ

The simplified form of the CY-model (Equation 2) allows the
viscosity to be described in terms of its zero shear viscosity
(readily estimated from low shear measurements) and the rate of
shear thinning. This seems appropriate, given that the primary
difference between individual specimens lies in the reported
values of the low shear viscosity (Fig. 3), with successive studies
showing values varying between ~800 and 108 Pa s4, 44. Recent
work on a much larger sample size57 shows that B. mori
feedstocks have a range of low shear viscosities, spanning
400–5000 Pa s (mean= 1722 Pa s, s.d.= 935 Pa s, n= 125), which
incorporates all previously reported values with one major
exception44, which it suggests has gelled and is therefore
irrelevant. This was further extended by considering viscosity as
a function of percentage cocoon spun, to show that the range
spans ~200–10,000 Pa s58. Although this pertains to B. mori,
many other silk producers (including other silkworms and
spiders) lie within this bracket54, 55.

Pressure. In order to determine valid pressures it is necessary to
consider the physiological limitations which constrain the
environment in which we operate. The larval stages of most
endopterygota maintain a positive internal pressure, which gra-
dually reduces to atmospheric levels as sclerotisation in the adult
instar increases79. Steady internal pressure is maintained through
muscular contraction, with small variations observed to coincide
with heartbeats80, 81. This active maintenance is readily observed
during anaesthesis, whereupon internal pressure is lost and the
body becomes flaccid82. In soft bodied, non-segmented larvae,
haemolymph pressure is effectively equivalent to the internal
pressure of the whole body80.

We define the upper limit for internal pressure in silkworms as
one that induces eclosion/ecdysis (shedding of the skin).
Although silkworms are clearly capable of producing such
pressures, to do so ruptures the haemocoel (primary body
cavity), which could prove fatal if undertaken prematurely,
therefore the pressure that could be applied to the silk glands
must be less than this. This assumption is considered valid due to
the non-segmented nature of the haemocoel, resulting in a
uniform body pressure which cannot readily be directed or
localised within the haemocoel itself (Fig. 1).

Figure 4 summarises previous estimations from the literature of
internal pressure, and the resulting predicted spinning speeds. To
facilitate evaluation of previous studies, the following boundaries
are introduced, which describe the limits of what is known as the
biological extrusion domain. Although fibres may be spun
outwith these constraints, they cannot be considered representa-
tive of the natural systems. An initial constraint is the range of
natural spinning speeds (0.01–0.03 m s−1)22, 83, but we widen this
to incorporate forced reeling (0.001–0.5 m s−1)15, 21, 22, 25, 84 —
since silks can be made by the animal across this range — to
provide the forced and natural biological extrusion domains.

The upper limit on pressure is the maximum recorded internal
pressure in the insecta class—4 × 104 Pa for hard bodied species85.
This is reduced to a lowly 5880 Pa—the haemocoelic rupture
pressure of final instar B. mori entering pupation79 (adult moths
have been recorded at marginally higher internal pressures (6750
Pa)86, but this is not representative, since they no longer contain
silk glands and have developed exoskeletons).

Geometric effects. The use of different duct geometries allowed
the effect of shape on the flow to be assessed (Fig. 5). From a
given inlet diameter (413 µm71), ducts were created using math-
ematical functions (Supplementary Tables 1 and 2) to describe
both the severity of the taper, and the outlet diameter. Parabolic,
exponential, and linear ducts were analysed, each with outlet
diameters at 1/2, 1/4 and 1/8th of the inlet, and for the linear taper,
an additional limiting case with outlet diameter equal to inlet
(zero taper). It can be seen that both an increase in outlet dia-
meter (Fig. 5a) and a reduction in the severity of the taper
(Fig. 5b), serve to reduce the pressure requirements. However,
even in the limiting case, the pressure required to spin at natural
speeds (5.4 × 106 Pa) remains many orders of magnitude higher
than that recorded in B. mori79, 86, and is clearly unrepresentative.
Of further interest is that the extensional flow rates are variable
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along the length of the duct (Supplementary Fig. 1), which
directly contradicts the suggestion that hyperbolic tapers are used
to provide a constant extensional flow87.

