

This is a repository copy of Valorization of spruce needle waste via supercritical extraction of waxes and facile isolation of nonacosan-10-ol.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/122044/

Version: Accepted Version

Article:

McElroy, Con Robert orcid.org/0000-0003-2315-8153, Attard, Thomas Michael, Farmer, Thomas James orcid.org/0000-0002-1039-7684 et al. (4 more authors) (2017) Valorization of spruce needle waste via supercritical extraction of waxes and facile isolation of nonacosan-10-ol. Journal of Cleaner Production. 10. pp. 557-566. ISSN: 0959-6526

https://doi.org/10.1016/j.jclepro.2017.10.002

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Accepted Manuscript

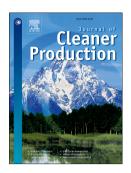
Valorization of spruce needle waste via supercritical extraction of waxes and facile isolation of nonacosan-10-ol

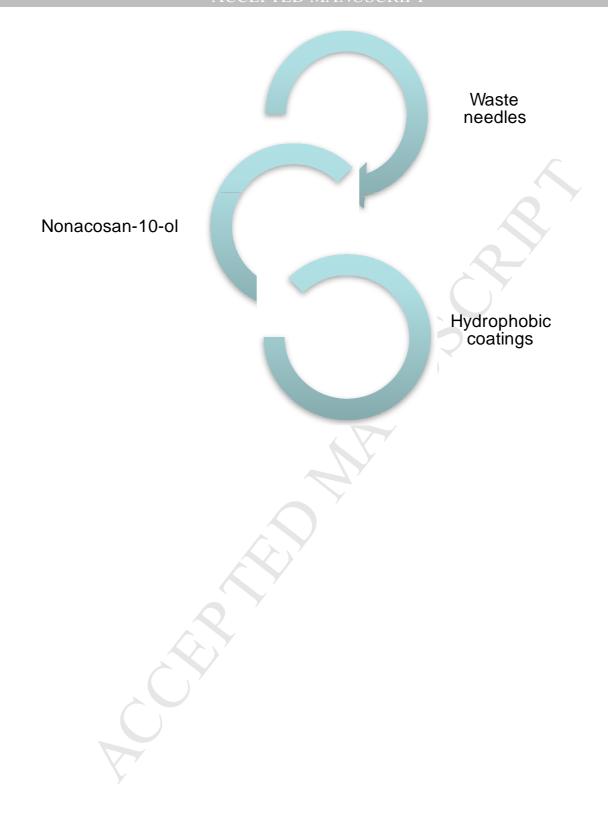
Con R. McElroy, Thomas M. Attard, Thomas J. Farmer, Alicia Gaczynski, David Thornthwaite, James H. Clark, Andrew J. Hunt

PII: S0959-6526(17)32295-3

DOI: 10.1016/j.jclepro.2017.10.002

Reference: JCLP 10794


To appear in: Journal of Cleaner Production


Received Date: 7 July 2017

Revised Date: 1 September 2017 Accepted Date: 1 October 2017

Please cite this article as: McElroy CR, Attard TM, Farmer TJ, Gaczynski A, Thornthwaite D, Clark JH, Hunt AJ, Valorization of spruce needle waste via supercritical extraction of waxes and facile isolation of nonacosan-10-ol, *Journal of Cleaner Production* (2017), doi: 10.1016/j.jclepro.2017.10.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Word count: 6810 words
2	
3	Valorization of spruce needle waste via supercritical
4	extraction of waxes and facile isolation of nonacosan-10-ol
5	
6	Con R. McElroy, a Thomas M. Attard, a Thomas J. Farmer, Alicia Gaczynski, a David
7	Thornthwaite, b James H. Clark, a and Andrew J. Hunt*a
8	
9	^a Green Chemistry Centre of Excellence, Department of Chemistry, University of York,
10	Heslington, York, YO10 5DD, UK. Email: andrew.hunt@york.ac.uk, Telephone: +44
11	(0)1904 324456.
12	^b Unilever Research and Development Port Sunlight Laboratories, Quarry Road East,
13	Bebington, Wirral, UK CH63 3JW
14	
15	Keywords: Spruce, Supercritical, Nonacosanol, Wax, Extraction, Separation,
16	Biorefinery
17	Abstract
18	
19	Supercritical carbon dioxide was utilized as a sustainable alternative to solvent
20	extraction of waxes from the waste needles of two spruce species, namely Norwegian
21	and Sitka spruce. These extracts were rich in nonacosan-10-ol, an organic compound
22	with hydrophobic properties that lends its use in the preparation of superhydrophobic
23	coatings. The highest crude yields were 1.7% w/w of needles obtained at 400 bar and

24	$60~^{\circ}\text{C}$, while nonacosan-10-ol was selectively extracted at 200 bar and $60~^{\circ}\text{C}$ (8070
25	$\pm 91.1~\mu\text{g/g}$ of needles). Purification of nonacosan-10-ol from the wax extracts was
26	conducted using a simple rapid green recrystallization technique. This yielded a
27	recovery of $44.6\% \pm 2\%$ and $48.4\% \pm 2\%$ of the total nonacosan-10-ol from the original
28	crude Sitka (3600 μ g/g of needles) and Norwegian wax (1920 μ g/g of needles)
29	respectively. Application of nonacosan-10-ol to a filter paper led to the formation of
30	highly hydrophobic surfaces, with preliminary contact angles of up to 149°. This
31	sustainable production method may develop opportunities to valorize forestry waste
32	within a holistic biorefinery.

33

1. Introduction

35

34

Wood is a valuable resource that has been utilized for centuries in a wide variety of 36 37 applications including construction, paper and as a source of chemicals (Arshadi et al., 38 2012 & 2013; Attard et al., 2016a). Wood based biorefineries currently exist in parts of Scandinavia and North America. However, a greater utilization of waste residues is 39 40 necessary to make a biorefinery truly holistic (Arshadi et al., 2016; Attard et al., 2015a, 41 2016a,b; Budarin et al., 2011). Therefore, research must be carried out to systematically 42 tailor and select 'green sustainable' processes to isolate, extract and analyze different chemicals from low-value tree waste fractions with considerable content of extractives 43 44 (Backlund et al., 2014; Miranda et al., 2012). Needles from forestry wastes are one of 45 the examples that currently constitute a waste resource as they are not utilized by the 46 forestry industry.

