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ABSTRACT

The organization of deep convection and its misrepresentation in many global models is the focus of much

current interest. A new method is presented for quantifying convective organization based on the identifi-

cation of convective objects and subsequent derivation of object numbers, areas, and separation distances to

describe the degree of convective organization. These parameters are combined into a ‘‘convection organi-

zation potential’’ based on the physical principle of an interaction potential between pairs of convective

objects. This technique is applied to simulated and observed fields of outgoing longwave radiation (OLR)

over the West African monsoon region using data from Met Office Unified Model simulations and satellite

observations made by the Geostationary Earth Radiation Budget (GERB) instrument. The method is

evaluated by using it to quantify differences between models with different horizontal grid lengths and

representations of convection. Distributions of OLR, precipitation and organization parameters, the diurnal

cycle of convection, and relationships between the meteorology in different states of organization are com-

pared. Switching from a configuration with parameterized convection to one that allows the model to resolve

convective processes at the model grid scale is the leading-order factor improving some aspects of model per-

formance, while increased model resolution is the dominant factor for others. However, no single model con-

figuration performs best compared to observations, indicating underlying deficiencies in both model scaling and

process understanding.

1. Introduction

Convection transports moisture, momentum, heat, and

aerosols through the troposphere, so the variability of

convection is amajor driver of global weather and climate.

Convection is observed to organize across a wide range of

scales in both the tropics and midlatitudes, from the few

kilometers and hours associated with individual cloud

systems, through the mesoscale of squall lines and cloud
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clusters, to the synoptic scale of tropical cyclones (Houze

and Betts 1981; Houze et al. 1989; Nesbitt et al. 2000).

Additionally, the diurnal cycle of convection has an im-

portant role in the triggering and control of these systems.

However, the processes responsible for convective orga-

nization, and the interactions between spatiotemporal

scales of convection, are still poorly understood, and

global and limited-area models (LAMs) often fail to

represent organized convection.

Idealized simulations performed over fixed sea sur-

face temperatures (SST) in radiative–convective equi-

librium (RCE) have found that initially random tropical

convective activity self-aggregates into clusters (e.g.,

Tompkins 2001; Bretherton et al. 2005). However, over

land surfaces (with different heat capacity compared to

the ocean and with surface inhomogeneities introducing

much stronger spatiotemporal variability to the forcing

of convection compared to over the ocean surface) deep

convection is also frequently observed to organize into

larger systems such as mesoscale convective systems

(MCSs) and mesoscale convective complexes (MCCs)

(Maddox 1983; Cotton et al. 1983; Laing and Fritsch

1997). Factors and processes leading to the organization

of convection can occur both on the large scale, such as

SST gradients (Zhang 1993) and large-scale vertical

wind shear (Rotunno et al. 1988; LeMone et al. 1998),

and from local variations such as wind-sensitive surface

fluxes (Tompkins and Craig 1998), increased conver-

gence by cloud–radiation interactions (Sherwood 1999),

and cold pools generated by convective downdrafts (e.g.,

Charba 1974; Simpson 1980; Thorpe et al. 1982; Fovell

and Tan 1998). Convective organization has a significant

effect on the vertical transport of heat, moisture, and

momentum (Moncrieff and Klinker 1997).

The resolution of most current global models is still

too coarse to resolve convective clouds (or even cloud

systems), especially in climate rather than weather

simulations, and thus convection is parameterized in

such models. It is widely acknowledged that convection

parameterizations fail to capture many observed fea-

tures of convection: they tend to overpredict light rain-

fall, underpredict heavy rainfall, and produce a daily

precipitation maximum that occurs too early (e.g.,

Randall et al. 2003; Dai and Trenberth 2004; Yang and

Slingo 2001; Dai 2006; Guichard et al. 2010; Stephens

et al. 2010; Dirmeyer et al. 2012). This problem is not

restricted to global models: Marsham et al. (2013) found

biases in a LAM with parameterized convection to re-

semble those in a global operational model, Holloway

et al. (2013) found that high-resolution simulations using

parameterized convection failed to reproduce a good

Madden–Julian oscillation (MJO), and Taylor et al.

(2013) found that the sign of soil moisture–precipitation

feedback in a LAM simulation with parameterized

convection was opposite to that in simulations using no

convection scheme. Models with permitted convection

(where the horizontal resolution is sufficient to explicitly

represent convective processes) have been shown to

represent the West African monsoon more realistically

than those with parameterized convection, through

combined effects on latent heating, radiative heating,

and cold outflow from storms (Marsham et al. 2011,

2013). Similarly, models using convection parameteri-

zations have been shown to fail to produce realistic

boundary layer convergence associated with convection

initiation (Birch et al. 2014a).

In recent years, continuously increasing computa-

tional resources have allowed high-resolution, convec-

tion-permitting, large-domain (even, in some cases,

global; Miura et al. 2007) simulations to be performed.

Both factors are often changed simultaneously, going

from coarser-resolution simulations with parameterized

convection to finer-resolution simulations with permit-

ted convection. Models with finer resolutions that are

able to resolve convective processes explicitly have been

shown to have improved diurnal cycles of convection

(Guichard et al. 2004). However, studies have shown

that the leading-order factor responsible for improved

simulations at finer resolutions is the change in the

representation of convection rather than just the in-

creased model resolution (Pohl and Douville 2011;

Dirmeyer et al. 2012; Holloway et al. 2013; Marsham

et al. 2013; Pearson et al. 2013; Taylor et al. 2013; Birch

et al. 2015). Nevertheless, convection-permitting simu-

lations often overpredict the amount and strength of

rainfall (Weisman et al. 1997; Holloway et al. 2012;

Marsham et al. 2013), and the problem does not appear

to improve as the limit of today’s model resolutions is

approached: comparisons of convection-permitting

simulations of convective storms from grid lengths of

1500 to 100m against radar observations have shown

that while the width of individual storms converges with

increasing model resolution, storm structures at the

highest resolutions are too narrow and intense (Stein

et al. 2014; Hanley et al. 2015).

In addition to their limited ability to represent the

diurnal cycle of convection and other convective pro-

cesses (e.g., boundary layer convergence and features of

the West African monsoon; Marsham et al. 2013; Birch

et al. 2014b), models with convection parameterizations

are frequently unable to represent organized convec-

tion. Convective organization is seen to have a strong

impact on the large-scale state of the atmosphere, with

states of higher organization associated with drier mean

states both in models (Held et al. 1993; Tompkins 2001;

Bretherton et al. 2005; Nolan et al. 2007) and
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observations (Tobin et al. 2012, 2013). Thus, the missing

representation of organized convection in global models

may have significant implications for climate sensitivity

(Tobin et al. 2013; Bony et al. 2015; Mauritsen and

Stevens 2015) and the development of convection pa-

rameterization has seen particular interest in this topic

recently. New parameterization approaches have been

proposed, such as those that describe competing cloud

types with the aim of describing a self-organized

system (Nober and Graf 2005); schemes that include a

prognostic variable for organization (Mapes and Neale

2011); turbulence closure schemes that can be used to

unify the parameterization of shallow convection, re-

solved clouds, and the planetary boundary layer [e.g.,

Cloud Layers Unified by Binormals (CLUBB); Guo

et al. 2015]; ‘‘hybrid’’ strategies that parameterize con-

vective cloud but allow mesoscale organization to be

represented by explicit circulations (Moncrieff and Liu

2006); and so-called super-parameterizations, which

embed a 2D cloud-resolving model in each global model

grid box (e.g., Grabowski 2001).

A few studies have devised methods of quantifying

convective organization in order to compare the degree

of organization in different models and across different

observed atmospheric states. Wing and Cronin (2016)

analyzed self-aggregation of convection in cloud-

resolving RCE simulations by using column relative

humidity, or saturation fraction (the ratio of precipi-

table water to the saturation water path), as a metric

to diagnose aggregation. In global RCE simulations,

Coppin and Bony (2015) used the fractional area of

the globe covered by midtropospheric large-scale

subsidence (termed the ‘‘subsiding fraction’’ by those

authors) as a quantitative measure of convective ag-

gregation. However, both of these approaches require

analysis of 3D model fields to diagnose aggregation,

which can be both expensive and can also be applied

only to simulations, where such fields may not be

available in observations of Earth’s atmosphere.

