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Abstract Reduced blood flow in the coronary arteries
can lead to damaged heart tissue (myocardial ischaemia).
Although one method for detecting myocardial ischaemia
involves changes in the ST segment of the electrocardio-
gram, the relationship between these changes and suben-
docardial ischaemia is not fully understood. In this study,
we modelled ST-segment epicardial potentials in a slab
model of cardiac ventricular tissue, with a central ischaemic
region, using the bidomain model, which considers con-
duction longitudinal, transverse and normal to the cardiac
fibres. We systematically quantified the effect of uncertainty
on the input parameters, fibre rotation angle, ischaemic
depth, blood conductivity and six bidomain conductivi-
ties, on outputs that characterise the epicardial potential
distribution. We found that three typical types of epicar-
dial potential distributions (one minimum over the central
ischaemic region, a tripole of minima, and two minima
flanking a central maximum) could all occur for a wide
range of ischaemic depths. In addition, the positions of the

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s11517-017-1714-y) contains sup-
plementary material, which is available to authorized users.

P4 Richard H. Clayton
r.h.clayton @sheffield.ac.uk

Queensland Micro- and Nanotechnology Centre and School
of Natural Sciences, Griffith University, Nathan, QLD 4111,
Australia

Department of Physics and Astronomy, University
of Sheffield, Sheffield, UK

Department of Computer Science and INSIGNEO Institute for
in-silico Medicine, University of Sheffield, Sheffield, UK

Published online: 20 September 2017

minima were affected by both the fibre rotation angle and
the ischaemic depth, but not by changes in the conductivity
values. We also showed that the magnitude of ST depression
is affected only by changes in the longitudinal and normal
conductivities, but not by the transverse conductivities.

Keywords Ischaemia - ST depression - Bidomain model -
Conductivity values - Gaussian process emulators

1 Introduction

Myocardial ischaemia is a condition that results from
reduced blood flow to the heart from the coronary arter-
ies. Chest pain and symptoms of myocardial ischaemia are
one of the most common reasons for patients to present to
hospital emergency departments [32]. Since one method for
detecting myocardial ischaemia is elevation or depression
of the ST segment of the electrocardiogram (ECG), a com-
prehensive understanding of the biophysical basis of these
changes is an important goal for researchers in this area.

When evaluating various anti-ischaemia interventions,
ideally clinicians would be able to use ECG ST-segment
changes to determine whether the presentation is acute full-
thickness (transmural) ischaemia or whether the ischaemia
is partial thickness (subendocardial). This distinction is
important because transmural ischaemia corresponds to full
occlusion of the coronary artery, and partial occlusion of the
coronary artery is thought to be related to ST depression
via subendocardial ischaemia [44]. From a clinical point of
view, the importance of locating the ischaemic region is also
clear because of the connection with arterial blockage.

It is well-accepted that transmural ischaemia results in
epicardial ST elevation, which can also be detected on the
body surface [31]. However, epicardial ST depression and
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its observation on the body surface are not as well-correlated
with subendocardial ischaemia [44].

Various studies have found differences in the position of
areas of ST depression and elevation. For example, some
studies [30, 37] suggest that the maximum ST depres-
sion occurs over a lateral boundary between normal and
ischaemic tissue in subendocardial ischaemia, with or with-
out elevation directly over the ischaemic region. Others
[21] agree with this basic finding but suggest that both the
magnitude and location of ST depression are sensitive to
changes in the conductivity values used, in particular their
anisotropy.

In the last ten or so years, a large number of studies
have used computer modelling to investigate aspects of the
depression and elevation of the ST segment of the ECG;
see, for example, [5, 6, 10, 22, 25, 39, 40, 43]. Some of
these studies have examined the roles that tissue anisotropy
and local fibre direction play in the injury currents that flow
between healthy and ischaemic tissue, and have proposed
mechanisms for the current flows that explain the formation
of ST depression and elevation [5, 21, 22, 40].

The various input parameters to these models are not
known with any great certainty and this is particularly so
for the bidomain conductivity values for cardiac ventricu-
lar tissue. In the bidomain model, the tissue is represented
as consisting of intracellular (i) or extracellular (e) spaces
with conduction in three orthogonal directions. Since car-
diac tissue consists of strands of cardiac fibres that make
up ‘sheets’ that rotate relative to one another through the
ventricular wall [20], these directions are defined as longi-
tudinal (/) to/along the fibres, transverse (¢) to/across the
fibres within the sheet and normal (n)/perpendicular to the
sheets, giving conductivities gpq, p =1i,e,q =1,t,n.

Some sets of these cardiac conductivities have been
experimentally determined and others are based on theo-
retical models, but, even if they were all experimentally
determined, variations in experimental conditions, measure-
ment accuracy, modelling assumptions and inter-subject
differences would ensure that there would still be uncer-
tainty in the parameters. Also, it is known that conductivity
values change during the time course of ischaemia [40, 56],
due to the collapse of interstitial space, cell swelling and the
closure of gap junctions, and this justifies studying the effect
of varying the input conductivities over quite a wide range.

One approach to studying the effect of uncertainty on
input parameters is a population of models approach [41],
in which a large number (say 10%) of model runs are used
to explore the parameter space, and model calibration is
done by discarding those runs that fall outside the range
of observed outputs. Another is a Monte-Carlo approach,
which also uses large numbers of model runs with differ-
ent sets of input parameters. Still another approach, the one
used in this study, is the construction of emulators (surrogate
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models). In this method, a much smaller number of model
runs is used to construct a fast running emulator (a statistical
model) of the original model (the simulator). The follow-
ing are examples of emulators that have been used in the
cardiac field: those constructed by generalised polynomial
chaos [17, 26, 58], partial least squares [53] and Gaussian
process emulators [12, 29].

The aim of the study was to deploy these uncertainty
and sensitivity analysis techniques on a simplified model
of subendocardial ischaemia that does not include the addi-
tional complexity of anatomically detailed representations
of the heart and torso. We systematically examined the
effect of uncertainty in various input parameters (fibre rota-
tion angle, ischaemic depth, blood conductivity and the
six bidomain conductivities) on the form of the epicardial
potential distributions (EPDs) produced during the ST seg-
ment in a bidomain model of subendocardial ischaemia. We
achieved this by examining the sensitivity of various outputs
that characterise the EPD, such as maximum and minimum
potentials and positions of the maximum and minimum, to
changes in the input parameters.

Novel aspects of this study include the demonstration of
the use of Gaussian process emulators in a tissue level model
and the systematic examination of the effect of six, rather
than four, conductivities on the outputs, as well as a study
into the effect of uncertainty on fibre rotation angle and
ischaemic depth on the position of the minimum potentials
in the EPD.

2 Methods
2.1 Governing equations and model geometry

During the ST segment of the electrocardiogram, the passive
bidomain equation [2, 61] can be used to model the electric
potential in the extracellular space ¢,, in a region of cardiac
tissue, giving

V-M; +M,) V¢, = =V -M; Ve,

where ¢, is the transmembrane potential distribution and
M, (p = i, e) are conductivity tensors in the intracellular
and extracellular spaces, respectively. These tensors are of
the form M, = AGPAT(p =i, e), where G, is a diagonal
matrix with bidomain conductivity values (gpq,q = [, 1, n)
on the diagonal and A is a rotation matrix which maps
the local fibre direction into the global coordinate system.
We also assumed that the cardiac tissue is in contact with
a blood mass in which the potential in the blood satisfies
V2¢, = 0.