47

48	Although exploitation of forest residues would lead to a reduction in waste and
49	utilization of renewable resources, there has been very little attention given to valorize
50	this potential feedstock. This has led to significant accumulation of overproduced
51	biomass from neglected forests that have little or no use, which is not only a waste but
52	could also pose as a major fire risk.
53	
54	The extractives found in the needles have a host of bio-derived chemicals that could
55	potentially be utilized in a number of industrial applications including hydrophobic
56	coatings (Attard et al., 2015a; Backlund et al., 2014). There has been considerable
57	interest in studying the superhydrophobicity of plant surfaces due to their potential wide
58	applications in self-cleaning, drag reduction, anti-sticking, anti-icing and so on
59	(Bhushan and Jung, 2011; Chen et al., 2012). The definition for superhydrophobicity is
60	when a drop on a surface has a contact angle above 150° (Guo and Liu, 2007). The
51	major property of superhydrophobic surfaces is their ability to repel water. An
52	important factor to superhydrophobicity is the chemical composition of the epicuticular
53	waxes covering the aerial tissues of the plant coupled with the micro-/nano-hierarchical
54	structure of the cuticle (Bhushan et al., 2009; Wang et al., 2014). In lotus leaves, the
65	strong water repellency is due to wax tubules composed of the secondary alcohols
56	nonacosan-10-ol and nonacosanediols (Ensikat et al., 2011). Nonacosan-10-ol is present
57	in many natural superhydrophobic surfaces including lotus leaves and conifer needles,
58	and it has significant potential for its use in coatings for porous materials. However, this
69	molecule is currently not commercially exploited. Since nonacosan-10-ol comprises up
70	to 60% of the total wax found in the needles of conifer species (Matas et al., 2003), it
71	could be used as an alternative to the currently utilized non-renewable coatings, such as

72	plastic coatings on porous materials. Extraction of nonacosan-10-ol from spruce offers
73	several distinct advantages. Firstly, nonacosan-10-ol is the most abundant wax found
74	in spruce needles (Simmleit and Schulten, 1989). Secondly, the growth rate of spruce
75	trees is very fast (Macmillan, 1991), with a yield class (mean cubic meters growth) for
76	Sitka spruce of 14 (i.e. 14 cubic meters per hectare per year according to Forestry
77	Commission (Forestry Commission, 2017)). In terms of maximum timber potential,
78	Sitka spruce requires only 40 – 60 years, whereas oak trees require 150 years (Forestry
79	Commission, 2017). Spruce comprises 29% of all UK commercial forestry, which
80	covers over 1,000,000 hectares (Mason and Perks, 2011; Moore, 2011), resulting in a
81	high turnover and large quantities of needles. Thirdly, as previously stated, spruce
82	needles currently constitute a waste stream and have no commercial value.
83	
84	The extraction of epicuticular waxes from agricultural wastes (Attard et al., 2015a,b &
85	2016b), as well as nonacosan-10-ol from Ephedra herbs (Choi et al., 1996), have
86	already been shown to be effective utilizing supercritical carbon dioxide (scCO ₂) as a
87	renewable solvent . ScCO ₂ offers numerous advantages over conventional solvent
88	extraction in that the selectivity towards target molecules could be achieved by fine-
89	tuning the solvent power (McHugh and Krukonis, 1994; Özcan and Özcan, 2004). This
90	is carried out simply by changing the temperature and pressure of the solvent (Lang and
91	Wai, 2001; Vilegas et al., 1997; Zougagh et al., 2004). ScCO ₂ leaves no solvent
92	residues and is regarded as a non-toxic solvent (Hunt et al., 2010). Furthermore, scCO ₂
93	has been shown to be effective in improving the downstream processing of biomass in a
94	biorefinery, whereby increased sugar yields have been reported for various biomass
95	types, as well as significantly improved off-gassing from wood pellets (Attard et al.,

96	2015b, 2016a, b). This recent work indicates that scCO ₂ can be used effectively for
97	valorizing forestry waste, generating bio-derived chemicals as well as improving
98	downstream processing. Optimization studies on wax extraction from spruce species
99	have not been previously conducted. To date, reported purification of nonacosan-10-ol
100	involved time and material intensive chromatographic techniques, which utilize toxic
101	solvents, in particular CHCl ₃ and benzene (Jetter and Riederer, 1994; Matas et al., 2003;
102	Yao et al., 2007).
103	Herein, this work focuses on the supercritical extraction of waste spruce needles that are
104	rich in the secondary alcohol nonacosan-10-ol. The extraction, optimization and
105	characterization of waxes from two species of spruce namely Sitka Spruce and
106	Norwegian Spruce have been carried out for the first time using scCO ₂ as a green
107	alternative solvent. More importantly, a facile green recrystallization technique was
108	conducted in order to isolate the nonacosan-10-ol from the complex mixture of
109	lipophilic molecules utilizing a highly scalable method. To the authors' best knowledge,
110	combination of supercritical extraction followed by the use of a facile recrystallization
111	technique for the recovery of nonacosan-10-ol has not yet been reported.
112	
113	2. Materials and Method
114	2.1 Biomass and sample preparation
115	
116	With the kind support of the Forestry Commission, Sitka Spruce was collected from
117	Dalby Forest at North Yorkshire in the United Kingdom, while the Norwegian Spruce
118	was collected from Umeå, Sweden. The biomass constituted the needle-rich small
119	branches from numerous trees that had been recently felled for lumber. Samples of the

120	biomass were then separated, through air drying until a constant weight was observed
121	(circa three weeks) and a small portion refrigerated at 5 °C. A small sample of the dry
122	biomass and all of the refrigerated wet biomass were then milled as a whole, while the
123	needles of the remaining dry feedstock were easily separated by shaking from the
124	branch. All milling was carried out using a Glen-Creston mill, with a 2 mm mesh.
125	2.2 ScCO ₂ extraction of spruce needle wax
126	
127	A Thar SCF500 CO ₂ extractor was used to carry out the extractions. The dried, milled
128	biomass (50 g) was placed into the extraction cylinder and extracted for 2 hours with
129	CO_2 at various pressures (200, 300 and 400 bar) and temperatures (40, 50 and 60 $^{\circ}$ C),
130	with a flow rate of 40 g min ⁻¹ . The extract was depressurized to atmospheric conditions
131	into the first extraction vessel and the wax removed using dichloromethane (2 x 50 mL
132	washes). The solvent was evaporated to yield the product.
133	
134	2.3 Purification of nonacosan-10-ol from scCO ₂ extracted spruce needles (150 g)
135	
136	Methanol (50 ml) was added to the spruce needle extract (3.22 g). The solution was
137	stirred at 50 °C for 10 minutes and left to cool to room temperature. The solution was
138	filtered and washed with cold methanol (2 x 10 ml) to obtain the crude product. The
139	crude product was then dissolved in hot methanol (30 ml) yielding a light green solution
140	and a dark green wax/dense oil. The solute (light green solution) was decanted and left
141	to cool yielding a light green precipitate. The dark green wax/dense oil was washed
142	with hot methanol (10 ml) to yield a brittle wax. The light green precipitate was
143	recrystallized a second time in hot methanol (30 ml), decanted, left to cool, filtered,