Seifert andHeus (2013) discuss different methods that

can be applied to identify and quantify cloud field or-

ganization in large-eddy simulations. They conclude

that Hovmöller diagrams are a simple tool to detect

cloud field organization but have the disadvantage that

their character depends on the choice of averaging di-

rection, and it is difficult to quantify organization from

such diagrams. Similarly, Fourier analysis of total water

mixing ratio can be used to identify the growth of vari-

ance from small- to large-scale structures, but still can-

not quantify the mode of organization (i.e., whether the

cloud fields are regular, random, or clustered) (Seifert

and Heus 2013). The approach used by Arnold and

Randall (2015) of identifying an aggregated convective

state in global simulations as one in which the distribu-

tion of column water vapor is bimodal, with two distinct

local maxima, suffers the same limitation. Using ametric

of the deviation to the nearest neighbor cumulative

distribution function (NNCDF), as described by Weger

et al. (1992) and applied by Nair et al. (1998), Seifert and

Heus (2013) performed object-based identification and

tracking of cloud liquid water path (Heus and Seifert

2013) and analyze convective organization. Other au-

thors have devised object-based techniques to identify

convective organization. Birch et al. (2014a) used a mea-

sure of fractal dimension to quantify differences between

convective features. Using an object-based technique,

Tobin et al. (2012) developed the simple convective ag-

gregation index (SCAI), a diagnostic quantity formed

from the number of convective objects in a scene and the

geometrical mean distance between the object centers of

mass, while the later study of Tobin et al. (2013) used only

the number of convective objects to identify aggregation.

SCAI has since been used to quantify and compare con-

vective aggregation in studies of simulated (Holloway

2017) and observed (Stein et al. 2017) convection.

Tobin et al. (2012) define SCAI for a given domain as

follows:

SCAI5
N

N
max

D
0

L
3 1000, (1)

where N is the number of convective objects, Nmax is the

maximumpossible number of objects in the domain (equal

to half the number of pixels or model grid points in the

domain), L is the length scale of the domain, and D0 is

the geometric mean distance between the centroids of the

convective objects. SCAI therefore increases both with

the number of convective objects and with the mean

distance D0 and is interpreted by Tobin et al. (2012) as

‘‘the ratio of the degree of convective ‘disaggregation’

to a potential maximal disaggregation, expressed per

thousand’’ (p. 6890). More aggregated scenes are classi-

fied by lower SCAI values, while disaggregated scenes are

classified by higher SCAI values.

Although clearly shown to be a useful diagnostic

quantity, the SCAI metric has some limitations. First,

SCAI considers only the number of convective objects

in a given domain at a given time and the geometrical

mean distance between object centroids (a measure of

the ‘‘clumping’’ of the objects). Thus, SCAI is totally

insensitive to object size; that is, SCAI values will be the

same in scenes with the same number of objects, each

with the same centroids, but in which the objects have

different sizes. SCAI must also be scaled by the ‘‘char-

acteristic length scale’’ of the domain, along with the

potential maximum number of objects in the domain.
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These scalings mean that SCAI cannot easily be used to

compare domains of very different sizes and resolutions

or with very different numbers of total objects.

No metrics thus far proposed to quantify convective

organization have considered the areas of convective

objects alongside the numbers and spatial arrangement

of objects. Zhu et al. (1992) performed a detailed anal-

ysis of observed cumulus cloud field spatial distributions

based upon Landsat, Advanced Very High Resolution

Radiometer (AVHRR), and Skylab data and found that

large clouds affect the growth of other large clouds

nearby; that is, the relative size of convective objects can

influence and impact the development and size of other

objects. It is also known that, through cold pool in-

teractions, cloud size and proximity increase the po-

tential for organization and therefore growth of the size

of the cloud system (e.g., Feng et al. 2015). With this in

mind, we develop a new and complementary metric to

diagnose convective organization. Our new metric is

able to account for the areas of convective objects and is

physically motivated by the potential for convective

systems to interact in 2D. While we acknowledge the

importance of the properties of the larger-scale envi-

ronment (e.g., wind shear, humidity) on the develop-

ment and interaction of convection, we choose to focus

here on the interaction of individual systems on time

scales of single cloud system life cycles.

Our metric also improves on some of the limitations

of SCAI described above. We apply this metric to data

from simulations from the Cascade project, a consor-

tium project designed to study organized tropical

convection using large-domain cloud-system resolving

simulations over a range of model resolutions and

representations of convection. The Cascade simula-

tions and satellite observations used in this paper are

described in section 2. Cascade allowed studies of the

effects of model resolution and convection represen-

tation on theMJO (Holloway et al. 2013), precipitation

distributions over the tropical ocean (Holloway et al.

2012), and the diurnal cycle of convection over West

Africa (Pearson et al. 2010, 2013) and over the Mari-

time Continent (Love et al. 2011). Previous studies of

convective organization have focused on oceanic

tropical convection (e.g., Bretherton et al. 2005; Tobin

et al. 2012, 2013); however, we present an analysis of

convective organization over tropical land focusing on

the West African Cascade region also studied by

Pearson et al. (2010, 2013). This is nonequilibrium

convection over a strongly heterogeneous diurnally

forced land surface, rather than self-aggregating con-

vection in an RCE environment [as is the focus of, e.g.,

Tompkins (2001) and Bretherton et al. (2005)]. Our

newmetric (referred to as an ‘‘organization potential’’)

is described in section 3, along with details of the

methods used to identify convective objects. In section 4

we analyze the Cascade simulations in terms of our

organization metric and compare the results against

satellite observations of cloud and precipitation. Spe-

cifically, we use our metric to quantify differences in

convective organization between model resolutions

and between simulations with and without a convection

parameterization.

2. Data

As part of the Cascade project, LAM simulations

were performed over West Africa using the Met Office

Unified Model (UM) with horizontal grid lengths of 12,

4, and 1.5 km with no convection parameterization (re-

ferred to herein as 12kmExp, 4kmExp, and 1.5kmExp,

respectively) and at 12-km grid length using a mass flux

parameterization (12kmParam). The model configura-

tions were designed to be as similar as possible except

for their representations of convection. The same radi-

ation and boundary layer mixing parameterizations

were used in all model configurations, although some of

the parameters and settings in these schemes differ be-

tween configurations. Pearson et al. (2013) give a full

description of the model configurations. We present

data from 9 days of simulation initialized using analyses

from the European Centre for Medium-RangeWeather

Forecasts (ECMWF) at 0000 UTC 26 July 2006. The

9-day sample is sufficient to reach a state where the re-

sults robustly represent the model performance (see

appendix A). Boundary forcing from ECMWF analyses

was every 6h for 12kmParam and 12kmExp. The high-

resolution simulations without parameterized convec-

tion were nested one way within each other: the 4kmExp

simulation was forced at its boundaries every 30min

from 12kmParam and the 1.5kmExp simulation was

forced at its boundaries every 15min by 4kmExp. Fur-

ther details and a figure of the nested computational

domains used in the permitted-convection simulations

can be found in Pearson et al. (2013).

Observations of OLR in this analysis are provided

from the Geostationary Earth Radiation Budget

(GERB; Harries et al. 2005) instrument, a broadband

radiometer measuring thermal radiation on the geosta-

tionary Meteosat-8 satellite. The satellite is positioned

over the equator with a field of view covering all of the

African continent. The nadir resolution of GERB is

approximately 40 km—relatively coarse compared to

the resolution of the Cascade models. We therefore

use a hybrid GERB product (NRT V003 ARCH) that

includes information from the Spinning Enhanced Vis-

ible and Infrared Imager (SEVIRI), also onMeteosat-8,
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to produce high-resolution OLR measurements at ap-

proximately 10-km resolution. The product is described

in Dewitte et al. (2008), where it is termed Standard

High-Resolution Image (SHI). For clarity, we refer to

this product throughout the rest of this paper as

GERB-SEVIRI. This product was first used to study the

effect of Saharan dust on the atmospheric radiation

balance (Slingo et al. 2006) and has since been used in

two other Cascade studies (Pearson et al. 2010, 2013).

Observations of precipitation were provided by the

Tropical RainfallMeasuringMission (TRMM;Huffman

et al. 2007) 3B42 product, a gridded, merged 3-hourly

mean multisatellite precipitation analysis estimate at

0.258 spatial resolution. Data from the satellites were

selected at the closest timesmatching themodel outputs.

Data from each of the models were first coarse

grained to the resolution of the GERB-SEVIRI data.

The model and satellite data were then subsectioned

onto a domain of 48–238N, 178W–138E (a region smaller

than that of the smallest model domain) in order to

compare data over identical geographical areas and in

order to remove any regions that may be subject to the

influence of model boundary effects. The convective-

object identification algorithm described below in

section 3a was run on the OLR field from each of the

datasets. The organization parameters were then cal-

culated for each output time, giving a time series of

parameters for each dataset. Where model data are

compared directly against the TRMM-3B42 product,

the precipitation fields from themodels are coarsened to

the 0.258 resolution and 3-hourly mean of the TRMM-

3B42 dataset.