In this work, we solved these equations in a rectangular
block (16 cm x 16 cm x 1 cm) of tissue (Fig. 1), which used
an (x, y, z) coordinate system, with the origin at the centre
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Fig. 1 The tissue-blood model
used in the simulations, showing
the epicardium at z = 0, the
endocardium at z = 1 and the
central region, which is
ischaemic tissue that extends
part way from the endocardium
towards the epicardium. Blood
extends from the endocardium
(that is, for z > 1)

of the block, the epicardium at z = 0, the endocardium at
z = 1 and a blood mass between z = 1 and z = 26 cm.
An ischaemic region (4 cm x 4 cm with varying depths)
that extended part way from the endocardium towards the
epicardium was centred at the origin [27, 28].

While the depth (1 cm) of the slab was chosen to be rep-
resentative of the thickness of the human left ventricular
wall, the x and y dimensions (16 cm) and the depth of the
blood (25 cm) were simply chosen so that the computational
domain was large enough to allow the boundary potentials
to approach zero [25, 27].

We chose to use a rectangular slab of ischaemic tissue
because a study using the same model with a cylindri-
cally shaped ischaemic region found that there was little
difference in the EPDs for the two geometries [4, 5].

On the epicardium, we made the assumption that the car-
diac fibres were aligned with the x-axis [25]. This defines
the longitudinal direction of the cardiac tissue. Also in the
plane of the epicardium, at right angles to this direction, we
define the transverse direction of the cardiac tissue (along
the y-axis). Mutually orthogonal to these two directions
is the normal direction of the tissue (the z-axis). It was
also assumed that fibre rotation varied linearly between the
epicardium and the endocardium.

We represented the transmembrane potential ¢, during
the ST segment in acute (phase I) ischaemia as follows [28,
61]

b (x,y,2) = Agp ¥ ()P (NP (1 —2) ey

where ¢, is the difference in plateau potentials between the
normal and ischaemic tissue, and

1—exp(—a; /As) cosh(t /1) |t| <a

W (t) = 1—exp(—a; /Ar) =" )
exp(—||/A¢) sinh(a, /2;) |t| >a
I—exp(—ar/A¢) 4

where a; is the half-width of the ischaemic region for
t = x,y,z and XA; adjusts the steepness of the border zone
between the normal and ischaemic zones. We set ¢, =
—30 mV [21, 28], and A, = 0.01 V¢, which resulted in
a sharp interface between the two regions of tissue, and a
narrow border zone, consistent with previous work [25, 28].

The same boundary conditions as in previous work [25]
were used here: the edges of the tissue and the blood mass

in the x and y directions as well as the epicardial surface
are insulated; ¢, = 0 at the bottom of the blood; and the
potential and current are continuous between the tissue and
the blood.

The computational model used has 375,821 nodes and
360,000 non-uniformly spaced hexahedral finite volumes,
with x and y resolutions on average of 2.5 mm and a z res-
olution of 0.2 mm, where the nodes are clustered around
the borders of the ischaemic region. The solution technique,
which is based on the finite volume method, has previously
been verified [25]. We solved the governing equations using
the various sets of parameters that will be discussed in the
next section.

2.2 Parameter ranges considered

A list of bidomain conductivity values from the literature is
given in Table 1, where dashes indicate that values are not
available, and information is given as to whether the study
is experimental (E), partly experimental (PE) or theoretical
(T). Additional information about the animal models used is
also given for the experimental studies.

It is clear that there is considerable variation in the
experimentally determined sets of four-conductivity values
and that there are very few sets of six-conductivity val-
ues available. In practice, when four-conductivity sets are
used in modelling studies, the assumption is made that the
normal and transverse conductivities are equal. However,
experiments have shown that this is not the case [11, 20].

For the purposes of this study, we aimed to consider the
effect of varying the conductivity values over a wide, but
plausible, range; that is, we wished to consider only sets of
values that lead to physiologically reasonable conductivity
ratios.

The final two rows in Table 1 give the mean and standard
deviations for the datasets listed and we used these values
to guide our choices for the data ranges for the conductivity
values that are listed in Table 2. The means for g;; and g.;
are 2.1 and 2.7 mS/cm, respectively, and since we decided
to keep the ratio g;j;/g.; equal to 1 (see discussion in [23,
48]), we chose gij = g1 = 2.4 mS/cm (the average of the
two). We set g;; = 0.24 mS/cm, which is 0.1 of these values
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Table 1 Conductivity data

(in mS/cm) from the indicated Study Type Notes git 8el 8it 8et 8in 8en

studies and the overall mean

and standard deviation (std) Bauer [8] PE Rabbit 0.65 - 0.042 - 0.033 -
Clerc [13] E Calf 1.7 6.3 0.19 2.4 - -
Hand [18] T 1.0 3.0 0.03 1.6 - -
Hooks [19] PE Pig 2.6 2.6 0.26 2.5 0.08 1.1
Johnston [24] T 1.9 3.2 0.35 2.2 0.08 1.2
Johnston [23] T 24 2.4 0.35 2.0 0.08 1.1
Johnston [24] T 3.1 2.0 0.35 2.2 0.08 1.2
Krassowska [33] T 0.7 3.0 0.003 1.5 - -
Le Guyader [34] E Dog 0.6 1.3 0.39 1.3 - -
Le Guyader [35] E Dog 2.0 3.9 0.19 1.7 - -
MacLachlan [39] T 3.0 2.0 1.0 1.7 0.32 1.4
Roberts [46] E Dog 34 1.2 0.6 0.8 - -
Roberts [45] E Dog 2.8 2.2 0.26 1.3 - -
Roth [47] T 35 3.0 0.3 1.8 - -
Roth [49] T 1.9 1.9 0.2 0.9 - -
Stinstra [54] T 1.6 2.1 0.05 0.6 - -
Trayanova [60] T 2.0 3.0 0.14 0.32 - -
Mean 2.1 2.7 0.28 1.6 0.11 1.2
Std 0.9 1.2 0.24 0.6 0.1 0.1

Dashes in the table indicate that the values do not exist. Here, o = g;;/ge;. Information is given about the
type of study, experimental (E), partly experimental (PE), theoretical (T) and, for the experimental studies,

the animal model used

[48], which is consistent with its mean value of 0.28 mS/cm
(given its large standard deviation). The remainder of the
conductivities were taken to be g,, = 1.6 mS/cm, g;, =
0.1 mS/cm, g., = 1.0 mS/cm, compared with their means
from Table 1 of 1.6, 0.11 and 1.2 mS/cm, respectively.

In each of the six cases, we chose the range to be mean
£ 50%, which meant that over all cases, except g;;, an aver-
age of only two values from Table 1 did not lie in the chosen
range. The values for g;; in the literature seem to be far less

Table 2 Data ranges for parameters used in this study, given in mS/cm
for conductivities and degrees for fibre rotation (ROT)

Parameter Minimum Mean Maximum
gil 1.2 2.4 3.6

gel 1.2 2.4 3.6

git 0.12 0.24 0.36

8et 0.8 1.6 2.4

gin 0.05 0.1 0.15

Zen 0.5 1.0 1.5

&b 3.25 6.5 9.75

ROT 60 100 140

Numbers in italic font indicate the inputs to which the outputs are most
sensitive
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certain as they lie in the range 0.28 + 0.24 mS/cm, with
a maximum value of 1.0 mS/cm and a minimum value of
0.003 mS/cm. Given this, we decided to simply continue
with the mean £+ 50% formula used for the other conduc-
tivities, which meant that 10 out of 17 values from Table 1
lie in the chosen range.