144	washed with cold methanol (2 x 10 ml) and dried to yield a white precipitate,
145	nonacosan-10-ol. Unrecovered nonacosan-10-ol could be recovered from the
146	recrystallization media by evaporation of the methanol solvent, allowing this crude
147	mixture to potentially be recycled within the recrystallization process.
148	
149	[Scheme 1 here]
150	
151	2.4 Contact angle method
152	Basic contact angle measurements were obtained by dissolving a known amount of pure
153	nonacosan-10-ol in hot methanol to give a 1% or 20% by weight solids content. A solid
154	support (glass or filter paper) was then dipped in the solution, removed and left to dry
155	under atmospheric conditions. Once dry, a drop of distilled water was applied to the
156	surface using a pasture pipette with a minimum drop height without the pipette coming
157	into contact with the surface material. Photos of the droplet were then taken and the
158	contact angle was determined.
159	
160	2.5 Derivitization prior to High Temperature-Gas Chromatography (HT-GC) analysis
161	Derivitization was achieved by the addition of 200 µl N,O-bis-(trimethylsilyl)-trifluoro-
162	acetamide with 1% trimethylchlorosilane to 30 mg of the crude extract dissolved in 1 ml
163	toluene. The solution was placed in an oven and heated at 75 °C for 45 minutes.
164	
165	2.6 HT-GC procedure for analysis of wax
166	High temperature Gas Chromatography was conducted using an Agilent Technologies
167	6890N Network GC System. This was fitted with a ZB-5HT capillary column

168	(dimensions: 30 m x 250 μ m x 0.25 μ m nominal) at constant pressure (22.35 psi). A
169	temperature of 300 °C was selected as the injector temperature and flame ionization
170	detector temperature while the carrier gas utilized was helium. A split ratio of 5:1 was
171	applied. Injection of the sample (1 µl injection volume) was carried out by automated
172	injection. The oven temperature was set as follows: (i) Initial temperature of 60 °C, held
173	for 1 minute ii) The temperature was increased to 360 °C at a ramp rate of 8 °C min ⁻¹
174	iii) The temperature was held at 360 °C for 30 minutes.
175	2.7 HT-GC-MS (High Temperature-Gas chromatography Mass Spectrometry)
176	procedure for wax analysis
177	A Perkin Elmer Clarus 500 GC coupled with a CLarus 500 quadrupole mass
178	spectrometer was used to perform the high temperature-gas chromatography mass
179	spectrometry. A DB5HT capillary column was fitted (dimensions: $30 \text{ m x } 250 \mu\text{m x}$
180	$0.25~\mu m$ nominal) at constant pressure (22.35 psi). A temperature of 300 $^{\circ} C$ was
181	selected as the injector temperature and helium was selected as the carrier gas. The flow
182	rate was 1.2 ml min ⁻¹ . The temperature profile for the oven was as follows: (i) Initial
183	temperature of 60 °C, held for 1 minute ii) The temperature was increased to 360 °C at
184	a ramp rate of 8 °C min ⁻¹ iii) The temperature was held at 360 °C for 30 minutes. The
185	electron ionization mode (EI) at 70 eV was selected for the Clarus 500 quadrupole mass
186	spectrometer with a source temperature of 300 °C. A scan range of 30 – 1200 amu per
187	second was applied.
188	3. Results and Discussion
189	3.1 Optimization of the supercritical extraction of waxes from Spruce needles
190	

191	An attempt was made to optimize the % yield of wax extracted from the spruce needles
192	using scCO ₂ extraction by applying the factorial experimental design, whereby
193	temperature and pressure (independent variables) were varied in order to study the
194	effect this has on the extraction yield (dependent variable). The experiments required 2 ^f
195	runs (f = factors), where each factor was at two levels, those of the minimum and
196	maximum extraction limits.
197	
198	A variety of temperatures and pressures were utilized in an experimental 2x2 plot
199	(supplementary Figure S1) in order to investigate two parameters at the same time. A
200	pressure range of 200 to 400 bar was applied (since previous studies have shown that
201	very low pressures give low yields of extract) while a temperature range of 40 to 60 $^{\circ}\mathrm{C}$
202	was applied. Four experimental points were selected at maximum and minimum
203	temperatures and pressures (A, B, C and D - Figure S1). A center point was also
204	introduced in order to ensure there was no risk of missing a non-linear relationship
205	within the experimental range.
206	
207	The impact of pressure and temperature was modelled by means of a dimensionless
208	factor coordinate system, whereby "-1" was assigned for the low level and "+1" was
209	given to the high level for each parameter. The center point was assigned a coordinate
210	value of "0" (coincides with the origin of the system) as shown in Tables 1 and 2 below
211	
212	[Table 1 here]
213	[Table 2 here]
214	

215 Therefore, five experiments were conducted for the optimization study and multiple 216 linear regression (MLR) was used in order to deduce the relationship between crude 217 yield and temperature and pressure. The first order polynomial function utilized for the 218 MLR is shown below in Equation 1: $Y = b_0 + b_1 x_1 + b_2 x_2 + b_{12} x_1 x_2$ 219 220 Equation 1: First order polynomial function 221 Where Y is the % crude yield, b₁ and b₂ correspond to the major effects of the 222 coordinates x_1 (temperature) and x_2 (pressure), b_0 represents the center point yield (E – 223 the response at "0" level) and b_{12} is the second order interaction term. Two-hour extraction times were allotted for each set of experiments and a flow rate of 40 g min⁻¹ 224 was applied. Table 3 summarizes the % yield of wax obtained at different temperatures 225 226 and pressures. 227 228 [Table 3 here] 229 [Figure 1 here] 230 231 From the % yields shown in Table 3, MLR was conducted as shown in Equations 2-5 232 below in order to obtain a first order polynomial function to model the scCO₂ extraction 233 of waxes from Sitka spruce needles. $b_0 = \frac{1}{4}(y_1 + y_2 + y_3 + y_4)$