3. Methods

a. Identification of convective objects

We identify convective objects from outgoing long-

wave radiation (OLR) fields from the models and ob-

servations. Studies often threshold broadband (e.g.,

OLR) or narrowband (e.g., brightness temperatures)

fields to identify regions of deep convection. Narrow-

band brightness temperature thresholds used in the lit-

erature cover a wide range of values, from 188 to 267K

to detect cloudy areas (Mapes and Houze 1993), 215K

for deep convective cloud and 267K for anvil regions

(Fu et al. 1990), and a relatively warm threshold of 235K

(Roca et al. 2017) or 240K (Roca and Ramanathan

2000; Tobin et al. 2012, 2013) to identify broad convec-

tive systems rather than convective cores. Values used to

detect deep convection from broadband OLR fields

range from 240Wm22 (Fu et al. 1990), 235Wm22

(Futyan and Del Genio 2007), 210Wm22 (Inoue et al.

2008), to 150Wm2 (Pearson et al. 2010, 2013; a conser-

vatively cold cloud-top threshold chosen by those au-

thors to minimize the risk of noncloud contamination).

A significant limitation of using a single threshold

value is that it can lead to high sensitivity of the detected

field to local minima and maxima. We therefore use a

robust-threshold method (known in information pro-

cessing as ‘‘nonmax suppression’’; Canny 1986), which

significantly reduces some of the sensitivity to local

variations. Two OLR values are supplied: a warmer

threshold and a colder threshold. The same OLR field is

thresholded at each value, resulting in two separate

fields of identified convection (Fig. 1a). The two result-

ing fields are then compared (Fig. 1b) and those regions

of the field identified by the warmer threshold that

contain regions of the field identified by the colder

threshold are taken as convective objects (Fig. 1c). This

approach thereby helps us to reduce the sensitivity of

our field of identified convection to local turning points

in the OLR field near the threshold value.

FIG. 1. Nonmax suppression thresholding technique. (a) The

same field is thresholded twice at a warmer and colder OLR

threshold. (b) The resulting regions are compared to identify which

of the regions identified by the warmer threshold contain within

them regions identified by the colder threshold and which do not.

(c) Only those regions identified by the warmer threshold con-

taining embedded regions identified by the colder threshold are

retained; the others are discarded.
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The robustly thresholded convective field is then di-

vided into discrete, uniquely labeled convective ob-

jects using a four-connectivity two-pass connected

components labeling (CCL) algorithm (Shapiro and

Stockman 2002), which labels points sharing a common

side as belonging to the same object. For each scene, the

CCL output provides the total number of convective

objects and area of each object. The center of mass of

each object is calculated using the object areas. These in

turn are used to calculate the distance between the ob-

ject centers and subsequently the organization metric

(described below in section 3b) for the scene. Our

algorithm, written for this study, incorporates nonmax

suppression and our new, fast CCL implementation. It

also includes an additional ‘‘radius merge’’ feature not

used in the current paper but documented online, as well

as an option (also not used in this study) to cull small

objects before the CCL part of the algorithm is run, and

to use eight-connectivity labeling or higher-order clus-

tering instead of four-connectivity. Our fast algorithm

with incorporated features, along with code to calculate

the convective organization potential (described in

section 3b), were initially written in IDL and are now

also available in Python. We make this code freely

available at the following URL: https://github.com/

bethanwhite/convective_organisation_ccl_idl.

An example of the output from the convective-object

identification algorithm at 5 days and 19h into the

simulation (and equivalent data from GERB-SEVIRI

observations) is shown in Fig. 2 alongside theOLRfields

that were passed to the algorithm.

The sensitivity of the number of identified convective

objects to the colder and warmer OLR thresholds was

tested systematically using OLR from the Cascade

models. As expected, for any given warmer threshold,

the number of identified objects decreases as the colder

threshold decreases (i.e., the condition for ‘‘deep’’

convection becomes stricter) (Fig. 3). It can also be seen

that for a fixed colder threshold, decreasing the warmer

threshold tends to result in more objects identified. This

can be interpreted as a tendency for the cloud objects to

be larger when a warmer warm threshold is used and

neighboring larger objects then being more susceptible

to being merged by the connectivity algorithm. After

this series of tests, warmer and colderOLR thresholds of

175 and 150Wm22 were chosen to be used across all

datasets, consistent with the cold cloud-top threshold of

150Wm22 used in the analysis of the West Africa

Cascade simulations by Pearson et al. (2010, 2013),

chosen to reduce the risk of noncloud contamination.

Note that we choose to use absolute rather than per-

centile thresholds because we aim to use our technique

to identify absolute differences between the datasets

and to compare our results to those already published on

the Cascade data. The choice of cold thresholds is also

used in the study of Roca et al. (2017), who (similarly to

Pearson et al. 2010, 2013) argue that ‘‘the use of colder

thresholds prevents including the whole stratiform anvil

(both precipitating and nonprecipitating), while warmer

thresholds can add unrelated midlevel cloudiness to the

convective cluster’’ (p. 4286).

Finally, we note that not only can the choice of

threshold pair impact the number of objects identified

(Fig. 3) but also that different threshold pairs can lead to

the identification of the same numbers of objects (Fig. 3)

but where the morphology of the objects, and thus the

diagnosed organization, may be different. We therefore

perform a sensitivity test in which our input OLR

datasets are also thresholded with a warmer threshold

pair of 210 and 175Wm22. This choice of pair should

produce a similar number of identified objects to the

colder threshold pair of 175 and 150Wm22 (Fig. 3).

These results are shown in appendix B. We note that

although the choice of threshold pair has some small

impact (as to be expected) on the number of objects

identified, this impact is relatively small (as may be ex-

pected through the particular choice of pair) and

more importantly the temporal variability of the object

numbers is unaffected. Similarly, although (as to be ex-

pected) the choice of threshold pair leads to small differ-

ences in the overall statistics of not just the object numbers

but the diagnosed organization, these differences are not

significant and do not change our conclusions.

b. The convective organization potential (COP)

The organization metric is constructed on the basis of

an interaction potential between a set of 2D objects,

where it is assumed that objects that are larger and

closer together are more likely to interact with (i.e.,

physically influence) each other in the horizontal plane,

while those that are smaller and farther apart are less

likely to interact. We reduce the organization potential

to 2D because of the 2D nature of many of the processes

responsible for convective organization, such as gradi-

ents in SST (Zhang 1993) and surface fluxes (Tompkins

and Craig 1998), convergence (Sherwood 1999) and cold

pools (e.g., Fovell and Tan 1998), and because cloud size

and proximity has been shown to influence the devel-

opment and growth of neighboring clouds (Zhu et al.

1992). For any given scene (i.e., snapshot in time) of

convective objects, three parameters are considered: the

total number of objects in the scene, the size (area)

of the objects, and the distance between the objects.

Interaction potentials are defined between every pair of

objects, and these are used to construct a single orga-

nization potential for each scene.
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FIG. 2. (a),(c),(e),(g),(i) InstantaneousOLR (Wm22, color scale) at 139 h into the simulation and equivalent time

from the satellite observations and (b),(d),(f),(h),(j) convective objects identified in each scene at this time by the

convective-object identification algorithm, for (a),(b) the satellite observations, (c),(d) 12kmParam, (e),

(f) 12kmExp, (g),(h) 4kmExp, and (i),(j) 1.5kmExp. Different colors are used to represent different objects in (b),

(d), (f), (h), and (j).
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Each scene contains a total number N of identified

convective objects. Each identified convective object i

has an area, Ai (known from the model grid length or

satellite pixel resolution, thus giving a lower limit on

object area of the square of the grid length or pixel

resolution). Each object is thenmodeled as a circle of the

same area, giving the radius of the object as ri5 (Ai/p)
1/2.

(Note that this approximation becomes less good as ob-

jects become less round in nature). The center of the

circle is at the center of mass of the original object i. For

every possible pair of objects i and j in the scene, the

distance d(i, j) is defined between the two object cen-

ters. A dimensionless ‘‘interaction potential,’’ V(i, j),

between each pair of objects is then defined as the ratio of

the sum of the object radii to the distance between the

objects. Expressing this in terms of the observed or

modeled quantity, the object area, gives

V(i, j)5

ffiffiffiffi

A
p

i
1

ffiffiffiffi

A
p

j

d(i, j)
ffiffiffiffi

p
p . (2)

A pair of objects therefore have an infinitely large

interaction potential if they share the same center [i.e.,

have zero distance between them; d(i, j) 5 0], an

interaction potential of value 1 when their circumferences

touch, and an interaction potential which tends to zero as

the distance between them becomes infinitely large.