The mean values in Table 2 give bulk conductivity ratios
of g1/g: = 2.6 and g;/g, = 1.7, and conduction velocity
ratios of ¢;/c¢; = 2.4 and ¢;/c, = 1.5, where g4/gp =

8iAt8eA 8iBT8eB\( 8iAGeA
sty ndcajep = \/( e 52n )(gA+g ). These values

are in the same range as reported in previous studies (see
[11, 20] and discussion in [23]).

In terms of conductivity ratios, in their study, Hopenfeld
etal. [22] varied g;;/ge; from 0.2-3, compared with our 0.3—
3 (mean 1). For g;;/gi:, we use the range 3-30 (mean 10),
compared with 20-50 [22] and 1-20 (mean 10) [43]. Lastly,
we varied g.;/ger from 0.5-4.5 (mean 1.5), compared with
1-5 [22] and Potse et al. [43] who use the values 2.5 and 5.

The mean and ranges for the other parameters that were
varied in this study, that is the conductivity of blood (gp)
and fibre rotation angle (ROT), are also given in Table 2
Our choice of gj in the range 6.5 &£ 3.25 mS/cm was consis-
tent with literature values, which include 2.39 mS/cm [39],
4 mS/cm [50], 6 mS/cm [43, 51] and 8 mS/cm [60]. Simi-
larly, our choice of a fibre rotation angle from epicardium to
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endocardium of 100° 4 40° for the left ventricle was based
on literature values of 120° (up to 180°) [57], 140° [20],
112° 4= 31° [3] and 103° £ 22° [59] in animals, as well as a
recent study in ten human hearts that found a rotation from
—41°(£26°) to 66°(£31°) [38].

2.3 Analysis methods

In order to consider the effect of uncertainty on the input
parameters in the form of the EPD, we used three dif-
ferent methods of analysis: generalised polynomial chaos,
Gaussian process emulators, and partial least squares regres-
sion coefficients. These were used to analyse the effect of
uncertainty on the input parameters in various outputs that
characterised the form of the EPD. We give details for each
of the methods in the sections below.

2.3.1 Polynomial chaos

We implemented generalised polynomial chaos by allow-
ing the various parameters that will be considered to
vary uniformly across the ranges given in Table 2, using
stochastic collocation [62, 63] with collocation points from
a Clenshaw-Curtis numerical integration scheme. Then
Smolyak’s method [52] was used to reduce the size of the
integration space.

In this work, the six bidomain conductivities were var-
ied and the other parameters were fixed to values that are
detailed in the particular studies. For six input values, using
level 2 integration results in j = 85 integration points
(gi,jq), p =i,e,q = I,t,n) and integration weights w;. If
we denote qbé'" ) to be the extracellular potential distribution
that results for each of these 85 sets of conductivities, the

mean extracellular potential distribution is given by
85
- )
e = Z w; ¢ej
Jj=1

and the standard deviation of the extracellular potential
distribution is
1

2

85
@osa = | Y wi@d —6e)?
j=1
The accuracy of this method was confirmed by calculat-
ing correlation coefficients and relative errors [23] between
EPDs produced by level 2 and level 3 methods (the level 3
method requires 389 integration points). For example, for
EPDs with the parameters 50% ischaemic depth, 120° fibre
rotation, g5 = 6.7 mS/cm and mean values for the bidomain
conductivities (Table 2), the correlation coefficient was 1.0
and the relative error was 1.2x 1074,

2.3.2 Gaussian process emulator

An emulator is a fast surrogate of a simulator, which in
this case is the model that produces the EPDs (Section 2.1).
Here, we constructed a Gaussian process (GP) emulator
using a normal distribution to represent both the input vari-
ables and the outputs, with the result that both uncertainty
quantification and sensitivity analysis could be performed
using only a small number of design data (sets of inputs to
the model).

Here, the design data were generated using a Latin hyper-
cube (LHC) sampling routine that produced sets of input
data by allowing each input variable to vary uniformly
across the ranges (mean £ 50%) in Table 2. This rou-
tine is in the software package GP_emu_UQSA (https://doi.
org/10.5281/zenodo.215521) developed at the University of
Sheffield, which was used to construct the GP emulators,
as well as to perform uncertainty quantification (UQ) and
sensitivity analysis (SA).

For each set of input parameters generated by the LHC,
the model from Section 2.1 was solved and an EPD was
produced. These EPDs were analysed and a number of
outputs (for example, the minimum potential), which char-
acterise the EPD, were determined. Then, for each output,
an emulator was fitted, using the GP_emu_UQSA software,
to a (training) subset of the design data, using a Gaussian
covariance function and a linear mean for the training.

In this work, 10% of the runs were kept as a test
dataset for verification. The accuracy of the emulator fit
was checked using the Mahalanobis distance [7], which
compares the output of the emulator with the output of
the simulator at the test points. This distance was calcu-
lated and compared with the mean and standard deviation
of the appropriate reference distribution, which depends on
the number of points in the training set and the number
of input variables [12]. The final emulator was then built
using the combined test and training dataset, according to
methods that are detailed in Chang et al. [12] and in the
documentation associated with the software.

Once each emulator was built, we used the software
GP_emu_UQSA to produce main effect plots of the input
variables against the mean effect for a particular output. The
mean effect of an input variable x,, for a model y = f(x),
where x are the input variables and y is the output, is defined
to be [12] the conditional expectation of that output, condi-
tional on the input variable (that is, after averaging over the
remaining variables),

mean effect = E{f(x)|xy}.

For each emulator, the mean effect of the input variables
was calculated in turn over the range x,, € [0, 1], with all
the other input variables taken to be independently normally
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distributed with a mean of 0.5 and a variance of 0.04, which
was chosen so that the input variables had a good coverage
over [0,1].

In addition, we calculated main effect sensitivity indices
to quantify the contribution of each input to each output
[9, 42], again using the GP_emu_UQSA software. The main
effect (sensitivity) index is defined [12] to be the ratio of
the variance (Var) of the mean effect to the variance of the
model output,

Var[E{ f (x)|xw}]
Var{ f (x)}

sensitivity index =

This index does not take into account any variance in the
outputs that could be due to interactions between the input
variables, although the fact that this occurs can be inferred
if the sum of the sensitivity indices is less than 1. Note, also,
that because the sensitivity index involves variances, it can
never be negative and is therefore unsigned, unlike the PLS
coefficients discussed below.

2.3.3 Partial least squares regression

The third method of analysis we used again involved the
construction of an emulator using the design data from
Section 2.3.2, this time by partial least squares (PLS) regres-
sion. In this case, the outputs were regressed against the
input variables using the PLS approach as implemented in
the NIPALS algorithm [1, 16] and described in the study
by Sobie [53]. PLS regression is a generalisation of prin-
cipal component analysis, in that it searches for a set of
components that simultaneously decompose both the input
and output vectors under the constraint that the components
should explain the maximum amount possible of the covari-
ance between the inputs and outputs [1]. This approach
again allowed us to assess the relative effects of various
input variables, with each coefficient indicating the change
that would occur in a model output when an input variable
is increased or decreased.

3 Results
3.1 Polynomial chaos

Figure 2 shows a set of mean EPDs, as the depth of
ischaemia increased from 10 to 60%, which we constructed
using generalised polynomial chaos (Section 2.3.1), by fix-
ing g, = 6.5 mS/cm and ROT = 100° at their mean values
(Table 2), and allowing the six bidomain conductivity values
(gpg> P = i,e,q = 1, t,n) to vary uniformly across their
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parameter ranges (Table 2). This then gave a set of ‘rep-
resentative’ EPDs for ischaemic depths (ISC) of 10-60%
(Fig. 2a—f).