Viscosity effects. The variation in models using the Carreau-
Yasuda method lies primarily in the value of the zero shear
viscosity, with the rate of shear thinning shown to be similar
across previous studies (Supplementary Fig. 2). This effectively
provides a single variable whose effect can be readily explored
through simulation. Figure 6 shows the effect of varying the zero
shear viscosity across the range detailed in Laity’s 2015 study57 in
relation to the biological extrusion domain. It is clear that reduced
zero shear viscosity reduces the pressure required for spinning,
yet silk feedstocks across this range of viscosities are all viable
spinning feedstocks in vivo, suggesting that zero shear viscosity
has little effect on the spinning process. However, reducing zero
shear viscosity alone is clearly not sufficient to enter the biological
extrusion domain, and thus factors must play a role in reducing
the pressure required to spin.

The effect of wall friction. The effect of reducing friction at the
wall of the duct, resulting in reduced pressure requirements, can
be clearly seen in Fig. 7. Reduction of wall friction is a common
theme in pipeline networks (e.g., for oil) via surface modifica-
tion88, 89 or addition of drag reducing agents90, yet even in the
limiting case for B. mori where the wall is considered to be at
100% slip, the pressure does not drop sufficiently far across the
biological range of feedstock viscosities to entirely enter the
spinning domain.

At the far end of minimising the interaction between feedstock
and duct wall is the possibility of a lubricating layer to minimise
friction. Many authors have suggested that there may be some
form of lubrication present in silk ducts31, 55, 71, 91–94. Of the ~80
different proteins identified in silk feedstocks95, most opt for it
being a secondary function of sericin, though there is little
evidence to support this. Brown et al.91 suggest that unbound
water may perform this role, while data originally dismissed as
erroneous due to phase separation96 (resulting in a reduction in
force measured) in Holland’s 2006 study55, and the layering
effects seen in 201233, actually strengthen this suggestion. A
simplistic approximation is to assume that if this is the case, then
plug flow can be assumed, which allows us to determine the

pressure requirements by modelling the flow as solely consisting
of a lubricant.

Changing the fluid. If one considers the case where the inter-
action between fibroin and wall of the duct is minimised, wherein
it still appears impossible to reach the biological extrusion
domain, then another option is to focus our attention on the use
of other fluids in lieu of the non-Newtonian fibroin. It is well
known that in B. mori, although the glands are considered to be
primarily composed of fibroin, there also exists a relatively large
proportion of sericin, which forms up to 30% of the final fibre.
However, both of these are eclipsed by the primary solvent in the
system, water, which is approximately 76% of the fibroin57, and
86% of the sericin75, feedstock. Using this approach, assuming
that the fluids remain immiscible and that plug flow provides a
relevant model, we can substitute the flow as a single phase,
consisting solely of the lubricant in order to estimate the reduc-
tion in pressure required for flow through lubrication by sericin
or water. It was found that the use of sericin75, which Kataoka
described as a Newtonian fluid, ~103× less viscous than fibroin,
still did not reach the spinning domain (See Fig. 8). It is evident
that only by using Newtonian water (~106× less viscous) that we
begin to enter the domain, yet the upper limits for spinning speed
remain inaccessible.

Experimental validation. Through the incorporation of experi-
mentally derived biological constraints — including a pressure
limit, spinning speeds and viscosity variations — our model has
clearly indicated that it is not possible to achieve natural spinning
by pushing alone. To further validate our simulation, we con-
ducted a series of tests to both measure the forces required to
extrude native silk feedstock and to pull a fibre from the animal.