$$b_1 = \frac{1}{4}(-y_1 + y_2 - y_3 + y_4)$$

$$b_2 = \frac{1}{4}(-y_1 - y_2 + y_3 + y_4)$$

$$b_{12} = \frac{1}{4}(y_1 - y_2 - y_3 + y_4)$$

234

235	Equations 2, 3, 4 and 5: coefficient calculations for the first order polynomial function
236	
237	$Y = 1.32 + 0.24x_1 + 0.16x_2 - 0.015x_1x_2$
238	Equation 6 First order polynomial function for the scCO ₂ extraction of waxes from
239	needles.
240	
241	The coefficients of pressure, temperature and the second order interaction term are
242	shown in equation 6, and can be used to help understand the effect of temperature and
243	pressure (as well as the combined effect of the two parameters) on the extraction
244	process. The theoretical % yield for the center point value E (1.32%) was found to be in
245	good correlation with the experimental value (1.41%) (a 0.09% difference with a 6.8%
246	error) indicating the model behaves well for this extraction. It can be seen that in this
247	instance the value of x_1 for temperature is higher than that of x_2 (pressure) which
248	indicates that temperature has a higher influence on the extraction yield than pressure
249	and density (since an increase in pressure at constant temperature leads to an increase in
250	density).
251	Figure 1 demonstrates a 2-D plot highlighting the variation in % crude yield of wax
252	with varying temperature and pressure (the different % crude yields may also be viewed
253	in Figure S2). As shown in Table 1, the % yield of wax extracted from the Spruce
254	needles under the different conditions applied varied from 0.91 to 1.70%.
255	The dielectric constant and density of CO ₂ are dictated by temperature and pressure
256	(Hunt et al., 2010). In the extraction of wax the density of CO_2 is an important factor.
257	Higher yields were obtained at 400 bar 40 °C than at 200 bar 40 °C, indicating that the
258	increase in density led to a greater yield, this is consistent with other wax extraction

259	studies (Attard et al., 2015b; Sin et al., 2014). However, the highest yields (1.70%) were
260	achieved using a pressure of 400 bar and temperature of 60 °C, where the density is
261	lower than that at 400 bar and 40 $^{\circ}\text{C}$. This demonstrates that even though density has an
262	important role, there are other factors such as temperature that dictate the solubility of
263	compounds in CO ₂ . These results are consistent with the findings of the first order
264	polynomial function. Studies have highlighted that higher yields can be obtained when
265	the temperature is close to or above the waxes melting point (Sin et al., 2014). Since
266	wax is in semi-crystalline form, higher temperatures enable the melting of the wax and
267	therefore aiding in extraction. Furthermore, an increase in temperature at constant
268	pressure results in vapor pressure increase leading to an increase in solute solubility in
269	scCO ₂ .
270	
271	The results show that a significant increase in yield was observed at elevated
272	temperatures, where the extraction yields at 200 bar and 40 $^{\circ}\text{C}$ were 0.91% rose to
273	1.41% when increased by 20 °C. Furthermore, at high pressure conditions a significant
274	increase in yield was obtained at higher temperatures (i.e. 1.70% at 400 bar and 60 $^{\circ}\text{C}$ –
275), as compared to lower temperatures (i.e. 1.26%, at 400 bar and 40 $^{\circ}\text{C}$ –). This data
276	correlates to the first order polynomial function obtained, whereby temperature is the
277	most influential factor on the % yield (though pressure also has a positive influence).
278	
279	3.2 Characterization and quantification of lipophilic compounds in the needle extracts
280	from Sitka Spruce.
281	

282	GC and GC-MS analyses were used to characterize the underivatized and silylated
283	extracts using a high temperature capillary column and methods which allowed for the
284	elution and determination of high-molecular weight compounds such as sterols and
285	unsaturated long-chain ketones.
286	Results from Table 4 and Figure 2 showed that the major compounds identified were
287	found to be nonacosan-10-ol, free saturated (ranging from C_{12} to C_{20} in chain length)
288	and unsaturated fatty acids (C_{18} chain length), unsaturated ketones (C_{28} and C_{30} chain
289	length), sterols, hydroxyacids, benzoic acid and phytol. For all conditions examined, it
290	was found that nonacosan-10-ol was the predominant compound in the wax extracts.
291	Although conditions of 400 bar and 60 °C gave the highest % crude extract yield, it was
292	found that the conditions which led to the highest yields of noncosan-10-ol were 200
293	bar and 60 °C, with approximately $8,070 \pm 91.1 \mu\text{g/g}$ needles extracted. This is also
294	consistent with the observation that a high % crude yield of wax was extracted using
295	these conditions. The lowest quantities of nonacosan-10-ol were extracted when using
296	conditions of 200 bar and 40 °C, with approximately 2,870 \pm 266.6 μ g/g of needles
297	extracted. When using the conditions of 200 bar and 60 $^{\circ}$ C, the highest yields of β -
298	sitosterol and benzoic acid were also obtained, with an estimated 398 \pm 6.6 and 100 \pm
299	16.6 μ g/g of needles extracted respectively. Conditions of 300 bar and 50 °C led to the
300	highest yields of ketones, with approximately $978 \pm 81.3 \mu\text{g/g}$ of needles extracted. The
301	same conditions led to the highest extraction of fatty acids and hydroxyacids. Therefore
302	it can be concluded that, although conditions of 400 bar and 60 $^{\circ}\text{C}$ led to the highest $\%$
303	crude yield of wax extract, the largest quantities of noncosan-10-ol were achieved with
304	200 bar and 60 $^{\circ}$ C. Thus, the conditions needed for the extraction vary according to the
305	desired product, i.e. the extract as a whole or nonacosan-10-ol or unsaturated ketones.