There are clear qualitative differences in the EPDs in
Fig. 2, with the pattern changing from one central minimum
(a), through (b) to a tripole pattern of three minima (c), fol-
lowed by the development of two maxima in the central
region (that is, above the ischaemic region), flanked by two
minima along the lateral boundaries of the central region
(e)—().

Quantitative differences between the EPDs can be
observed in the values given for cminV and cmaxV (min-
imum and maximum potential in the central (c) region,
respectively) and ominV (minimum potential in the region
outside (o) the central region). The headers of plots (a)
and (b) indicate that the EPDs for 10 and 20% ischaemia
have a global minimum in the central region (cminV <
ominV). However, as the ischaemic depth increases to 30
and 40%, the global minimum occurs outside the cen-
tral region (ominV < cminV), even though there is still a
minimum in the central region (cminV < 0). Finally, for
ischaemic depths of 50 and 60%, ST elevation over the cen-
tral region develops (cmaxV > 0), with two minima along
the lateral boundaries of the central region.

From now on, we will refer to the scenario with a global
minimum in the central region (e.g. Fig. 2a, b) as ST depres-
sion (type 1) and the scenario with the tripole of minima
where the central minimum is no longer the global mini-
mum (e.g. Fig. 2c, d) as ST depression (type 2). The final
category, ST elevation, is exemplified by Fig. 2e, f and
involves two maxima in the central region, flanked by two
minima.

From the header values, we observe that, as the ischaemic
depth increases from 10 to 40%, cminV increases from
—1.37 to — 0.75 mV, and then if we consider cmaxV, this
continues to increase from — 0.07 mV at 40% ischaemia to
1.04 mV at 60%. This increase in the value of the poten-
tial in the centre region is paralleled by a strengthening
of the minima on the boundaries, where ominV decreases
from —0.95 mV at 30% ischaemia to — 1.73 mV at 60%
ischaemia.

Using the standard deviations produced by the polyno-
mial chaos approach, we constructed sets of three EPDs
using the data from Fig. 2. In these sets of plots (Fig. 3 is
an example for ischaemia = 30%), the first and last plots
used values one standard deviation (std) below and above
the mean, respectively, and the middle one was the mean
EPD from Fig. 2. We found that, in many cases, moving
one standard deviation from the mean led to an EPD of a
different character. For example, in Fig. 3, the EPD one std
below the mean (a) now exhibits ST depression (type 1),
with cminV < ominV, rather than ST depression (type 2) as
in (b) and (c), where ominV < cminV < 0.
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Fig. 2 Polynomial chaos mean epicardial potential distributions (in
mV) for various values of ischaemia, produced with g, = 6.5 mS/cm,
fibre rotation = 100° and varying the conductivities across the ranges
given in Table 2. The solid line indicates the central ischaemic region

Since we produced the plots in Figs. 2 and 3 with a fixed
value of 100° for ROT, we also produced an additional set
of polynomial chaos mean EPDs (Fig. 4), where we set ROT

cminV = -1.51, ominV = -1.19

cminV = -0.86, ominV = -0.95

and the dashed line is the zero of potential. The headings cminV,
cmaxV and ominV give the values for the minimum (minV) and max-
imum (maxV) potentials (in mV) over either the central (c) ischaemic
region or outside (o) this region

to its minimum (60°), mean (100°) and maximum (140°)
values. We used these three values for ROT across each row
in Fig. 4, where the rows correspond to ischaemic depths of

cminV = -0.44, ominV = -0.73
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Fig. 3 Polynomial chaos mean epicardial potential distributions, produced with g, = 6.5 mS/cm, fibre rotation = 100°, ischaemia = 30% and
varying the conductivities across the ranges given in Table 2, showing a mean - std, b mean and ¢ mean + std. Definitions are given in Fig. 2
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Fig. 4 Polynomial chaos mean epicardial potential distributions, pro-
duced with g, = 6.5 mS/cm and by varying the conductivities over
the ranges in Table 2. From left to right across each row, fibre rotation

10% (top), 30% (middle) and 60% (bottom). These depths
were chosen because they are representative of the three sce-
narios: ST depression (type 1), ST depression (type 2) and
ST elevation, respectively. It can be seen from Fig. 4 that
increasing the degree of fibre rotation (i.e. across a row)
results in an anticlockwise rotation of the EPDs, for all the
ischaemic depths.

@ Springer

is 60°, 100° and 140°. The top row is 10% ischaemia, the middle row
30% and the bottom row 60% ischaemia. Definitions are given in
Fig. 2

3.2 Possible EPDs for 30% ischaemia

The polynomial chaos mean EPDs in Fig. 4d—f show that the
‘average’ EPD corresponding to 30% ischaemia is the three
minima tripolar pattern of ST depression (type 2). However,
this is not always the case for 30% ischaemia, as is hinted
at in Fig. 3a and will be shown in Fig. 5. The plots in Fig. 5
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are not polynomial chaos plots but are, instead, produced
by setting all but one of the variables to the means given
in Table 2 and allowing the other variable to range from its
minimum, to its mean and then to its maximum across each
row.

Plots are presented in Fig. 5 only for those variables
(8b, &il> 8in» 8en) Where there is a change in the qualita-
tive behaviour from that of the mean scenario, which is
ST depression (type 2). For example, for g;, in the third
row from the top, examination of the EPD patterns and the
header values reveals that the minimum value for g;, (along
with the means for all the other variables) results in ST ele-
vation (g), while the maximum value for g;, leads to ST
depression (i).

In Fig. 5, it can be seen that ST depression (type 1), indi-
cated with an (*), develops for high g, and g;, values and
low gi; or g., values. On the other hand, low g;, leads to
ST elevation (indicated with a (#)). These results demon-
strate that all three of the basic scenarios, ST depression
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(type 1), ST depression (type 2) and ST elevation, can occur
for 30% ischaemia, depending on the values of either the
blood conductivity or certain of the bidomain conductivities
(gil» 8ins gen)-

To test this still further, we produced additional EPDs
with mean values (Table 2) for all input variables, except
for gi;, gin and g.,. We set these to g;; = 1.2 mS/cm,
gen = 0.5 mS/cm, and g;, = 0.15 mS/cm, that is the min-
imum values for the first two and the maximum value for
gin- We chose those, based on Fig. 5, as being the most
likely to result in ST depression. We found that, even with
ischaemic depths up to 90%, it was still possible to achieve
ST depression (type 1) using these three values.

The realisation that, for most ischaemic depths, any one
of the three basic scenarios could occur, then led us to the
decision that it does not make sense to analyse the effect of
the input parameters at various different ischaemic depths.
We decided, instead, to focus on the effect on EPDs that fall
into one of the three basic categories: ST depression (types
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Fig. 6 Design data for the features centre minimum voltage (cminV), in mV, and ellipse angle, in degrees, of the epicardial potential distributions
of ST depression (type 1). These are plotted against each of the eight input variables, with units of mS/cm for conductivities and degrees for fibre

rotation
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1 and 2) and ST elevation. These analyses will be presented
in the following subsections.

3.3 ST depression (type 1) (cminV < ominV < 0)

Here, we consider the ST depression (type 1) EPDs, which
are characterised by the global minimum occurring above
the central ischaemic region (Fig. 2a). There may also
be two other minima that occur outside this region, pro-
vided that cminV < ominV (Fig. 5i). These EPDs have a
characteristic ‘ellipse’-type shape.