To assess the validity of the effects of geometric variation in our
extrusion models, we extracted native fibroin feedstock and
subjected it to extrusion tests designed to mimic the limiting case
of a 20 mm zero taper duct (Fig. 9a–d). The diameters of the
ducts used ranged from 1.5 mm down to 0.26 mm. This lower
limit was set by the high probability of Luer-slip connection
failure or the plunger critical load Pcr being surpassed when tests
were attempted using smaller diameter ducts, but since both Pcr
(equivalent to ~2.4 × 106 Pa) and the Luer-slip failure pressure
(ISO minimum: 3 × 105 Pa) are several orders of magnitude
higher than the previously determined biological limit (a rupture
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pressure of 5.9 × 103 Pa), it seemed unnecessary to explore
beyond this.

Experimental results are shown in Fig. 9e–g. Despite the duct
diameters being ×10–30 larger than the natural system, the results
are in broad agreement with previously published values, and our
analysis of duct geometry and fibroin viscosity. These results
confirm both that flow in smaller diameter ducts requires greater
pressure, and that our simulations are predicting pressure
requirements of the correct orders of magnitude.

Given that the predicted and measured forces required to push
silk appear to be well in excess of the animal’s biological limits, we
are left with the consideration that silk is spun by being pulled. To
support this hypothesis, we conducted a series of forced reeling
experiments which allowed us to measure the normal stress (in
the axial direction) required to forcibly pull fibres from a
silkworm, and compare it to the axial stress (i.e., pressure) from
our simulation and extrusion results (Fig. 9e).

Figure 9e highlights the stress-reeling speed relation for a
representative specimen, which shows not only a strong linear
correlation, but also, and of most interest, that silk production
across this range of speeds requires stresses of magnitude 3–12
MPa, which both agrees with and further validates our simulation
results of 6–13MPa (Fig. 8). Hence our results show that the
forces required to extrude silk feedstock in silico/vitro are in
agreement with those achieved through pultrusion in vivo and
when pulled can clearly be generated by the silkworm. Therefore,
we can conclude that whilst B. mori may not have the natural
capacity to extrude silk feedstock into fibres, it is capable of
generating forces of this magnitude through pultrusion.

Discussion
Through the use of computational models and experimental
validation, we have demonstrated that previously reported
requirements for extreme pressure to induce silk flow can be
reduced through a variety of factors, which furthers our under-
standing of the natural system and future bio inspired
endeavours.

The first factor involves reducing feedstock viscosity, yet even
reducing this a million-fold (to that of water) proved insufficient
to access the entirety of the biological extrusion domain. Second,
changing the geometry employed, either by increasing outlet
diameter or by lessening the severity of the taper, serves to reduce

the required pressure. However, the reinforced nature of the
tapered section of many silk ducts72 suggests that the internal
structure is critical, whereas the use of a larger outlet is clearly
unrepresentative of the natural system, since spun fibres are much
smaller than the diameters required. The final factor considered
involves reducing wall friction, with a slip regime used to model
the effect of a lubricating layer in the duct. Yet even if all these
means were employed by the animal, how would the internal
pressure be generated? Previous studies have suggested mechan-
isms responsible for the creation of such a pressure, such as
peristalsis97 or osmotic pressure98.

Peristalsis seems a plausible explanation, given its prevalence in
natural systems—it is used for fluid ejection/excretion/expec-
toration by many hard bodied animals, including ants99 and
spitting spiders100, and those with soft bodies such as cephalo-
pods101. However, the argument against this is that unlike the
above examples, the silkworm’s gland is not lined with muscu-
lature71, 102, and thus the peristaltic effect would need to be
transmitted through the haemocoel onto the entire gland at once
from the external musculature of the body. Although this may be
appropriate for a simple, linear gland, it seems unlikely that such
a whole body contraction could create peristaltic flow, due to the
twisted, folded nature of the gland itself, with pressure applied at
the haemocoel unable to be directed at specific sections of the
gland due to the unsegmented nature of the body cavity (Fig. 1).