306	
307	[Table 4 here]
308	[Figure 2 here]
309	
310	Furthermore, nonacosan-10-ol is the major compound, constituting around 60% of the
311	total extract at 200 bar and 60 °C. For all other extracts, nonacosan-10-ol constitutes
312	considerably low proportion of the composition (i.e. $22 - 42\%$).
313	
314	3.3 Characterization and quantification of lipophilic compounds in the needle extracts
315	from Norwegian Spruce.
316	
317	Since conditions of 200 bar and 60 °C led to the highest quantities of nonacosan-10-ol
318	from Sitka Spruce, these conditions were also applied to the extraction of wax from
319	Norwegian spruce needles in order to make a direct comparison of the nonacosan-10-ol
320	content between the two species. When compared to the Sitka, Norwegian spruce
321	exhibited a more complex mixture of lipophilic chemicals (as seen in Figure S3). There
322	is a wider variety of fatty acids, steroids and also a number of terpenoid compounds,
323	which are absent or below the level of detection in the Sitka spruce.
324	
325	
326	Figure 3 compares the major compounds found in the waxes extracted from the Sitka
327	spruce and Norwegian spruce. Nonacosan-10-ol concentrations in Sitka spruce needles
328	are approximately double the amount present in the Norwegian spruce needles, 8070
329	$\pm 91.1~\mu g/g$ of needles and 3966.6 $\pm 114.3~\mu g/g$ of needles respectively. On the other

330	hand, significantly larger amounts of saturated and unsaturated fatty acids are present in
331	the Norwegian spruce needles (2122.4 $\pm 20~\mu g/g$ of needles and 3669.3 $\pm 19.1~\mu g/g$ of
332	needles respectively) compared to the Sitka spruce needles (551.8 \pm 37 μ g/g of needles
333	and 181.42 ±20.3 µg/g of needles respectively). Sitosterol is the only steroidal
334	compound found in the Sitka spruce, while three other steroidal compounds are found in
335	the Norwegian spruce (9,19-cyclolanostan-3-ol, 24 methylene - (3β-)-, 24-
336	Methylenecycloartan-3-one and Stigmastan-3,5-diene) which accounts for the greater
337	concentration of these compounds in the Norwegian spruce extracts (2122.4 $\pm 43.6~\mu g/g$
338	of needles). Unsaturated ketones are present in the needle extracts of both species;
339	however, a higher abundance is found in the Sitka spruce (885.1 $\pm 20.1 \mu g/g$ of needles)
340	when compared to the Norwegian spruce (159.6 $\pm 0.9 \mu\text{g/g}$ of needles) (Table 5).
341	
342	[Table 5 here]
343	[Figure 3 here]
344	
345	3.4 Simple isolation and purification of Nonacosan-10-ol from spruce
346	
347	The development of new separation technologies for biorefineries is of significant
348	importance for their long-term development and commercial success. Due to the
349	complex and highly functionalized nature of bio-derived molecules, traditional
350	techniques such as distillation are not always suitable for retaining functionality.
351	Therefore, new or greener methods that preserve the complexity of the bio-derived
352	molecules are of vital importance. Furthermore, standard chromatographic separation
353	techniques such as HPLC and continuous liquid chromatography are energy intensive

354	and use large quantities of solvents leading to cumulative solvent waste which is often
355	problematic to dispose(Yao et al., 2007). Therefore, a simple and efficient isolation and
356	purification methodology for noncosan-10-ol was developed. The placing of the crude
357	product obtained by extraction in a polar solvent causes most lipophilic compounds to
358	crash out. The initial polar solvents screened were methanol, ethanol and iso-propanol.
359	These polar solvents were selected as they are labelled as 'Recommended' on the recent
360	Chem 21 solvent selection guide and Sanofi selection guide; whereas these had only
361	some issues on the GSK solvent selection guide (associated with health, flammability
362	and explosion) (Henderson et al., 2011; Prat et al., 2013&2015).
363	
364	The purest product was obtained using methanol as solvent for purification, where the
365	ratio of methanol to crude extract used was much smaller (12:1), resulting in the
366	formation of a green precipitate (Figure S14). Methanol has the advantages of being
367	relatively inexpensive, potentially bioderived, easily biodegradable and has low
368	resistivity (Prat et al., 2013). However, the drawbacks of methanol are flammable and
369	volatile (Prat et al., 2013). After filtration, this green precipitate could, in turn, be
370	solvated in hot methanol to produce a light green solution and dark green black wax.
371	The hot solute was then carefully decanted into separate glassware and left to cool,
372	where a light green precipitate formed upon cooling. This was recrystallized a second
373	time to yield a white precipitate. GC-MS analysis (shown in Figure S4 and S5) of the
374	white precipitate confirmed it to be nonacosan-10-ol, however minor impurities are still
375	present. The purity of the nonacosan-10-ol obtained was found to be 90% (Figure S6).
376	Proton and carbon NMR of the product matched literature values, although other signals
377	are also present, again indicating the presence of minor impurities (as shown in Figures

378	S7 and S8). Evaporation of methanol could also be utilized to recover additional
379	nonacosan-10-ol.
380	
381	In addition to the nonacosan-10-ol, a brittle dark green wax was also obtained. GC-FID
382	analysis of this brittle wax reveals that the sample contains nonacosan-10-ol, two trace
383	fatty acids and predominantly two compounds. As shown in Figures S9 and S10, the
384	GC-MS EI fragmentation patterns suggest these two compounds to be C_{28} and C_{30}
385	unsaturated aldehydes, giving molecular ions of 406 and 434 respectively, with no other
386	fragments observed, relating to compounds with molecular formulas of $C_{28}H_{54}O$ and
387	C ₃₀ H ₅₈ O. Figure S11 shows the proton NMR of the compound, with evidence of
388	unsaturation visible in the spectrum. However, the distinctive signal of the aldehyde
389	proton is missing, which shows that these compounds are more likely to be unsaturated
390	ketones. Additional unrecovered nonacosan-10-ol in this sample could be recovered
391	through recycling of this crude mixture within the recrystallization process.
392	
393	In order to ensure repeatability as well as broad application, the same purification
394	technique was conducted on the more complex Norwegian spruce wax extract
395	(Figure 4). Once again three fractions were obtained, each differing in composition. The
396	methanol-soluble layer was found to be rich in terpenes, fatty acids, phenolic
397	compounds and sterols. These molecules are completely absent or found in minute
398	quantities in the other fractions showing the selective extraction of these molecules in
399	methanol. A dark green/black wax was also obtained with the Norwegian spruce
400	extract, which consists mainly of unsaturated ketones, saturated aldehydes and wax
401	esters. Importantly, the same result was obtained with the Norwegian spruce extract as