In this work, the EPDs were analysed using four outputs
that were drawn from the EPD. The first three were poten-
tials, defined in Section 3.1, at various positions: cminV,
cmaxV and ominV. We included the outputs cmaxV and
ominV partly for consistency with later work and partly
because ST depression (type 1) EPDs may also look like
Fig. 5i, where there are outer minima and thus ominV is
important. The fourth is the orientation of the ‘ellipse’ that
we fitted to the contour plot; that is, the angle between the
semi-major axis of the ellipse and the positive x-axis.

We produced the design data for this analysis using
a 10% ischaemic depth and by varying all the other
eight input variables (ROT, gp, gil, 8el, &it Get> &ins gen)
uniformly across their data ranges (Table 2). Using the 250
sets of input variables generated by the LHC sampling, we
produced EPDs, of which 247 were of the type ST depres-
sion (type 1). We used the first 240 of these in the analysis
presented below. This reduction to 240 sets of input variables
and outputs was necessary to divide the design data into

sensible sized training (216) and validation (24) sets for con-
structing the GP emulator (here 90 and 10%, respectively),
a limitation that was in the GP_emu_UQSA software at the
time. We found that the reduction from 247 to 240 sets was
not significant in terms of the results and we will discuss
this further, below.

We began by using the model (simulator) to produce an
EPD for each of the 240 sets of input variables and then used
these EPDs to calculate the outputs cminV, cmaxV, ominV
and ellipse angle in each case. These design data are plotted
in Fig. 6, for two of the input variables, with cminV plotted
in the two left-hand columns and ellipse angle in the two
right-hand columns. The data for ominV and cmaxV are rea-
sonably similar to those for cminV, except for magnitudes,
and can be found in the Supplementary material (Fig. 1).

We fitted emulators for each of cminV, cmaxV, ominV
and ellipse angle, using the design data, as described in
Section 2.3.2. We then used these emulators to produce
main effect plots, by allowing each input variable to vary
across the (normalised) range 0-1, while the other inputs
were fixed at 0.5 (the mean) with a variance of 0.04. So in
each case, the distribution for an input is taken to have the
same mean as chosen in Table 2, with a standard deviation of
0.2, giving, for example, for g;; and g.; (in unscaled units),
the input distribution 2.4 &= 0.48 mS/cm.

The main effect plots, which show the change in the
expectation of the output, across the input range, for cminV,
cmaxV, ominV and ellipse angle are given in Fig. 7a—d,
respectively. In each case, O on the vertical scale repre-
sents the emulator mean value for the particular variable
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angle. Plots are produced by 3 0 (2) — g .
allowing each input to vary over E :()' al s 0.
the normalised range [0,1], g 06l § -0.3
while all other inputs are fixed 08 ‘ ‘ ‘ ‘ 05 ‘ ‘ ‘ ‘
. . 0 0.2 0.4 0.6 0.8 1 =0 0.2 04 0.6 0.8 1
at a mean of 0.5 with a variance Model inut Model inout
odel iputs odel mputs
of 0.04
ROT—— g it &in — ROT—— g it gin —
8 el Bt =™ Bep T 8 el et ™ 8o T
(a) cmin V (b) omin V
2
o0
%
5 2
: :
3 0 S
= -uU. :‘5 L
g 4 5 S
s o £ -iof
03502 04 06 08 1 139 02 04 06 08 1
Model inputs Model inputs
ROT—— g; it gp — ROT —— g it 8in —
&b el Bt =™ B T & el et ™ & T
(c) cmax V (d) ellipse angle

@ Springer



Med Biol Eng Comput

(— 1.35 mV for cminV, — 0.49 mV for cmaxV, — 0.89 mV
for ominV and 58.2° for ellipse angle).

Figure 7a shows that the input variables that have the
most effect on cminV are g;;, and g., and that their effects
are opposite to one another; that is, increasing g;, decreases
cminV and vice versa for g.,. The plots for cmaxV and
ominV show very similar trends. In the case of the ellipse
angle, Fig. 7d indicates that increasing fibre rotation has a
positive effect on ellipse angle (that is, the ellipse rotates
anticlockwise). This is consistent with Fig. 4a—c.

To quantify these effects, we produced sensitivity indices
associated with each of our emulators, using means of 0.5
and variances of 0.02 for each input variable. These indices
quantify the contribution of the variance in each input to the
variance in the output and they are given in the top half of
Table 3. The sensitivity indices showed that cminV was sen-
sitive to both normal conductivities, with a value for g;, of
0.5 and for g, of 0.23, and that cminV was not sensitive to
any of the other input variables. The results for g;, were 0.44
for cmaxV and 0.47 for ominV and for g,, 0.47 for cmaxV
and 0.29 for ominV. In the case of the ellipse angle, fibre rota-
tion was the only variable to which it was sensitive (0.66).

The total of the cminV indices is 0.85, for cmaxV 0.98
and ominV 0.82, while that of the ellipse angle indices is
0.82. This indicates that most of the variance in the outputs
is explained by variance in the input variables individually.

We also analysed the design data (Fig. 5) using a partial
least squares (PLS) approach [1, 53]. This produces regres-
sion coefficients that indicate the way each output changes
with each input; that is, if the effect of the input variable
is positive, then the output increases and vice versa for a
negative coefficient. We note that this ‘directionality’ is an
advantage of PLS over GP emulators, where the sensitivity
indices are unsigned. We used the same 240 points to cal-
culate the PLS coefficients in the bottom half of Table 3 as
we used to construct the GP emulator. We also repeated the
PLS analysis for the original 247 points and we found that

any differences in the results were extremely minor (in the
second decimal place).

Despite the different approaches, and the differences in
the magnitudes of the GP emulator sensitivity indices and
the PLS coefficients, they are consistent with one another
and with those in Fig. 7. We see again that cminV, cmaxV
and ominV are most sensitive to g;, (negative effect) and
gen (positive effect), with g;,, having the stronger effect, and
that the ellipse angle is most sensitive to the fibre rotation
angle (positive effect).

Finally, it should be noted that the magnitudes of the
coefficients produced by the PLS approach should only be
considered in relation to the other coefficients for that par-
ticular output variable and not in a global sense [53]. That
is, in row 1 of Table 4 we see that the variance in cminV is
primarily explained by g;, and g., because the absolute val-
ues of their coefficients are considerably larger than those
of the remaining input variables.

3.4 ST depression (type 2) (ominV < cminV < 0)

The next category of EPDs that we will analyse is those
where there is a characteristic tripole pattern of three depres-
sions, one of which is over the central region. This central
depression is typically flanked by two minima outside the
central region (Fig. 2c, d). In this case, ominV < cminV so
that the global minimum value is outside the central region.