Another suggestion is that continuous production of silk pro-
teins in the rear of the gland creates a concentration gradient
which drives flow through osmosis. However, this would require
continuous protein production to maintain the gradient, which is
at odds with the knowledge that protein synthesis rates are
reduced to zero during cocoon construction in B. mori. This is
also substantiated by the knowledge that fibroin concentration
increases in the flow direction46, in direct contradiction to the
principles of osmotic flow.

In summary, we suggest that it seems improbable that there is
an active pressure system within silkworms capable of generating
the high pressures suggested by the flow models. However, the
use of a lubricating layer allows plug flow to be considered, and
thus the following generalised silk production flow model is
presented:

During flow fibroin proteins first align and after a critical
shear rate and cumulative stress is exceeded, denature and
aggregate together. This results in a phase separation and drives
water to the edges of the duct. Here it forms a lubricating layer
between the nascent fibre and the duct walls, allowing the system
to be treated here as plug flow and as if it were water. Further-
more, it is suggested that the nascent fibre, initially composed of
nano and then microfibrils, exhibits a solidity gradient along its
length, in which the fibre increases in modulus as it travels down
the gland, allowing fibres to be pulled from the animal by
themselves.

Of course, these push/pull effects are not mutually exclusive,
and thus several could be in use within the system. This means
that, although we cannot conclusively say that there is no pushing
in the system, we can state with certainty that it cannot be con-
sidered as the dominant force acting within the system, and that
instead, our data show the maximum rates achievable through
pulling alone, hence the difference between this and the natural
system represents a minimum force requirement for pultrusion.
The next step in the process is to develop multiphase models,
requiring the determination of the rheological properties of fluids
such as sericin. In conclusion, this study represents a step forward
in our understanding of the conditions by which natural spinning
occurs and identifies the requirement for the development of
biomimetic artificial silk spinning devices based on pultrusion
rather than extrusion.
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Fig. 9 Experimental validation through extrusion of native silk feedstock and pultruding silk fibres via forced reeling. a Pushing experimental validation rig:
Zwick Z0.5 universal testing machine in compression mode, with hypodermic needle mount and spin tank. b Schematic representation of extrusion device
seen in a. c Schematic representing the key components of the forced reeling system (custom geometry/spool and restrained silkworm) used for
pultrusion experimental validation. d Take-up spool and silkworm mid-reeling experiment, with a strand of silk visible between the two. e Plotting stress
against reeling speed shows an approximately linear relation between the two variables. The stress encountered during forced reeling is of the same order
of magnitude (3–12MPa) as the pressure predicted through our computational models (6–13MPa), which supports the argument for pultrusion as the
dominant spinning mechanism. f The relationship between the pressure required to extrude native silk feedstock through a non-tapering duct and its
diameter is shown. Coloured lines f and filled squares g refer to the correspondingly coloured hypodermic needles used as extrusion dies. The internal
diameter of each is constant over a 20mm length, and is provided for each size. Values presented are maximum pressures attained. For lower speeds and
larger diameters, the measured forces showed an initial rise to a steady plateau where the sample continued to flow through the needle, the value of which
is presented in these cases. In the higher speed and/or lower diameter cases, failure during the initial rise in pressure was often experienced, and hence
maximum pressure reached is presented as an indicator of minimum pressure required, though it is likely the plateau region would be higher. For clarity,
only the first 2 mm of the extruded length are shown, for an overview of the entire extrusion process, see Supplementary Fig. 4. g Comparison of our
experimental data with previous simulations (Kojic (2006), orange plus; Moriya (2008), yellow circles; Moriya (2009), green x; Breslauer (2009), blue
triangle), our extension of Kojic’s work (blue dot-dashes), and the limiting case of our geometric explorations (pale green) (see Fig. 5) shows good
agreement, with pressures of similar magnitudes to those predicted through simulation required to extrude native silk feedstock through a non-tapering
duct
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Methods
Experimental. Extrusion: Simulations were validated through two experimental
studies. To assess the validity of extrusion in generating sufficient flow rates, native
silk fibroin feedstock from the middle and anterior portion of the silk gland was
extracted as described elsewhere57 and loaded into 1.0 ml syringes treated with a
super hydrophobic coating (Rain-x) for ease of loading. A modified universal
testing machine (Zwick Roell, Z0.5, 500 N load cell) was used to provide the back
pressure to flow the feedstock through 20 mm needles (diameters from 0.26 to 1.5
mm) into a water bath. Spinning speeds between 0.16 and 6.04 mm s−1 were
successfully applied to 10 specimens. However, when higher rates were applied,
either the Luer connection between syringe and needle failed, or the Euler load of
the plunger was exceeded, both of which invalidated the test.