402	with the Sitka spruce extract, i.e. a white precipitate was collected following the
403	purification method which was confirmed to be nonacosan-10-ol by GC-FID. This
404	indicates that, although Norwegian spruce had a more diverse and complex range of
405	lipophilic molecules, the purification method still led to the selective isolation of
406	nonacosan-10-ol of reasonably high purity. This shows that the purification method is
407	not limited to just one type of biomass extract but can be applied to different wax
408	extracts containing high amounts of nonacosan-10-ol.
409	
410	
411	Mass balances were calculated for each wax extract and it was found that approximately
412	44.6% and $48.4\% \pm 2\%$ of the total nonacosan-10-ol were recovered from the original
413	crude Sitka and Norwegian wax respectively. As shown in Figure 4, some of the
414	nonacosan-10-ol was lost during the first step due to its limited solubility in methanol
415	(as shown in Figure 4.) while some of it was also found present in the ketone layer.
416	Nevertheless, substantial amounts of nonacosan-10-ol were isolated using this simple
417	technique, equating to approximately 3,600 µg/g needles for the Sitka spruce and 1,920
418	μg/g needles for the Norwegian spruce. Recycling of the methanol and recycling the
419	dark green brittle wax to undertake additional recrystallizations could yield yet more
420	nonacosan-10-ol (Figure S14).
421	
422	[Figure 4 here]
423	
424	Therefore, it has been shown that a simple single solvent purification technique could
425	be used to obtain nonacosan-10-ol of relatively high purity. This would reduce

426	considerably the volumes of solvent used and the time of separation when compared to
427	standard chromatographic techniques. Furthermore, since only one solvent is used, it
428	can be recycled without risk of contamination.
429	
430	3.5 Scanning Electron Microscopy (SEM)
431	The surface of the original biomass and supercritically extracted biomass, along with
432	nonacosan-10-ol and wax residue were investigated by scanning electron microscope
433	(Figure 5). Figure 5A and 5B show the nanotubules formed by nonacosan-10-ol and
434	observed on the needles. Figure 5C and 5D shows that these self-assembled nano
435	structures have partially survived the milling process and are present in the biomass
436	feedstock prior to extraction Figure 5E and 5F demonstrate the purified nonacosan-
437	10-ol compound and despite the rapid recrystallisation process complex spherical
438	structures, which indicates self-assembly phenomenon was observed. Additionally SEM
439	images of the biomass post extraction showed no remaining wax indicating all surface
440	wax had been successfully removed (figure S12).
441	[Figure 5 here]
442	
443	3.6 Simple application of the nonacosan-10-ol extract
444	Initial testing of nonacosan-10-ol to demonstrate its use in potential barrier property
445	applications was achieved by its coating onto a porous material. To this end, a 1%
446	nonacosan-10-ol solution in methanol was applied to a glass slide. Nonacosan-10-ol
447	solution in methanol (1% and 20%) were applied to porous materials, namely filter
448	paper. As shown in Figure 6, droplets formed on the glass and filter paper. The contact
449	angles were measured and are reported in Table 6.

450

[Figure 6 here]

[Table 6 here]

A droplet of water was then applied to the coated surface and the contact angle was measured (Figure 6). In the case of the glass (Figure 6C), i.e. the presence of a 1% nonacosan-10-ol increases the contact angle from 37° (control – untreated slide) to 128° for the coated slide (Figure 6D), indicating markedly increased water barrier properties. For the filter paper, it can be observed that a 1% nonacosan-10-ol solution increased the contact angle from 0° to 132° while a 20% nonacosan-10-ol solution resulted in a contact angle of 149°, indicating a hydrophobic surface which borders on being superhydrophobic. Optical Microscopy imaging and SEM show the nonacosanol assembling on glass slide (Figure S13 and Figure 6F respectively). These preliminary tests demonstrate significant promise and future work will optimize the process to obtain superhydrophobic coatings for utilization in various applications.

4. Conclusions

Therefore, it has been shown that a natural hydrophobic molecule, with potential industrial applications in coatings, could be selectively extracted from forestry waste using clean technology (scCO₂) and purified using a simple single solvent technique resulting in significant reductions in solvent usage, considerably lower volumes of solvent waste and hence a more efficient process.

473	Extraction of Spruce using scCO ₂ extraction yielded 1.70% of wax at 400 bar and
474	60 °C, nonacosan-10-ol was the major component at 200 bar and 60 ° C. Purification of
475	nonacosan-10-ol from the wax was conducted using a simple, green recrystallization
476	technique with a purity of 90%. Preliminary results on contact angle measurements
477	show coating of paper with 20% nonacosan-10-ol solution resulted in a highly
478	hydrophobic surface with contact angle of 149°. This method may develop new
479	opportunities to selectively extract and purify nonacosan-10-ol using green technologies
480	and solvents from a forestry waste to generate additional value as part of a holistic
481	biorefinery. Finally, valorization of the forest waste would reduce the problem of
482	significant accumulation of overproduced biomass residues from neglected forests.
483	
484	Acknowledgements
485	
486	Authors from the University of York would like to acknowledge the financial support of
487	Unilever and the Formas CETEX project. Also, the authors would like to thank Dr
488	Vitaliy Budarin for his assistance in the creation of composite images within this
489	manuscript and Dr Meg Stark for her assistance with SEM analysis.
490	
491	References
492	
493	Arshadi, M., Attard, T.M., Bogel-Lukasik, R.M., Brncic, M., da Costa Lopes, A.M.,
494	Finell, M., Geladi, P., Gerschenson, L.N., Gogus, F., Herrero, M., Hunt, A.J., Ibanez,
495	E., Kamm, B., Mateos-Aparicio Cediel, I., Matias, A., Mavroudis, N., Montoneri, E.,
496	Morais, A.R.C., Nilsson, C., Papaioannou, E.H., Richel, A., Ruperez, P., Skrbic, B.,