The interaction potentials between all possible ob-

ject pairs in each scene are then combined. For N

objects in a scene, the total number of unique con-

nections between objects is given by �N21

n51 n 5 (1/2)N

(N 2 1). For N objects, we define the ‘‘convective or-

ganization potential’’ (COP) as the sum of all the in-

teraction potentials normalized by the total number of

connections between objects:

COP5

�
N

i51
�
N

j5i11

V(i, j)

1

2
N(N2 1)

. (3)

The organization potential has greater values for ob-

jects that are larger and closer together and smaller

values for objects that are smaller and farther apart. The

dependence of COP on the number of objects comes

through changes ofVwith number. For a truly randomly

distributed case (although not physically possible as

overlap implies interaction), the organization potential

is independent of number (since the small N case in a

randomly distributed field of objects can be thought of

as a subsample of the large N case).

Note that COP is a cloud field metric rather than a

single cloud metric, and therefore in the case of a single

object (N 5 1), COP is undefined. This mathematical

behavior is consistent with the notion that this metric

measures the potential interaction of convective regions.

c. Comparison of COP to SCAI

Here we show that COP reproduces the same orga-

nization ranking as SCAI and thus performs well against

an already knownmetric. Figure 4 shows both SCAI and

COP calculated for the four scenes of convective objects

presented in Fig. 2 of Tobin et al. (2012). SCAI ranks

these four scenes from most to least ordered (lowest to

highest SCAI values) as a, d, c, and b. COP also ranks

these four scenes from most to least ordered (highest to

lowest COP values) as Figs. 4a, 4d, 4c, and 4b. [Note that

our computed values of SCAI for these grids are slightly

different in value from those computed in Tobin et al.

(2012), likely owing to differences in the intrinsic func-

tions and data precision used in the analysis software

used by the two sets of authors.]

While the COP metric is a new and different metric

from SCAI, it also improves upon some of the disad-

vantages inherent to SCAI. Most importantly, unlike

SCAI, COP includes consideration of the areas of con-

vective objects. Thus, a field containing the same num-

ber of convective objects with the same centers of mass

but different object sizes can have identical values of

SCAI but very different values of COP. Figure 5 shows

eight synthetic grids constructed to illustrate this dif-

ference between the two metrics. Each panel of Fig. 5

FIG. 3. Number of convective objects identified by the object-

identification algorithm as a function of colder and warmer OLR

thresholds (horizontal axis and colored lines, respectively). The

OLR field used in this figure is from the Cascade simulation with

a 12-km horizontal grid length and permitted convection.
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contains four objects, and each of the four objects have

the same centroid location in each grid. Thus, each panel

of Fig. 5 has the same value of SCAI. However, because

the areas of the objects vary between the grids, the value

of COP varies between grids. Note also that different

combinations of object areas can give rise to the same

values of COP, (e.g., Figs. 5e,g and Figs. 5f,h). However,

Fig. 5 shows that COP nevertheless gives a different

measure of organization from SCAI. As formulated,

COP most closely relates to the reciprocal of SCAI and

could be interpreted as the reciprocal of an area-aware

SCAI-like metric. We choose to name the metric

COP because its construction takes a mathematical

potential form.

Further, SCAI as originally formulated in Tobin et al.

(2012), and since used in other studies (e.g., Stein et al.

2017; Holloway 2017), uses the geometric mean of the

separation distances. This can de-emphasize small dis-

tances compared to the arithmetic mean that we have

decided to use for COP. While the use of the geometric

mean in the calculation of SCAI may not affect the re-

sults presented in Tobin et al. (2012), it is possible that

other datasets may be sensitive to these differences if

SCAI is applied as formulated in Tobin et al. (2012)

using only geometric mean distances.

Further still, the calculation of SCAI for a given scene

of objects requires the number of objects in the scene to

be normalized by the maximum possible number of ob-

jects in that scene. The calculation of SCAI also requires

the geometric mean distance D0 to be scaled by a char-

acteristic length scale, which is quoted as 1000km in

Tobin et al. (2012)without explanation; therefore, it is not

obvious how the characteristic length scale should be

treated if one moves away from square domains to

FIG. 4. SCAI andCOP computed for the four grids of convective objects reproduced fromFig. 2 of Tobin et al. (2012).
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domains with long-channel geometry. These scaling fac-

tors mean that it is difficult to use SCAI to compare do-

mains of significantly different sizes and resolutions or

with different numbers of total possible objects. Unlike

SCAI, because the interaction potential V (which forms

the basis of COP) is built on the ratio of the sum of the

object radii to the distance between the objects, the in-

teraction potential V is a dimensionless quantity and

therefore scale invariant. Thus, COP does not require any

scaling factors to be chosen a priori and can be used to

compare scenarios with different domain sizes and object

numbers. For equally sized domains, each containing the

same numbers of objects, with each object having the

same center of mass in each domain, COP scales by a

power law with the area fraction of convective objects

(Fig. 6).

4. Results and discussion

It is immediately clear from Fig. 2 that the numbers,

sizes, and spatial distributions of convective objects

appears to depend strongly both on themodel resolution

and on the representation of convection. Although

this could be in part due to the use of thresholds to de-

termine regions of deep convection in the OLR data, this

caveat applies to any study that uses a thresholding

technique, including those of Tobin et al. (2012, 2013) and

Stein et al. (2017). Our nonmaximum suppression ro-

bustly thresholding approach alsomakes it less likely that

such sensitivities will be present in our data compared to

those studies that use a single thresholding technique

(e.g., Tobin et al. 2012, 2013; Stein et al. 2017). Note that

the models were not run with data assimilation and were

forced only at their boundaries by ECMWF data, so the

convective regions in the different models and the ob-

servations are not necessarily expected to coincide with

FIG. 5. Comparison of computed SCAI vs COP for synthetic fields containing the same number of objects with same object centers of

masses, but different object sizes.

FIG. 6. The quantity log(COP) as a function of log(area fraction)

for identically sized domains each containing the same numbers,

with each object having the same center of mass in each domain,

but with increasing size of each object (as in Figs. 5a–d). Area

fraction for each domain is calculated as the ratio of the total area

of the convective objects to the total area of the domain.
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each other. Running the models in this way over a large

domain allows the evolution of the domain interiors to be

determined solely by the resolution and physics of each

model. As such, we use the organization metrics de-

scribed in section 3 to help quantify differences between

the different model configurations and the observations.

Specifically, we ask whether any of the model resolutions

or representations of convection is best able to reproduce

the observed convection.

a. Distributions of cold cloud, precipitation, and
organization metrics

All models underpredict the frequency of occurrence

of cold cloud compared to the GERB-SEVIRI obser-

vations (Fig. 7a). However, the 12kmParam model sig-

nificantly underpredicts the frequency of all cloud colder

than 150Wm22, while the permitted-convection model

configurations represent cold cloud slightly better than

12kmParam compared toGERB-SEVIRI, in agreement

with Pearson et al. (2010, their Fig. 2, although note their

figure only shows a distribution for a single snap-

shot in time). Further, the higher-resolution permitted

convection models (4kmExp and 1.5kmExp) improve

the representation of the observed cold cloud compared

to 12kmExp (Fig. 7a). However, 4kmExp reproduces

the frequency of occurrence of cold cloud better com-

pared to observations than 1.5kmExp, which under-

predicts more significantly than 4kmExp, indicating

limitations in the scaling of the model. It should also be

noted that the permitted-convection model configura-

tions strongly underestimate OLR values between 150

and 175Wm22 compared to those observed (Fig. 7a).

This suggests that although the permitted convection

models do not produce enough deep cold cloud in

general compared to observations (all models under-

predict the frequency of occurrence of cold cloud), when

they do produce deep convection the cloud tends to be

too deep and too cold.

Similarly, the permitted-convection models repre-

sent the distribution of observed surface precipitation

rates much better than the parameterized convection

model (Fig. 7b). The 12kmParam model overpredicts

low precipitation rates and significantly underpredicts

high precipitation rates [in agreement with Holloway

et al. (2012), although note those authors studied the

Maritime Continent Cascade domain rather than

theWest African Cascade domain, which is the focus of

the current paper]. Once the model is permitted to

resolve convection, there is a tendency to overpredict

the frequency of heavy precipitation rates and to un-

derpredict light rates (Fig. 7b). This indicates possible

limitations in the representation of both convective and

stratiform rain production mechanisms in the model.

However, increasing model resolution leads to in-

creasingly better representations of observed pre-

cipitation, with 12kmExp, 4kmExp, and 1.5kmExp

progressively better matching TRMM-3B42 [in agree-

ment with Holloway et al. (2012), their Fig. 2a], and

1.5kmExp performing best of all (Fig. 7b).

However, although permitted versus parameterized

convection appears to be the dominant factor in de-

termining how well the models represent cold cloud and

precipitation (Figs. 7a,b), resolution appears to determine

how well the models represent cloud morphology: there

is a clear separation in the distribution of the number of

cloud objects, with 12kmExp and 12kmParam producing

fewer objects than 4kmExp, 1.5kmExp, and the GERB-

SEVIRI observations (Fig. 7c). The 4kmExp model re-

produces the distribution of the cloud object numbers

seen in GERB-SEVIRI, while 1.5kmExp has a tendency

to overpredict large numbers of objects, and the 12-km

models significantly overpredict small numbers of objects

and underpredict most of the range of observed object

numbers (Fig. 7c).