As mentioned in Section 3.2, variations in the input con-
ductivity values can lead to all three cases for the form of
the EPD when the ischaemic depth is around 30-40%. So
to produce approximately 200 EPDs of the tripolar type,
we used the LHC routine to produce 750 datasets by set-
ting the ischaemic depth to 30% and varying the other eight
input variables uniformly across their ranges (Table 2). This
produced 292 EPDs (39%) of ST depression (type 1), 222
EPDs (30%) of ST depression (type 2) and 236 EPDs (31%)
showing ST elevation. We took only the first 220 of the 222

Table 3 Sensitivities of the

outputs cminV and ellipse Outputs ROT 8b 8il 8el 8it 8et 8in 8en

angle to the inputs listed, for

EPDs exhibiting ST depression cminV 0.00 0.04 0.05 0.01 0.00 0.01 0.50 0.23

(type 1) cmaxV 0.20 0.01 0.01 0.01 0.00 0.00 0.29 0.46
ominV 0.00 0.02 0.02 0.01 0.00 0.01 0.47 0.29
Ellipse angle 0.66 0.01 0.00 0.02 0.00 0.01 0.05 0.06
cminV 0.02 —-0.22 0.23 0.11 0.03 0.10 —0.74 0.51
cmaxV —0.18 —0.13 0.13 0.05 0.00 —0.02 —0.65 0.64
ominV 0.03 —0.16 0.13 0.09 0.03 0.08 —-0.73 0.57
Ellipse angle 0.59 —0.14 0.08 —0.14 0.04 0.10 —0.20 0.24

(Top half of table) GP emulator sensitivity indices and (bottom half of table) partial least squares coefficients.
Note that the GP sensitivity indices are unsigned

Numbers in italic font indicate the inputs to which the outputs are most sensitive
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Table 4 Sensitivities of the

outputs ominV, cminV, cmaxV Outputs ROT 8b 8il 8el 8it 8et 8in 8en

and angmin to the inputs listed,

for EPDs exhibiting ST ominV 0.00 0.00 0.06 0.13 0.01 0.06 0.55 0.09

depression (type 2) cminV 0.00 0.03 0.04 0.01 0.00 0.01 0.56 0.24
cmaxV 0.00 0.03 0.11 0.00 0.00 0.00 0.33 0.28
angmin 0.84 0.00 0.00 0.00 0.00 0.00 0.01 0.01
ominV 0.02 —0.02 —0.26 0.42 0.08 0.27 —-0.73 0.32
cminV 0.04 —0.31 0.32 0.20 0.09 0.14 —1.23 0.85
cmaxV —-0.13 —0.44 0.74 —0.18 —0.01 —-0.13 —1.27 1.23
angmin 0.97 —0.05 0.07 —0.02 —0.01 —0.02 —0.09 0.13

(Top half of table) GP emulator sensitivity indices and (bottom half of table) partial least squares coefficients
Numbers in italic font indicate the inputs to which the outputs are most sensitive

ST depression (type 2) EPDs as our design data (for similar
reasons to those in Section 3.3) and identified a number of
outputs that could be used to characterise the EPDs.

We are interested in the values for the minima, both
inside the central region (cminV) and outside the central
region (ominV), as well as the maximum value in the central
region (cmaxV). In addition, we are not so much interested
in the orientation of the EPD as in Section 3.3, but rather, we
are interested in the position of the outside minimum. These
two things are not the same in all cases as sometimes the
central minimum is not at (0,0). So, we report the position of
the minimum, which we will designate as angmin, by find-
ing the angle to the positive x-axis of a line from (0,0) to the
minimum that occurs in the y > 0 half-plane. We note that
symmetry in the model about the x-axis results in the same
potential value for each of the outside minima.

We first extracted these four outputs from the EPDs that
correspond to each of the 220 input datasets and then plot-
ted the design data in Supplementary Figs. 2 and 3, with
ominV in the two left columns and cminV in the two right
columns of Supplementary Fig. 2 and similarly for cmaxV
and the angmin in Supplementary Fig. 3. Then following the
approach of Section 3.3, we analysed the data by construct-
ing GP emulators for each of the four outputs and produced
main effect plots (Fig. 8) and sensitivity indices (Table 4).
In this case, the emulator mean values were ominV (— 0.91
mV), cminV (— 0.81 mV), cmaxV (— 0.25 mV) and angmin
(83.6°).

The values in Table 4 indicate that the input variables
that have the greatest effect on the EPD potentials, both
above the ischaemic region (cminV and cmaxV) and out-
side it (ominV), are g;, and g.,, again acting in opposite

Fig. 8 Main effect plots for 0.3 0.5
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directions, with increased g;, related to decreased poten-
tial and vice versa for g, (Fig. 8). In addition, ominV is
slightly sensitive to g.; and less sensitive to g., and cmaxV
is slightly sensitive to g;;.

In a similar fashion to Section 3.3, we also see that the
angle of the outside minimum is sensitive to the degree of
fibre rotation and that increasing fibre rotation leads to an
increase in the angle of the minimum; that is, the minimum
moves anticlockwise (and hence so does the tripole). The
design data where fibre rotation is plotted against angmin
in Supplementary Fig. 3 (top row, third column) not only
shows this relationship but it also shows that the angle data
are discrete and stepped; however, this appears to be an
artefact of the mesh spacing.

Once again, the PLS coefficients that are found using the
same design data (Table 4, bottom half) are consistent with
the results that we have just presented.

3.5 ST elevation (cmaxV > 0)

The final category of EPDs is ST elevation, with a cen-
tral maximum (or two central maxima) over the ischaemic
region, flanked by two minima near the boundaries of the
central region (Fig. 2e, ). In this case, cmaxV is the global
maximum and ominV is the global minimum.

To make the design data, we took the ischaemic depth
to be 60% and produced 250 EPDs by using the sets of
eight input variables that came from the LHC routine when
the eight input variables were varied uniformly across their
ranges (Table 2). Of these 250 EPDs, 227 were of the ST

elevation type and so the first 220 of these were used for the
analysis (once again the reduction did not affect the results).

Clearly, cmaxV and ominV are important outputs in this
case, as well as the positions of the maxima (angmax)
and minima (angmin). We quantified the latter two by cal-
culating, as in Section 3.4, the angle a line drawn from
(0,0) to the maximum or minimum in the y > 0 half-
plane makes with the positive x-axis. Then, we plotted these
design data against the eight input variables, cmaxV and
ominV in Supplementary Fig. 4 and incomes and angmin in
Supplementary Fig. 5.

Figure 9 shows the main effect plots, for cmaxV, ominV,
angmax and angmin, produced when we fitted GP emulators
to their design data. Table 5 gives the sensitivity indices and
the corresponding PLS indices. Here, the emulator mean
values are cmaxV (1.11 mV), ominV (— 1.72 mV), angmax
(129.5°) and angmin (67.7°).

This time the results for cmaxV are similar to those for
cminV in Sections 3.3 and 3.4; that is, cmaxV is sensitive
to changes in g;, and g., and these inputs have opposite
effects, in that increasing g;, means decreasing cmaxV and
vice versa for g., (see Fig. 9a and Table 5). However, in this
case, the variable to which cmaxV is most sensitive is g;;
(and this is a positive relationship like gep,).

Conversely, increasing g;; results in a decrease in ominV
and it is g., which has the positive relationship with ominV
(see Fig. 9b and Table 5). Also we see that neither g;, nor
gen has a significant effect on ominV.

As was observed in Section 3.4, the results in Fig. 9c and
Table 5 show that both angmax and angmin are related to the

Fig. 9 Main effect plots for 0.5
outputs of EPDs showing ST % > 8;&
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Table 5 Sensitivities of the

outputs cmaxV, ominV, angle Outputs ROT 8b 8&il 8el 8it 8et 8in 8en

of the maximum and angle of

the minimum to the inputs cmaxV 0.03 0.03 0.30 0.08 0.00 0.03 0.19 0.22

listed, for EPDs exhibiting ST ominV 0.01 0.00 0.38 0.25 0.02 0.11 0.07 0.00

elevation angmax 0.49 0.03 0.01 0.01 0.01 0.03 0.03 0.01
angmin 0.84 0.00 0.00 0.00 0.00 0.02 0.00 0.00
cmaxV —0.19 —0.21 0.63 —-0.34 0.03 —-0.21 —0.52 0.54
ominV —0.12 0.01 —0.64 0.55 0.14 0.36 —0.28 —-0.07
angmax —0.49 0.10 —0.19 —0.12 0.00 0.17 0.17 —0.15
angmin 0.97 0.01 —0.01 0.04 0.06 —0.15 —0.01 0.05

(Top half of table) GP emulator sensitivity indices and (bottom half of table) partial least squares coefficients
Numbers in italic font indicate the inputs to which the outputs are most sensitive

fibre rotation angle, with a strong positive relationship in the
case of angmin (that is, as the fibre rotation angle increases
the minimum moves anticlockwise).