- 497 Bodroza-Solarov, M., Svarc-Gajic, J., Waldron, K., Yuste, F., 2016. Pre-treatment and
- 498 extraction techniques for recovery of added value compounds from wastes throughout
- the agri-food chain. Green Chemistry 18, 6160-6204.
- Arshadi, M., Backlund, I., Geladi, P., Bergsten, U., 2013. Comparison of fatty and resin
- acid composition in boreal lodgepole pine and Scots pine for biorefinery applications.
- 502 Industrial Crops and Products 49, 535-541.
- Arshadi, M., Hunt, A.J., Clark, J.H., 2012. Supercritical fluid extraction (SFE) as an
- of effective tool in reducing auto-oxidation of dried pine sawdust for power generation.
- 505 RSC Advances 2, 1806-1809.
- 506 Attard, T.M., Arshadi, M., Nilsson, C., Budarin, V.L., Valencia-Reyes, E., Clark, J.H.,
- Hunt, A.J., 2016a. Impact of supercritical extraction on solid fuel wood pellet properties
- and off-gassing during storage. Green Chemistry 18, 2682-2690.
- 509 Attard, T.M., McElroy, C.R., Gammons, R.J., Slattery, J.M., Supanchaiyamat, N.,
- 510 Kamei, C.L.A., Dolstra, O., Trindade, L.M., Bruce, N.C., McQueen-Mason, S.J.,
- 511 Shimizu, S., Hunt, A.J., 2016b. Supercritical CO2 Extraction as an Effective
- 512 Pretreatment Step for Wax Extraction in a Miscanthus Biorefinery. ACS Sustainable
- 513 Chemistry & Engineering 4, 5979-5988.
- 514 Attard, T.M., McElroy, C.R., Rezende, C.A., Polikarpov, I., Clark, J.H., Hunt, A.J.,
- 515 2015a. Sugarcane waste as a valuable source of lipophilic molecules. Industrial Crops
- 516 and Products 76, 95-103.
- 517 Attard, T.M., Theeuwes, E., Gomez, L.D., Johansson, E., Dimitriou, I., Wright, P.C.,
- 518 Clark, J.H., McQueen-Mason, S.J., Hunt, A.J., 2015b. Supercritical extraction as an
- effective first-step in a maize stover biorefinery. RSC Advances 5, 43831-43838.

- Backlund, I., Arshadi, M., Hunt, A.J., McElroy, C.R., Attard, T.M., Bergsten, U., 2014.
- 521 Extractive profiles of different lodgepole pine (Pinus contorta) fractions grown under a
- direct seeding-based silvicultural regime. Industrial Crops and Products 58, 220-229.
- 523 Bhushan, B., Jung, Y.C., 2011. Natural and biomimetic artificial surfaces for
- 524 superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in
- 525 Materials Science 56, 1-108.
- Bhushan, B., Jung, Y.C., Koch, K., 2009. Micro-, nano- and hierarchical structures for
- superhydrophobicity, self-cleaning and low adhesion. Philosophical Transactions of the
- Royal Society A: Mathematical, Physical and Engineering Sciences 367, 1631-1672.
- Budarin, V.L., Shuttleworth, P.S., Dodson, J.R., Hunt, A.J., Lanigan, B., Marriott, R.,
- Milkowski, K.J., Wilson, A.J., Breeden, S.W., Fan, J., Sin, E.H.K., Clark, J.H., 2011.
- 531 Use of green chemical technologies in an integrated biorefinery. Energy &
- 532 Environmental Science 4, 471-479.
- 533 Chen, Y., Zhang, Y., Shi, L., Li, J., Xin, Y., Yang, T., Guo, Z., 2012. Transparent
- superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging. Applied
- 535 Physics Letters 101, 033701-1 033701-4.
- Choi, Y.H., Kim, J., Noh, M.J., Park, E.M., Yoo, K.-P., 1996. Extraction of epicuticular
- wax and nonacosan-10-OL fromEphedra herb utilizing supercritical carbon dioxide.
- 538 Korean J. Chem. Eng. 13, 216-219.
- Ensikat, H.J., Ditsche-Kuru, P., Neinhuis, C., Barthlott, W., 2011. Superhydrophobicity
- 540 in perfection: the outstanding properties of the lotus leaf. Beilstein Journal of
- 541 Nanotechnology 2, 152-161.
- 542 Forestry Commission England, 2017. Sitka Spruce- picea sitchensis. Edinburgh, UK.
- 543 https://www.forestry.gov.uk/forestry/infd-5nlej6.

- Guo, Z., Liu, W., 2007. Biomimic from the superhydrophobic plant leaves in nature:
- Binary structure and unitary structure. Plant Science 172, 1103-1112.
- Henderson, R.K., Jimenez-Gonzalez, C., Constable, D.J.C., Alston, S.R., Inglis, G.G.A.,
- 547 Fisher, G., Sherwood, J., Binks, S.P., Curzons, A.D., 2011. Expanding GSK's solvent
- selection guide embedding sustainability into solvent selection starting at medicinal
- 549 chemistry. Green Chemistry 13, 854-862.
- Hunt, A.J., Sin, E.H.K., Marriott, R., Clark, J.H., 2010. Generation, Capture, and
- Utilization of Industrial Carbon Dioxide. ChemSusChem 3, 306-322. Jetter, R., Riederer
- M., 1994. Epicuticular crystals of nonacosan-10-ol: In-vitro reconstitution and factors
- influencing crystal habits. Planta 195, 257-270.
- Lang, Q., Wai, C.M., 2001. Supercritical fluid extraction in herbal and natural product
- studies a practical review. Talanta 53, 771-782.
- Macmillan, D.C., 1991. Predicting the General Yield Class of Sitka Spruce on Better
- Ouality Land in Scotland. Forestry: An International Journal of Forest Research 64,
- 558 359-372.
- Mason, B., Perks, M.P., 2011. Sitka spruce (Picea sitchensis) forests in Atlantic Europe:
- 560 changes in forest management and possible consequences for carbon sequestration.
- Scandinavian Journal of Forest Research 26, 72-81.
- Matas, A.J., Sanz, M. J., Heredia, A., 2003. Studies on the structure of the plant wax
- 563 nonacosan-10-ol, the main component of epicuticular wax conifers. International
- Journal of Biological Macromolecules 33, 31-35.
- McHugh, M.A., Krukonis, V.J., 1994. Supercritical fluid extraction: principles and
- practice. Butterworth-Heinemann, Stoneham, MA, USA, pp.178.