Forced reeling: Final instar B. mori silkworms in their wandering phase were
force reeled using a rheometer as a high sensitivity force transducer capable of
much longer reeling times (effectively indefinite) than previous work22, 25. A total
of 10 silkworms were reeled across a range of spinning speeds (5–75 mm s−1).
Although the possible range of forced reeling rates is broader than this, for ethical
reasons we did not explore the full range reported in the literature (1–500 mm s−1)
15, 18, 21, 22, 24–28 due to the requirement of paralysis for low rates and the potential
for permanent damage to the animal at higher rates. Average fibre diameters from
silkworms were determined from between 77 and 295 (dependent on quantity of
silk reeled) independent measurements from photos taken through a reflection
microscope under ×20 magnification (lasertec E414) and quantified using ImageJ.

Simulation. Overview: Finite element analysis of flow within silk ducts was per-
formed using the computational fluid dynamics (CFD) element of the COMSOL
Multiphysics 5.2 software package. Simulations have been run in an isothermal
environment with ambient external pressure, both of which are considered
representative of the natural system.

Geometry: Ducts have been modelled using geometric approximations of
experimentally determined data42, 71, 72, 87, as seen previously43, 71. This is
considered a suitable technique to determine the system geometry as it provides a
more rigorous, general description than that utilised in other FE studies40, 73. The
system has been simplified to a two-dimensional, axisymmetric representation for
computational efficiency. Wall conditions have been modelled in the limiting cases
of both no-slip and full-slip boundaries in order to fully capture the domain of
interest.

Mesh: Models were repeatedly re-meshed to determine mesh convergence,
resulting in systems of ~20,000 elements, which provides the optimum trade-off
between computational accuracy and time, with the variation in results ~0.02%
when compared with models comprising 15 million elements.

Flow regime: The flow is assumed to be laminar (taking maximum values for
density, velocity and diameter, and minimum viscosity yields Reynolds numbers in
the region of Re< 10), and is modelled as a single fluid phase (in the absence of
data describing the rheological properties of sericin (an area of current research) we
have assumed this to be the best case).

Density and concentration: The density of silk feedstock has often been
misrepresented in the literature, with previous studies treating spun and unspun
density as equivalent40, 73, 103—this is unrepresentative due to the dehydrated,
solid, state of spun silks. Later studies attempted to account for this but were held
back by smaller sample sizes, resulting in a 25% overshoot43, 104. A closer
approximation can be made from a mass fraction calculation assuming 24% (s.d.=
2.5%) concentration57 to arrive at a density of 1072 kg m−3.

The effect of concentration has not been included beyond the effect it has on
fluid density due to its unexpectedly weak correlation with viscosity57, 58.
Furthermore the proposed phase separation and water resorption105 in the distal
regions are ignored as recent evidence has suggested that silk may be more
hydrated as it exits the animal than has been reported previously106.

Spinning speed: Spinning speeds have been analysed from 1 × 10−9 m s−1 to
2 m s−1, which encompasses all verifiable previous recorded spinning speeds, forced
or natural15, 1821, 22, 24–28. The single inlet/outlet model ensures that mass is
conserved, thus we can use exit velocity (spinning speed) to determine inlet
conditions, in this case specified by the pressure.

Data availability. The data sets generated during and/or analysed during the
current study are available in the University of Sheffield’s Online Research Data
Archive (ORDA) repository, http://dx.doi.org/10.15131/shef.data.4990916.
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