Conversely, a combination of both model resolution

and physics representation appears to contribute to how

well the COP distribution is represented in the models.

12kmParam has a much broader distribution of COP

values than is seen in the GERB-SEVIRI observations

(Fig. 7d). The COP distribution in 12kmExp is shifted

to a range that better matches that observed, although

the peak COP value of the distribution is too high

compared to that in GERB-SEVIRI and higher COP

values are overpredicted (Fig. 7d). Increasing the model

resolution to 4kmExp leads to a better representation of

the observed COP distribution (Fig. 7d). However, in-

creasing the resolution further to 1.5kmExp leads to an

overprediction of low COP values compared to the

GERB-SEVIRI observations (Fig. 7d). This is due to

the overprediction of large numbers (Fig. 7c) of small

objects (Figs. 7e,f) that tend to be much closer together

(Figs. 7g,h) than those observed and indicates that pro-

gressing to ever-increasing model resolution is unlikely

to be sufficient to improve the model representation of

convective organization.

Because the 12-km models underpredict total

numbers of objects compared to those observed and in

the higher-resolution models (Fig. 7c), the frequency

of occurrence of all cloud object areas is very low in

12kmParam and 12kmExp compared to GERB-

SEVIRI, 4kmExp, and 1.5kmExp (Fig. 7e). How-

ever, when relative frequencies are considered it is

seen that 12kmParam and 12kmExp underpredict the

frequency of occurrence of small cloud objects com-

pared to that observed in the GERB-SEVIRI obser-

vations (Fig. 7f). Further, the 4kmExp and 1.5kmExp
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FIG. 7. Distributions of (a) OLR (Wm22), (b) surface precipitation rate (mmh21),

(c) number of identified convective objects, (d) convective organization potential, (e),

(f) area of convective objects (km2), and (g),(h) distance between object centers (km), for

each of the model and observational datasets analyzed. Values for 12kmParam, 12kmExp,
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models both overpredict the frequency of occurrence

of small cloud objects, with 1.5kmExp exhibiting a

large bias compared to the observations in producing

clouds with an area smaller than 40 km2 (Fig. 7f).

However, both the high-resolution models perform

relatively well at reproducing the observed frequency

of occurrence of cloud objects larger than about

100 km2 (Figs. 7e,f).

There are similarly large differences between the

datasets in the total frequencies of occurrence of all

distances between cloud objects (Fig. 7g), again owing to

differences in the total numbers of objects seen between

the datasets (Fig. 7a). However, when considering rel-

ative frequencies, it is seen that the 12-km models re-

produce the distribution of distances between cloud

objects observed in GERB-SEVIRI much better than

the high-resolution models (Fig. 7h). As model resolu-

tion is increased there is a clear shift in the distribution

away from the observed, with a tendency to overpredict

small distances between cloud objects and underpredict

large distances with increasing resolution (Fig. 7h). This

is at least in part due to the overprediction of small cloud

objects in 4kmExp and 1.5kmExp compared to that

observed (Figs. 7e,f), as a greater number of small ob-

jects (in a fixed domain size) will lead to a greater

number of small distances between those objects.

Despite differences in the abilities of the different

models to represent different aspects of the cloud

morphology, the higher-resolution models consistently

represent the observed precipitation rates better

compared to observations (Fig. 7b), perhaps indicating

a decoupling between the convective organization

and precipitation on time scales longer than that of an

individual cloud or cloud-system life cycle. It is also

interesting to note the nonlinear difference in cloud

morphology between 1.5kmExp, 4kmExp, and

12kmExp despite the approximately continuous factor

3 difference between each of the model resolutions

(Figs. 7c–h).

b. Behavior of organization parameters with respect
to each other

To identify whether states of high and low convective

organization behave differently in the differentmodels and

observations, the number of convective objects and the

mean object area are shown as a function of COP in Fig. 8,

along with the number of convective objects as a function

of SCAI. The 1.5kmExp model was only run for 9 days

post spinupduringCascade,while the 4- and 12-kmmodels

were run for 27 days post spinup in total. In this paper, and

in the rest of the Cascade literature that uses the 1.5-km

model (e.g., Pearson et al. 2010; Holloway et al. 2012;

Marsham et al. 2013; Stein et al. 2015), we present only

data from the 9 days over which all themodels were run, to

avoidmixing 27-day statistics from the coarsermodels with

9-day statistics from the 1.5-km model. However, here we

show that the behavior of the convection in the observa-

tions and 4- and 12-km models over the first 9 days

(Figs. 8a,c,e) not just contains a significant number of ob-

jects but is a representative sample of the behavior over the

full 27 days (Figs. 8b,d,f). Further justification that the

9-day sample is sufficient to reach a state where the results

are robust enough to be representative of the performance

of the model can be found in appendix A.

In general, the 12-kmmodels have far fewer objects than

the observations or the higher-resolution models or the

observations (Fig. 8a), while the 4- and 1.5-kmmodels tend

to have much smaller values of COP and greater numbers

of objects than the12-kmmodels. The lowest values ofCOP

in the GERB-SEVIRI observations and in 4kmExp and

1.5kmExp are associated with the largest number of objects

(Fig. 8a), while 12kmParam and 12kmExp exhibit a dif-

ferent relationship betweenCOPand the number of objects

(Fig. 8a), with a much broader range of COP values that

exhibit a less clear relationship with the numbers of objects.

In comparison to COP, all models and observations

show linear scaling of SCAI with the number of objects

(Fig. 8b). Tobin et al. (2013) state that when objects are

well distributed over the domain, the number of objects

is ‘‘statistically sufficient to discriminate between the

different degrees of aggregation.’’ The linear relation-

ship of SCAI with number of objects in the Cascade

domain similarly suggests that, for this domain and pe-

riod of deep convection, SCAI does not provide more

information on the organization of convection than is

simply given by the number of objects. In contrast, that

COP does not show linear scaling with number of ob-

jects in Fig. 8a shows that COP contains greater poten-

tial to discriminate between scenes compared to SCAI.

Note also that the 12-km models have low values of

 
4kmExp, 1.5kmExp, and observations are shown in red, orange, purple, cyan, and black,

respectively. Note that because of the very large differences between the absolute values

present in the datasets in (e) and (g), equivalent relative frequency histograms are shown for

these distributions in (f) and (h), respectively. Note in (b) the precipitation fields from the

models have been coarsened to the 0.258 resolution and 3-hourly mean of the TRMM-3B42

dataset. Also note the logarithmic horizontal axes in (b), (e), and (f).
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FIG. 8. Relationship of (a),(b) COP with number of convective objects, (c),(d) SCAI with number of

convective objects, and (e),(f) COP with mean object area, for each of the datasets analyzed. The values

for 12kmParam, 12kmExp, 4kmExp, 1.5kmExp, and GERB-SEVIRI observations are shown in red,

orange, purple, cyan, and black, respectively. Data are shown for (a),(c),(e) the 9 days of the Cascade

simulations used in this paper and in the rest of the Cascade literature and (b),(d),(f) the full 27 days over

which the 12- and 4-km models were run.
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SCAI compared to the high-resolution models and ob-

servations (Fig. 8b), while the 12-kmmodels have higher

values of COP compared to the high-resolution models

and observations (Fig. 8a). Both metrics therefore

indicate a greater degree of convective organization in

the 12-km models than in the higher-resolution models.

Similarly, there is a clear separation of themean area of

objects associated with given values of COP between the

high-resolution models and the coarser models and the

observations. For a given value of COP, 4kmExp and

1.5kmExp have much smaller mean object areas than

12kmExp, 12kmParam, and the GERB-SEVIRI obser-

vations (Fig. 8e). These results show that the higher-

resolution models occupy a very different organization

regime than the coarser-resolution models and the ob-

servations. For example, at a COP value of 0.1, 4kmExp

and 1.5kmExp havemore convective objects with smaller

mean areas compared to 12kmParam and 12kmExp,

which have fewer but larger objects (Figs. 8a,e). Further,

neither of these regimes seems to represent the observed

behavior of the convection in GERB-SEVIRI, which

exhibits a larger number of larger objects (Figs. 8a,e).

c. Diurnal cycles

Differences in the diurnal cycle of moist convection in

West Africa have been shown to drive diurnal differ-

ences in radiation, both in net daytime heating and also

in nocturnal cooling (Marsham et al. 2013). An im-

proved representation of the diurnal cycle of tropical

convection in high-resolution simulations in this region

was shown by Pearson et al. (2013) to be mainly attrib-

utable to an improved representation of convection

(permitted rather than parameterized convection)

rather than increased model resolution per se. Indeed, a

12-km-grid-length model with permitted convection

produced a more realistic magnitude of the diurnal

cycle of cloud fraction compared to observations than

the 4- and 1.5-km models, although the 1.5-km model

produced a better match in terms of timing (Pearson et

al. 2013, their Fig. 4). Comparing the diurnal cycle of the

OLR from each of the models and the GERB-SEVIRI

observations, 12kmParam clearly (and unsurprisingly)

produces a diurnal minimum in OLR much too early

(1400 LST; Fig. 9a) compared to the nocturnal minimum

in cold cloud observed by GERB-SEVIRI (0200 to 0400

LST; Fig. 9a). In comparison, the permitted-convection

models produce diurnal minima in cold cloud with a

timing that more closely matches that observed, ranging

between 0200 and 0500 LST for 12kmExp, 2300 LST for

4kmExp, and 2100 to 2300 LST for 1.5kmExp (Fig. 9a).