The relationship for angmax is more complicated, as can
be seen in the plot for angmax against ROT (Supplementary
Fig. 5, top row, column 1). This shows that the maximum is
consistently at an angle of approximately 130-140° for all
fibre rotation angles up to about 120° and then, after that,
there are some cases where there is a marked drop in the
size of the angles. This situation is illustrated in Fig. 4h,
i, where fibre rotation changes from 100° to 140° and the
y > 0 maximum moves from the top left corner of the cen-
tral region across to the right. This non-linear relationship

Table 6 Summary of the outputs (columns) and the input variables
(rows) to which they are sensitive

ROT 8b 8il 8el it 8et 8in Een

ST depression (type 1)

cmaxV J 4
cminV N 4
ominV N 4
Ellipse angle 4

ST depression (type 2)

cmaxV 4 N 0
cminV J 4
ominV N5 N
angmin 4

ST elevation

cmaxV 4 J 4
ominV 3 0

angmax 4

angmin 4

Blank spaces indicate no significant relationship. An increase in the
input variable that results in an increase in the output is represented
by an upward pointing arrow and an increase in the input variable
that results in a decrease in the output is represented by a downward
pointing arrow

between ROT and angmax is responsible for the non-linear
fit of the emulator (Fig. 9c).

In all cases but angmax, the sum of the GP emulator sen-
sitivity indices is around 0.85, which indicates that most of
the output variance can be explained by the individual vari-
ance in the input variables. This is not the case for angmax
where the sum is 0.61, perhaps because the emulator is not
such a good fit for the data.

3.6 Summary of results

We have summarised the results from Sections 3.3, 3.4
and 3.5 in Table 6, where the input variables that have a sig-
nificant effect on the outputs are marked by arrows. In this
table, 1 indicates that increasing the input variable results in
an increase in the output and | indicates the opposite effect.

One thing that is immediately apparent from Table 6 is
that none of the outputs that have been chosen to charac-
terise the EPDs is sensitive to gp, gi; or ge;. We can also see
that the orientation of the EPD and position of the maximum
or minimum are affected only by the degree of fibre rotation
and that the effect is opposite for the angmin or angmax,
in the case of ST elevation. Various outputs are sensitive to
changes in g;;, gei, gin O gen and, where both g;, and g,
(p =1 or n) are involved, they have an opposite effect.

3.7 Effect of conductivity ratios

Since some previous studies [22, 43] have considered the
effect of conductivity ratios on ST depression, rather than
conductivity values, the final table in this work (Table 7)
will present values for PLS correlations between various
conductivity ratios and the voltage outputs from Table 6.
The correlation results for the ratios (g;4/geq. g =1, 1, 1)
in the left column of Table 7 are related to the results in
Table 6, but those in Table 7 provide extra information about
the strength of the relationships. In Table 7, we see again
that the transverse ratio gj;/g.: is not significantly corre-
lated with any of the outputs in any of the cases. We also
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Table 7 Partial least squares

coefficients indicating the cmaxV cminV ominV cmaxV cminV ominV
correlation between various

conductivity ratios and some ST depression  g;1/gel 0.05 0.08 0.03  gir/gir -0.19 —0.21 —0.24

outputs associated with the (type 1) git/8er 0.01 —0.08 —0.07 gil/ gin 0.67 0.78 0.73

indicat'ed t?/pe.s of'epicardial gin/ gen —0.94 —0.90 —095 et/ 8ot 0.28 0.14 0.18

potential distributions

8el/8&en —0.50 —0.33 —041

ST depression 8il/8el 0.28 —0.16 —0.44 gil/ git —0.19 —043 —0.49

(type 2) 8it/8et 0.03 —0.05 —0.11 gil/8in 0.64 0.51 0.21

gin/&en —0.88 —0.74 —0.54 8el/8et 0.40 0.20 0.07

8el/8&en —0.77 —-0.22 0.15

ST elevation 8il/8el 0.64 —0.19 —0.80 gil/ git 0.06 —0.38 —0.53

8it/8et 0.18 0.09 —0.21 gil/8in 0.72 0.46 0.03

gin/&en —0.70 —0.49 —0.18 8el/8et 0.19 0.25 —0.02

el /8en —0.64 —0.11 0.46

Numbers in italic font indicate the inputs to which the outputs are most sensitive

see that for all three types of EPDs, g;;,/gen is strongly neg-
atively correlated with all of cmaxV, cminV and ominV,
except for ominV in the ST elevation case, and that the
normal ratio is the only significant ratio in the two ST
depression cases. For the ST elevation case, significant cor-
relations are also found between g;;/g.,; and cmaxV and
ominV, the first of which is a positive correlation and the
second is negative.

The right-hand column of Table 7 contains PLS correla-
tions for the anisotropy ratios (gp;/gpr and gpi/gpn. P =
i, e) with the same outputs. The longitudinal to transverse
versions of these ratios were considered in previous studies
[22, 43], but here, we also include the longitudinal to nor-
mal ratios, since we are using six and not four bidomain
conductivities.

3.8 Position of the minimum

We saw in Table 6 that fibre rotation was strongly corre-
lated with the position of the minimum for ST depression
(case 2) and ST elevation and that increasing fibre rotation
resulted in an anticlockwise rotation of the minimum. Since
we obtained these results for a fixed value of ischaemia
(30% in the former case and 60% in the latter), we wished

to check whether changing the degree of ischaemia has any
effect on the position of the minimum.

To ensure that we had EPDs only of either ST depression
(type 2) or ST elevation, we set the conductivity values to
their means (Table 2) and varied fibre rotation over its usual
range (60° to 140°) and ischaemia from 30 to 80% only. We
produced 250 sets of LHC-generated design data and the
EPDs corresponding to these and checked that they were all
either of type ST depression (type 2) or ST elevation, which
they were. Plots of the angle of the minimum against fibre
rotation and ischaemic depth are given in Fig. 10a, b, respec-
tively, and these show that not only is there an anticlockwise
rotation of the minimum due to fibre rotation, there is also
a clockwise rotation due to increasing ischaemic depth. We
assessed the relative strengths of these relationships using
PLS and found correlations with angmin of 0.89 for fibre
rotation and —0.55 for ischaemic depth, indicating that fibre
rotation is the stronger effect.

4 Discussion

Our modelling study has demonstrated that increasing fibre rota-
tion results, for any one of the three simulated EPD patterns

Fig. 10 Design data for EPDs 110 110
of type ST depression (type 2) 100} o lool tt e
and ST elevation showing the
. i 90+ b A A OO0 Hi - A A
relationship between the angle = _
of the minimum (angmin) and a b=t 8oy A e e S BOBp ittt b 4 b ]
fibre rotation angle and b depth e 700 HETE TR e B TOR we e EEE
. . = o R R & + HHH H ++ 4+ + ++ H A
of ischaemia 8 60r, e BRI 1% SOFwet g, e DM 1
50 Sf}ﬁerﬂt +:+++jr L 1 50 i o+ +++tr ﬁﬁt& #erit
20w + 201 b ]
Ft T+
0 30—
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(a) fibre rotation (b) ischaemic depth
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considered, in an anticlockwise rotation of the EPD and,
hence, in the position of the outside minima (in the cases
where they exist). In addition, we showed that for ST
depression (type 2) and ST elevation, the effect of increas-
ing ischaemic depth is clockwise rotation of the minimum.
When we assessed the relative effects of the two, fibre rota-
tion was found to have an effect that is approximately 1.5
times stronger than the ischaemic depth.