In agreement with Pearson et al. (2013), 12kmParam

produces a diurnal minimum in cold cloud too early, and

the permitted-convection models represent the timing

of this minimum better compared to observations. Cold

OLR values are underpredicted in the models (Fig. 7a),

and thus the diurnal minima of the mean OLR values

have a consistent warm bias in all models compared to

GERB-SEVIRI (Fig. 9a). Despite the warm bias, the

magnitude of the diurnal cycle of OLR is better repre-

sented in 4kmExp and 1.5kmExp than in 12kmExp, with

low diurnal variability in mean OLR in 12kmExp com-

pared to the high-resolution models (Fig. 9a). The diurnal

cycle of OLR in 4kmExp best matches the observed

magnitude, in contrast to Pearson et al. (2013), who found

12kmExp to best match observations. However, Pearson

et al. (2013) analyzed the diurnal cycle of cloud fraction

rather than OLR, which may explain the differences be-

tween their study and the one presented here.

Likewise, the daily maximum in mean rainfall rate in

12kmParam occurs much too early compared to that

observed by TRMM [1200 LST compared to 1800 LST

(Fig. 9b), in agreement with Marsham et al. (2013)]. The

permitted-convection models perform significantly bet-

ter in terms of timing, with 4kmExp and 1.5kmExp be-

having similarly to each other in their diurnal cycles of

mean surface precipitation rate (Fig. 9b), showing

that the representation of convection is the leading

factor in the timing of the daily rainfall peak. The timing

of the daily precipitation maximum in TRMM (1800),

12kmExp (between 1800 and 2100), 4kmExp (1800), and

1.5kmExp (1500) all fall within the range of an afternoon

precipitation peak between 1500 and 2100 LST observed

in tracked MCSs in the Sahel (Goyens et al. 2012).

Like the diurnal cycle in OLR, where 4kmExp best

matches observations (Fig. 9a), 4kmExp also performs

best in the timing of the observed diurnal cycle of pre-

cipitation, whereas the daily precipitation maximum

occurs too early in 1.5kmExp and too late in 12kmExp

(Fig. 9b). That the delay of the daily precipitation maxi-

mum is too great in 12kmExp, represented well in

4kmExp, and not delayed enough in 1.5kmExp indicates

that there may be an optimal model resolution for cap-

turing the processes responsible for producing the pre-

cipitation maximum. This is likely related to the

representation of the convective morphology: 1.5kmExp

produces too many cloud objects compared to observa-

tions (Fig. 7c), which tend to be too small (Fig. 7e),whereas

12kmExp produces too few cloud objects (Fig. 7c) that do

not have sufficient number of the observed midrange sizes

(Fig. 7f), and 4kmExp best represents the observed cloud

number and size distributions (Figs. 7c,f). Thus, it is likely

that the timing of the diurnal precipitation maximum is

driven by the convective organization.

Further, we note that none of the models are able to

produce the secondary maximum in surface pre-

cipitation seen in TRMM at 0300 LST, indicating that
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physical processes are missing from all models. Addi-

tionally, while 4kmExp best represents the timing

of the daily rainfall maximum, it significantly over-

predicts the magnitude of diurnal cycle and the absolute

value of the maximum compared to that observed in

TRMM (Fig. 9b). Indeed, all permitted convection

models overpredict the magnitude of the diurnal pre-

cipitation cycle and the absolute value of the maximum,

and scaling with model resolution is nonlinear, again

indicating a lack of process representation in all models.

These results also suggest possible underlying issues in

the scaling of precipitation processes in the model and

suggest that increased model resolution alone is in-

sufficient to improve the representation of diurnal cycles

of cloud and precipitation.

As may be expected from the timing of the daily

OLR minimum and precipitation rate maximum in

12kmParam, the timing of the dailymaximum in number

of convective objects is also too early in 12kmParam

compared to the observations (Fig. 9c). The timing of

the diurnal cycle of object numbers is improved in the

permitted-convection models (Fig. 9c). The number of

objects in 1.5kmExp varies much more strongly than in

4kmExp or 12kmExp (Fig. 9c). Although there is a large

FIG. 9. Diurnal cycles of (a) OLR (Wm22);

(b) surface precipitation rate (mmh21), where data from

themodels have been coarsened to the 0.258 resolution and
3-hourly mean of the TRMM-3B42 dataset; (c) number of

identified convective objects; (d) convective organization

potential; and (e) SCAI, for each of the model and ob-

servational datasets analyzed. The values for 12kmParam,

12kmExp, 4kmExp, 1.5kmExp, and observations are

shown in red, orange, purple, cyan, and black, respectively.
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positive bias in the diurnal cycle of object numbers in

4kmExp and 1.5kmExp compared to GERB-SEVIRI,

the 12-km models underpredict the number of objects

(Fig. 9c). Similarly to the representation of the timing of

the daily precipitation maximum (Fig. 9b), 12kmExp

underpredicts the diurnal cycle of number of objects

compared to that observed, while 4kmExp well repre-

sents the observed diurnal cycle of number of objects

and 1.5kmExp significantly overpredicts the number of

objects during the afternoon onset of convection

(Fig. 9c). This again indicates that the representation of

convective organizationmay be responsible for howwell

the models predict the daily precipitation maximum

(Fig. 9b). Indeed, when the diurnal cycle of COP is

considered, only the 4kmExp and 1.5kmExp models

reproduce the observed smoothly varying diurnal cycle,

while the two 12-km models show no such smooth cycle

(Fig. 9d). Although absolute values of COP in 4kmExp and

1.5kmExp are lower than those observed, the high-

resolution models reproduce some of the variability of the

observed diurnal cycle with a daily minimum around 1500

LST,whereas the coarse-resolutionmodels do not (Fig. 9d).

Finally, we also show that the diurnal cycle in SCAI is

almost indistinguishable from the diurnal cycle in object

numbers, for all datasets considered (Fig. 9e). Thus, at

least for the domain and time period considered in this

study, SCAI does not appear to provide any more in-

formation about the behavior of the convective mor-

phology than is simply given by object number [as also

found by Tobin et al. (2013)], whereas the COP metric

provides different and complementary information to

object number.

d. Relationship of convective organization with
surface winds and precipitation

Because the representation of surface precipitation

appears to be linked to the degree of convective orga-

nization (Fig. 9), and because convective downdrafts are

well known to produce cold pool outflow, which can in

turn affect organization of convective systems (e.g.,

Charba 1974; Simpson 1980; Thorpe et al. 1982; Fovell

and Tan 1998), we investigate whether there is any re-

lationship between the organization parameters and the

mean state of the relevant meteorological fields in the

observations and the different models. For example, we

seek to ask whether scenarios with a greater number of

convective systems are associated with greater or

weaker surface precipitation rates and whether more

organized (higher COP value) scenarios are associated

with stronger near-surface winds, as may be expected

from a cold pool feedback hypothesis.

The mean magnitude of the 925-hPa wind and the

mean surface precipitation rate are composited by the

number of convective objects and by COP (Fig. 10) in a

similar manner to that of Tobin et al. (2012). Percentile

bin ranges for the organization parameters are used

because, unlike the decision to use absolute OLR

thresholds rather than percentiles to identify convective

regions earlier in this analysis, there is not yet a body

of established literature on the absolute values of

convective-object number or COP that may constitute

highly organized versus completely isolated convection.

In all models, domain-mean near-surface winds tend

to remain constant with number of convective objects up

to the 4th percentile, then decrease in the states with the

highest numbers of convective objects (Fig. 10a), while

domain-mean surface precipitation rates are greater in

states with more convective objects within the error

limits shown (Fig. 10b). Greater domain-mean pre-

cipitation rates and weaker surface winds with greater

numbers of convective objects may seem counterintui-

tive at first. However, this could be due to increased

convective organization through cold pool feedbacks.