The effect of ischaemic depth on the angle of the EPD
has been reported in an earlier simulation study by Stinstra
et al. [55] and the rotation of the EPD with fibre rotation
has been also been demonstrated previously [4, 21]. How-
ever, in each case, this was only for a particular scenario, not
more generally. We also found that none of the conductiv-
ity parameters has a significant effect on the position of the
minima. These results are significant in terms of the local-
isation of ST depression, since previous studies have found
conflicting results, as discussed in Section 1.

Turning to the effect of conductivities, we found
(Table 6) that the blood conductivity g, has very little effect
on the outputs considered. On the other hand, the normal
conductivities g;, and g., have the most significant effect
on the potential over the central region for all three types
of EPDs and on the magnitude of the outside minimum in
types 1 and 2 of ST depression. Also, g;; and g,; are signif-
icant in a few cases (Table 6), particularly in relation to the
strength of the outside minimum in the case of ST elevation.
This is consistent with the results from Table 7 that show
the importance of the g;,/ge, ratio to the magnitude of the
depression in the type 1 and 2 cases and the g;;/g.; ratio in
the case of ST elevation.

An earlier modelling study [22] pointed out the sig-
nificance of the g;;/g.; and g;;/ge: ratios, particularly in
relation to the magnitude of the net epicardial potential
difference. Since that study used only four bidomain con-
ductivities, the authors could not distinguish between the
transverse and normal conductivity ratios. If we assume that
8it/8et 1S Zin/&en, then our results generally agree with
the study by Hopenfeld et al. [22], who concluded that
an increase in gj;/g.; results in an increase in epicardial
potential magnitudes for all degrees of ischaemia. This is
consistent with our results (Table 6) for ominV and cmaxV
for ST depression (type 2) and ST elevation (deepening of
the outside minima and increasing the central maximum),
but not for ST depression (type 1) where gi; /gen is the only
ratio that affects cminV (and results in an increase of its
magnitude).

Previous simulation studies [22, 43] have also high-
lighted the importance of the anisotropy ratios g;;/gi; and
8el/8er in ST depression. Potse et al. [43] have suggested
that both a decreased ratio for g;;/gi; and an increased ratio
for g.;/ger can result in ST depression. However, Hopenfeld
et al. [22] suggest that different behaviours occurs as a result

of changes in these ratios, depending on the ischaemic depth
[22]. That is, at 10%, ischaemia increases in g.;/ges result
in increased epicardial potential magnitudes but at higher
ischaemia, the opposite occurs, and, conversely, at 10%,
ischaemia increases in g;;/g;; result in decreased epicardial
potential magnitudes with increases at higher ischaemia.
The reason for this is the paths the injury currents take in
the various scenarios [5, 22].

These results do not simply translate to ours if ¢ is
replaced by n (Table 7) or if we leave ¢ in the ratios. For
example, if we regard the ST depression (type 1) scenario
as being roughly equivalent to the 10% ischaemia case, then
for gi;/gir and g7/ gin, the sign of the correlation is the same
for cmaxV and ominV, which means that we cannot have the
magnitude of both increasing. This is also true for g;;/gin
for ST depression (type 2) and ST elevation. However, we
can say that ST depression deepens (the magnitudes, of
cminV for (type 1) and ominV for (type 2) and ST elevation,
increase) with an increase in g;;/g;; and decreases with an
increase of g;;/gin in both cases of ST depression and with
8el/ 8en for the ST elevation case.

We also note that the previous experimental study and
modelling study of Li et al. [37] and some modelling studies
[21, 39] found that ST depression is located over the lateral
boundary between the ischaemic and normal tissue. This is
clearly the case for the ST depression (type 2) and ST ele-
vation scenarios (see Section 3.1). However, in the case of
ST depression (type 1), a single minimum is found over the
ischaemic region, not the lateral boundary. This scenario has
previously been identified [22] as occurring for very small
ischaemic depths (< 20%). We have shown that ST depres-
sion (type 1) can occur for a much wider range of ischaemic
depths, depending on the conductivity values (particularly
for high g;, and low g, and g;;). If ischaemic changes to
conductivity values are such that this can occur, then this
may explain, for a wide range of ischaemic depths, why it
is not always the case that ST depression is located over the
boundaries of the ischaemic region.

However, when drawing conclusions from this work, it
is worth bearing in mind that we have used a simplified
model geometry and made certain choices for the form of
the transmembrane potential and ischaemic border zones.
For example, the choice of a sharp ischaemic border zone
(approximately 1 mm, compared with experimental results
that suggest values of around 8—10 mm [14, 31]) is a pos-
sible limitation of this work, as is the model setup that
assumes that the sheets of fibres start and then remain par-
allel with the epicardium throughout the ventricular wall
[36].

What have presented here is a proof-of-concept study
that demonstrates the use of various uncertainty and sen-
sitivity analysis methods in a model of cardiac ischaemia.
The approaches used in this study could now be extended to
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more detailed models of myocardial ischaemia that incor-
porate a realistic heart and torso anatomy, and these studies
may then produce results that have clinical relevance.

As a final comment, we note that the results in this study
were found using a combination of complementary analy-
sis methods. Here, we used generalised polynomial chaos
in a more qualitative fashion than the other two techniques
(GP emulators and PLS), since it is ideally suited to produc-
ing pictures of ‘average’ EPDs. Although it is possible to
produce quantitative measures of sensitivity for generalised
polynomial chaos (Sobol indices [15]), it is somewhat prob-
lematic to do so when it is necessary to use subsets of the
data, as in this work.

This is not an issue for either GP emulators or PLS, as
we demonstrated here. We found that, in almost every case,
the two techniques were in agreement about which input
variables had a significant effect on an output, although the
strength of the effect could not be directly compared. One
advantage of PLS over GP emulators is that the direction of
the effect is given as part of the calculation, whereas the GP
sensitivity indices are unsigned.

5 Conclusion

In this work, we used a number of methods (generalised
polynomial chaos, Gaussian Process emulators and partial
least squares regression) to study and quantify the effect of
uncertainty in eight input parameters on outputs, such as the
position and magnitude of the maxima and minima, when
studying subendocardial ischaemia in a rectangular slab of
ventricular tissue using a bidomain model. We found that the
three ‘typical’ EPD patterns (a single minimum located over
the ischaemic (central) region; a tripole of three minima,
with the central minimum now weaker than those outside
the central region; and a central maximum, flanked by two
minima along the lateral boundaries) could occur for a
much wider range of subendocardial ischaemic depths than
previously thought, depending on the conductivity values.

Our results showed that the only parameters that affect
the magnitude of ST depression are the conductivities
8ils 8el» 8in and gy and their ratios, gi1/ge and gin/gen, and
not gir/ger-

We found that ST depression deepens for increases in the
ratios gi;/ger and gin/8en, Where gin/gen 1s the only signif-
icant one for ST depression (type 1), the two have a similar
effects for ST depression (type 2) and g;;/g.; is more sig-
nificant for ST elevation. We also found that the position of
the minimum is strongly correlated (anticlockwise) with the
value of fibre rotation and less strongly with the ischaemic
depth (clockwise), but not with the conductivity values.

Possible future work could include comparing these
results with those produced with a more realistic heart

@ Springer

model and perhaps varying the conductivities in the
ischaemic region over a different range than in the rest of
the tissue.
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