Stronger surface winds (cold pool outflow) could lead to

greater convective organization (smaller numbers of

larger and stronger systems), where precipitation may

be concentrated and enhanced within the organized

systems but suppressed in a domain-mean sense due to

increased subsidence. Note also that although all models

tend to show an increase in surface precipitation rates

with object number, this relationship is less, if at all,

apparent in the TRMM observations (Fig. 10b). Yet

again this indicates that all models are missing an ac-

curate representation of the physical processes leading

to precipitation in this domain.

In the permitted convection models, near-surface

winds are also stronger in states with greater values of

COP (Fig. 10c) (i.e., states that, on average, contain

objects that are larger and/or closer together). However,

near-surface winds are weaker in higher COP states in

12kmParam. This again supports the cold pool feedback

hypothesis: larger convective objects produce stronger

outflows, which can subsequently lead to greater

convective organization. Cold pool outflow cannot

be produced by the convection parameterization in

12kmParam, so it is not surprising that the relationship

between COP and surface winds is different in this

model from that in the permitted convection models.

Note that convective organization through cold pool

outflow would affect the size, number, and proximity of

subsequent convection. Therefore, Figs. 10a,c could be

interpreted together through a hypothesis suggesting

that cold pool outflow from convective downdrafts

would lead to stronger, more organized convection, seen

as fewer convective objects overall (stronger winds in

states with low object numbers; Fig. 10a) but that had
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larger areas and tended to be closer together (stronger

winds with higher COP values; Fig. 10c).

Mean surface precipitation rates increase with COP

in the models and the observations, except for the

highest COP states, where a tendency for decreased

surface precipitation rates is seen (Fig. 10d). This

again indicates that the relationship of surface pre-

cipitation rates with convective organization depends

on factors other than simply the number of convective

objects.

We also note that for the permitted convection

model configurations, the relationship between both

number of convective objects and COP with the mean

925-hPa wind speed (Figs. 10a,c) and mean surface

precipitation rate (Figs. 10b,d) is very similar in

4kmExp and 1.5kmExp, while the relationships in

12kmExp differ from the two high-resolution models.

The main difference between the three permitted-

convection model configurations is that the grid

lengths used in the higher-resolution models are

better able to resolve cloud-system processes and are

at the limit or beyond the grid lengths at which it

would be appropriate to use a convection parame-

terization. In contrast, the 12-km grid length in

12kmExp is significantly greater than that which can

resolve cloud-scale processes and is within the limit at

which the assumptions of traditional convection pa-

rameterizations hold. Thus, it is possible that the

difference in relationships between the cloud

processes and the convective organization in the

higher-resolution models and the coarse-resolution

convection-permitting model arise as a result of the

differing abilities of the model resolutions to resolve

physical processes.

FIG. 10. (a),(c) Mean 925-hPa wind (m s21) and (b),(d) mean surface precipitation rate (mmh21), composited by

percentiles of (a),(b) number of convective objects and (c),(d) convective organization potential, for each of the

datasets analyzed. The values for 12kmParam, 12kmExp, 4kmExp, 1.5kmExp, and observations are shown in red,

orange, purple, cyan, and black, respectively.
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5. Summary and conclusions

We have presented a method for quantifying con-

vective organization based on the identification of con-

vective objects and the subsequent derivation of

physically motivated organization parameters. Unlike

the ‘‘aggregation index’’ (SCAI), of Tobin et al. (2012),

which describes a combined measure of the number of

‘‘convective clusters’’ and how clumped together or far

apart they are, our ‘‘convective organization potential’’

(COP) takes the form of a physical interaction potential

combining the number of convective objects, their sizes,

and distance from each other. We show that COP is a

different and complementary metric of convective

organization from SCAI, addresses some of the disad-

vantages of SCAI, and can be used to discriminate states

of organization that SCAI is unable to.

We have applied our metric to a set of model and ob-

servational data and shown that COP can be used to

quantify differences in convective organization in

models with different resolutions and physics. Unlike

previous studies diagnosing convective organization in

observations and models, which tend to focus on tropical

oceanic convection (Bretherton et al. 2005; Tobin et al.

2012, 2013), this study focuses on convection over tropical

land. By applying our technique to convective objects

identified from simulated and observed OLR fields we

are able to quantify differences between models and

observations and attribute them to differences in the

model resolution or representation of convection.

Over the time periods considered, the permitted

convection models produce OLR distributions more

similar to those observed than the parameterized con-

vection model [in agreement with Pearson et al. (2010)].

All models underpredict the frequency of occurrence of

cold cloud compared to the observations, although

4kmExp and 1.5kmExp perform best compared to

GERB-SEVIRI, suggesting that a second-order effect

after moving from parameterized to permitted convec-

tion is that increased model resolution can improve the

representation of cold cloud. However, 4kmExp per-

forms better than 1.5kmExp, indicating either that this

scaling is nonlinear or that improved representation of

the cold cloud distribution with model resolution has

some upper limit (which could be due to scaling issues

resulting from the breakdown of assumptions made in

the physics parameterizations beyond a certain grid

size). The permitted convection models also produce

precipitation distributions that more closely match that

observed than the parameterized convection model

[in agreement withHolloway et al. (2012)]. Precipitation

distributions in the models are improved against those

observed as model resolution increases, with 1.5kmExp

performing best overall, indicating that a better repre-

sentation of the observed precipitation does not neces-

sarily result in a better representation of convective

cloud morphology. That neither of the high-resolution

permitted convection models reproduces the observed

OLR distribution best while the finest-resolution model

best reproduces the observed precipitation distribution

indicates there may be a decoupling between the scaling

of the cloud and precipitation over time scales longer

than that of one cloud system life cycle.

Model resolution dominates the degree of convective

organization seen in the models. Although the COP

values must be interpreted carefully owing to the fact

that compensating factors may lead to the same values

of COP, in general the 4kmExp model outperforms the

other models in terms of representing the observed COP

distribution. The 12kmExp and 12kmParam models

produce too broad a range of COP values compared to

that observed, while 1.5kmExp produces too narrow a

range of too-small COP values. The 4kmExp and

1.5kmExp models produce, in total, more convective

objects that are smaller and closer together than those in

12kmExp or 12kmParam. However, none of the models

best represents the overall distribution of the observed

convective morphology: although observed distribu-

tions of object numbers and COP values are best rep-

resented in 4kmExp, this model has a bias toward

producing objects that are too small (a bias that worsens

in 1.5kmExp), and the high-resolution models are un-

able to reproduce the observed distribution of distances

between objects (likely resulting from the overprediction

of too many small objects in these models). This indicates

issues both with the ability of the model to represent the

observed convective morphology and issues with the

model scaling. This is in agreement with the Cascade

length scale analysis of Pearson et al. (2013), who find that

4kmExp produces too many systems at small scales, and

the results of Stein et al. (2015), who find that storm

structures at very high resolution in another experiment

are too narrow compared to those observed. However,

despite the similar resolution of the GERB-SEVIRI

product and the 12kmParam and 12kmExp models, the

12-km models have too few cloud objects compared to

those detected in the observations (at least in part owing to

the 12-km models producing less cold cloud than ob-

served) and relatively too few small cloud objects com-

pared to those observed. That our results agree with the

finding of Pearson et al. (2013) that 4kmExp produces too

many systems at small scales, through use of a different

metric, shows that our analysis approach is detecting the

same signal and is therefore a suitable alternative method.

In agreement with Pearson et al. (2013) and Marsham

et al. (2013), the representation of convection is the
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leading-order factor in determining how well the models

represent the observed diurnal cycle of convection. The

parameterized convection model misrepresents the di-

urnal cycle in convective cloud and precipitation, with a

daily OLR minimum and precipitation maximum that

occurs too early compared to that observed. Permitted

convection configurations improve this, and increasing

model resolution from grid lengths of 12 to 4 km in the

permitted convection models leads to a better repre-

sentation of the diurnal cycle of OLR and number of

convective objects, but precipitation rates are over-

predicted [as also found by Holloway et al. (2012) and

Marsham et al. (2013)]. Further, none of the models are

able to reproduce the secondary precipitation maximum

seen in the observations, indicating that physical pro-

cesses are missing from the models. There is no signifi-

cant evidence that increasing themodel grid length from

4 to 1.5 km leads to a better representation of the diurnal

cycle of OLR, surface precipitation, or number of con-

vective objects, again indicating issues with the model

scaling.

Near-surface winds and surface precipitation show

dependence on the degree of organization (number of

convective objects and COP), indicating links between

the convective organization andmeteorology. However,

these relationships differ somewhat between model

configurations, with 12kmParam behaving least like the

permitted convection models and observations. Near-

surface winds are weaker and surface precipitation rates

are greater in states with more convective objects. Near-

surface winds are also stronger in states with larger COP

values (convective objects are larger and closer to-

gether), which gives evidence for the physical motivation

of the organization potential: convective organization

strongly depends on secondary initiation from cold pool

outflow, which in turn is associated with strong low-level

winds. We suggest that these relationships could be

interpreted in terms of convective organization through

cold pool outflow, which would affect the size, number,

and proximity of subsequent systems. Cold pool outflow

from convective downdrafts could lead to stronger, more

organized convection (smaller numbers of larger and

stronger systems, leading to low object numbers but higher

COP values), where precipitation may be concentrated

and enhancedwithin the organized systems but suppressed

in a domain-mean sense owing to increased subsidence.

This surface wind increase could also be due to larger and

stronger convective circulations, as seen in the later stages

of self-aggregating convection (e.g., Bretherton et al.

2005). Similarly, surface precipitation rates, associated

with strong evaporative cooling and the generation of

cold pool outflow, tend to be higher in states with

larger COP values. This again demonstrates that the

relationship of surface precipitation rates with convective

organization depends on factors other than simply the

number of convective objects. The cases considered in

this work and those considered by Tobin et al. (2013)

have shown that, for certain scenarios, SCAI provides no

insight beyond the simple metric of convective-object

number. As such, we believe more discriminating metrics

would be useful for comparing and quantifying the effects

of convective organization and that COP is one

such metric.

Overall, we find that the organization parameters can be

used to quantify differences between the models and ob-

servations. Moving from parameterized to permitted

convection is in general the leading-order factor for im-

proving model performance of the diurnal cycle and dis-

tributions of OLR and precipitation rates. Once in a

permitted convection configuration, increased model res-

olution can lead to bettermodel performance for some but

not all aspects of the convective morphology. Improve-

ments with increased model resolution are either non-

linear or have some upper limit: despite the approximately

continuous factor of 3 in resolution between grid lengths of

12, 4, and 1.5km, there is often significant improvement in

model performance between 12 and 4km but less im-

provement or even decreased performance between 4 and

1.5km. Scaling of convective cloud and precipitation

processes may be decoupled. Most notably, no single

model configuration ‘‘performs best’’ compared to obser-

vations, indicating underlying deficiencies in both the

model scaling and the process understanding used to build

the model. While this work has only used the organization

metrics to study seasonal-scale limited-area simulations

over West Africa, future work using the same metrics to

study global models and observations over much longer

time scales, in different climate states and different regions

of synoptic meteorology, may provide results that help the

development of new, physically based parameterizations

of convective organization.
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APPENDIX A

Robustness of Results

We note that the 1.5kmExp model was only run for

9 days, while the coarser-resolution Cascade models

FIG. A2. Normalized distributions of (a)–(d) number of identified convective objects and (e)–(h) convective organization potential for

each of the model and observational datasets analyzed over the Cascade period for (a),(e) days 1–9; (b),(f) days 10–18 for 12kmParam,

12kmExp, and 4kmExp; (c),(g) days 19–27 for 12kmParam, 12kmExp, and 4kmExp; and (d),(h) the entire available period (days 1–27 for

12kmParam, 12kmExp, and 4kmExp and days 1–9 for 1.5kmExp and GERB-SEVIRI). Note that for comparison, the distributions

from days 1–9 of 1.5kmExp and GERB-SEVIRI are overlaid on the later distributions for 12kmParam, 12kmExp, and 4kmExp in (b),

(f) and (c),(g). The values for 12kmParam, 12kmExp, 4kmExp, 1.5kmExp, and observations are shown in red, orange, purple, cyan, and

black, respectively.

FIG. A1. Time series of the number of identified convective objects for (a) days 1–9, (b) days 10–18, and (c) days 19–27 of the

Cascade period. The values for 12kmParam, 12kmExp, 4kmExp, 1.5kmExp, and observations are shown in red, orange, purple, cyan,

and black, respectively. Note that 1.5kmExp was only run for days 1–9 and also that the GERB-SEVIRI observations were only

available for days 1–9.
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were run for 27 days. We also note that most of the

literature analyzing the Cascade data uses only 9 days

of simulation (e.g., Pearson et al. 2010; Holloway et al.

2012; Marsham et al. 2013; Pearson et al. 2013;

Holloway et al. 2013; Stein et al. 2015). Our analysis

is therefore performed over this 9-day period in

order to make our results directly comparable to

the other Cascade studies, and so as not to mix

9-day statistics from the observations and 1.5kmExp

with 27-day statistics from 12kmParam, 12kmExp,

and 4kmExp.

Nevertheless, we show here that the 9 days presented

in our study are representative of the simulation period

as a whole. Time series of the number of identified

convective objects for days 1–9 (Fig. A1a), days 10–18

(Fig. A1b), and days 19–27 (Fig. A1c) of the Cascade

period show that the number and temporal variability of

convective objects occurring in the first 9 days of the

simulations is similar to that occurring over the full

27 days; that is, it would appear that any subsample of

the 27-day period containing more than a few diurnal

cycles of convection would reasonably represent the

statistics of the full period.

This is also seen when looking at the distributions of

the numbers of objects and of COP. Normalized dis-

tributions sampled at 9-day subperiods of the full 27

Cascade days for object numbers (Figs. A2a–c) and

COP (Figs. A2e–g) show very similar distributions of

organization parameters no matter which subperiod is

shown. (Note that the data from days 1–9 for 1.5kmExp

and GERB-SEVIRI are overlaid onto the distribu-

tions from the coarser-resolution models at later sub-

periods in Figs. A2b,c,f,g for comparison). Moreover,

the distributions from 12kmParam, 12kmExp, and

4kmExp composed from data from the first 9 Cascade

days (Figs. A2a,e) are very similar to those composed

from data over the full 27 days (Figs. A2d,h; note again

that the data from 1.5kmExp and GERB-SEVIRI

shown in these figures are from days 1–9), thus show-

ing that the length of the 9-day segment used in our

analysis and in most of the other Cascade studies is

sufficient to reach stable statistics.

Given that the first 9-day period is sufficient to reach a

state where the results are robust enough to be repre-

sentative of the performance of the model, we choose to

present our analysis only over this 9-day period. We

emphasize again that this is in order to allow the reader

to compare our results directly with those of the other

Cascade papers and so as not to mix 9-day statistics with

27-day statistics, as would be the case if we presented the

full datasets (27 days of 12kmParam, 12kmExp, and

4kmExp with 9 days of 1.5kmExp and GERB-SEVIRI

observations).

APPENDIX B

Sensitivity of Results to Choice of Thresholds

We note that the choice of threshold pair has a direct

impact on the number of identified convective objects

and also that the same number of objects (but likely

with different morphologies and thus organization) can

be obtained using different threshold pairs (Fig. 3).

Thus we test the sensitivity of our results to the choice

of threshold pair by comparing results from processing

our input data with values chosen to still reasonably

represent deep convection but taken as warmer values:

FIG. B1. Time series of the number of identified convective ob-

jects for days 1–9 of the Cascade period for objects identified using

(a) the threshold pair of (150, 175) Wm22 presented in our study

and (b) the warmer threshold pair of (175, 210) Wm22 performed

as a sensitivity test. The values for 12kmParam, 12kmExp,

4kmExp, 1.5kmExp, and observations are shown in red, orange,

purple, cyan, and black, respectively.
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175Wm22 for the colder threshold and 210Wm22 for

the warmer threshold (e.g., Inoue et al. 2008). These

thresholds are chosen in part to investigate the effect

on the statistics when warmer cloud thresholds are

chosen, but also because this particular choice of

threshold pair should give rise to a similar number of

objects as when the colder pair is chosen (Fig. 3) but

thus with likely different morphologies.

Using the warmer cloud thresholds, we obtain time

series of the number of identified convective objects

over the 9-day Cascade period (Fig. B1). It can be

seen that although the choice of threshold pair has

some impact (as expected) on the number of objects

identified, this impact is relatively small (as may be

expected through the particular choice of pair) and

more importantly the temporal variability of the ob-

ject numbers is unaffected by whether the colder

threshold pair (Fig. B1a) or warmer threshold pair

(Fig. B1b) is used. Further, it can be seen that al-

though small differences can be seen between the

distributions of number of convective objects

(Figs. B2a,c) and COP (Figs. B2b,d), the overall sta-

tistics are not changed significantly when the warmer

thresholds are used.

FIG. B2. Normalized distributions of (a),(c) number of identified convective objects and (b),(d) convective or-

ganization potential for each of themodel and observational datasets analyzed over days 1–9 of the Cascade period,

using threshold pairs of (a),(b) (150, 175) and (c),(d) (175, 210)Wm22 to identify convective objects. The values for

12kmParam, 12kmExp, 4kmExp, 1.5kmExp, and observations are shown in red, orange, purple, cyan, and black,

respectively.
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