- Miranda, I., Gominho, J., Mirra, I., Pereira, H., 2012. Chemical characterization of
- barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes.
- Industrial Crops and Products 36, 395-400.
- Moore, J., 2011. Wood properties and uses of Sitka spruce in Britain. Research Report -
- 571 Forestry Commission. Edinburgh, UK.
- 572 https://www.forestry.gov.uk/pdf/FCRP015.pdf/%24file/FCRP015.pdf
- Özcan, A., Özcan, A.S., 2004. Comparison of supercritical fluid and Soxhlet extractions
- for the quantification of hydrocarbons from Euphorbia macroclada. Talanta 64, 491-
- 575 495.
- 576 Prat, D., Pardigon, O., Flemming, H.-W., Letestu, S., Ducandas, V., Isnard, P.,
- 577 Guntrum, E., Senac, T., Ruisseau, S., Cruciani, P., Hosek, P., 2013. Sanofi's Solvent
- 578 Selection Guide: A Step Toward More Sustainable Processes. Organic Process Research
- 579 & Development 17, 1517-1525.
- Prat, D., Wells, A., Hayler, J., Sneddon, H., McElroy, C.R., Abou-Shehada, S., Dunn,
- P.J., 2015. CHEM21 selection guide of classical- and less classical-solvents. Green
- 582 Chemistry 18, 288-296.
- 583 Simmleit, N., Schulten, H.-R., 1989. Thermal degradation products of spruce needles.
- 584 Chemosphere 18, 1855-1869.
- 585 Sin, E.H.K., Marriott, R., Hunt, A.J., Clark, J.H., 2014. Identification, quantification
- and Chrastil modelling of wheat straw wax extraction using supercritical carbon
- 587 dioxide. Comptes Rendus Chimie 17, 293-300.
- Vilegas, J.H.Y., de Marchi, E., Lancas, F.M., 1997. Extraction of low-polarity
- 589 compounds (with emphasis on coumarin and kaurenoic acid) from Mikania glomerata
- 590 ('guaco') leaves. Phytochemical Analysis 8, 266-270.

591	Wang, G., Guo, Z., Liu, W., 2014. Interfacial Effects of Superhydrophobic Plant
592	Surfaces: A Review. Journal of Bionic Engineering 11, 325-345.
593	Yao, S., Liu, R., Huang, X., Komng, L., 2007. Preparative isolation and purification of
594	chemical constituents from the root of Adenophora tetraphlla by high-speed counter-
595	current chromatography with evaporative light scattering detection. Journal of
596	Chromatography A 1139, 254-262.
597	Zougagh, M., Valcárcel, M., Ríos, A., 2004. Supercritical fluid extraction: a critical
598	review of its analytical usefulness. TrAC Trends in Analytical Chemistry 23, 399-405.
599	

List of Figures

Scheme 1. Flow diagram illustrating the purification of Nonacosan-10-ol from Spruce.

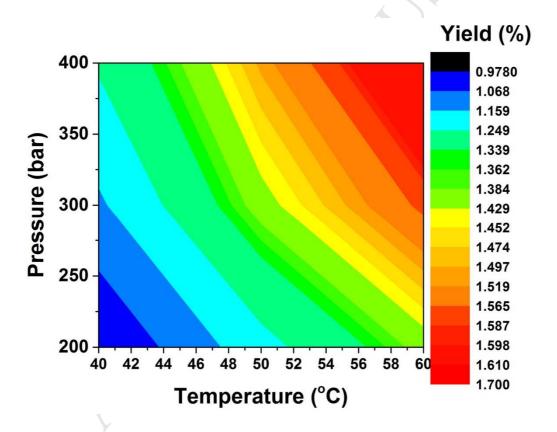


Figure 1. 2-D plot showing the effect of varying pressure and temperature on the % crude wax yield from Sitka Spruce.

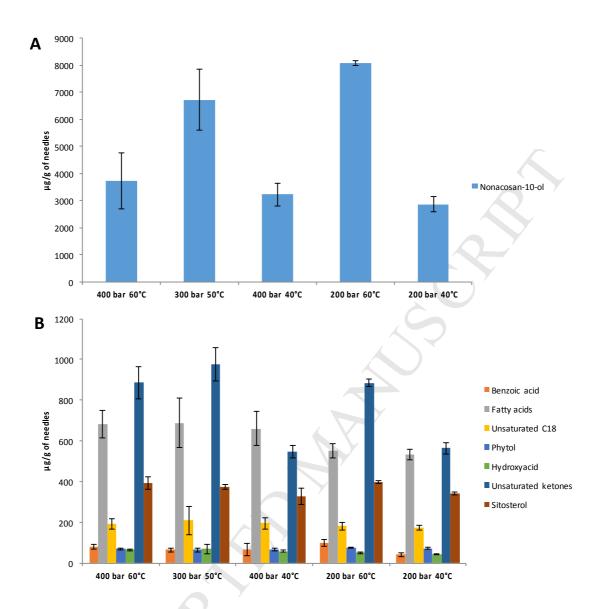


Figure 2. Composition of organic compounds at various temperature and pressure: A) Nonacosan-10-ol B) Benzoic acid, Fatty acids, Unsaturated C18 acids, Phytol, Hydroxyacid, Unsaturated ketones and Sitosterol.

.

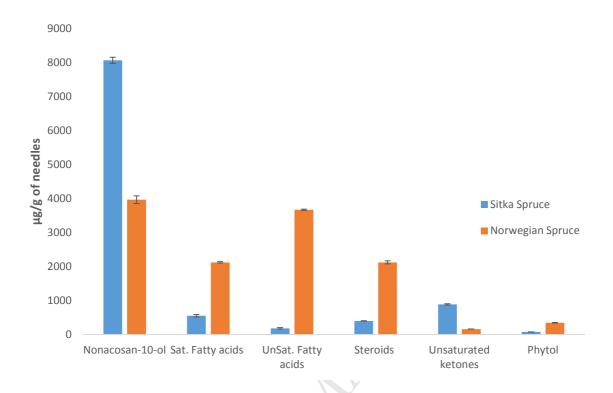


Figure 3. Comparison of major compounds found in waxes from Sitka spruce and Norwegian spruce.

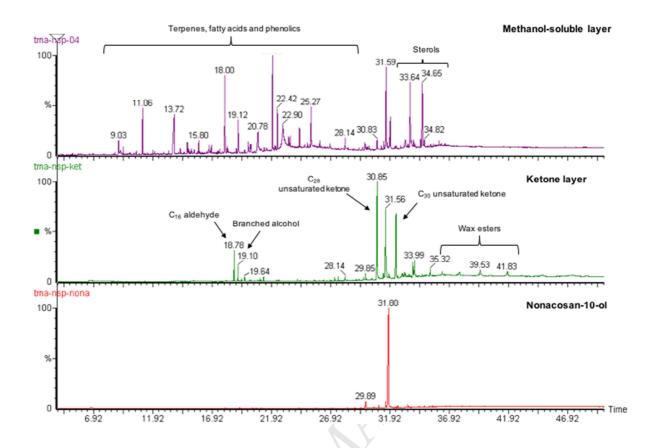


Figure 4. GC-MS chromatograms of a) Methanol-soluble layer b) Ketone layer and c) Nonacosan-10-ol.

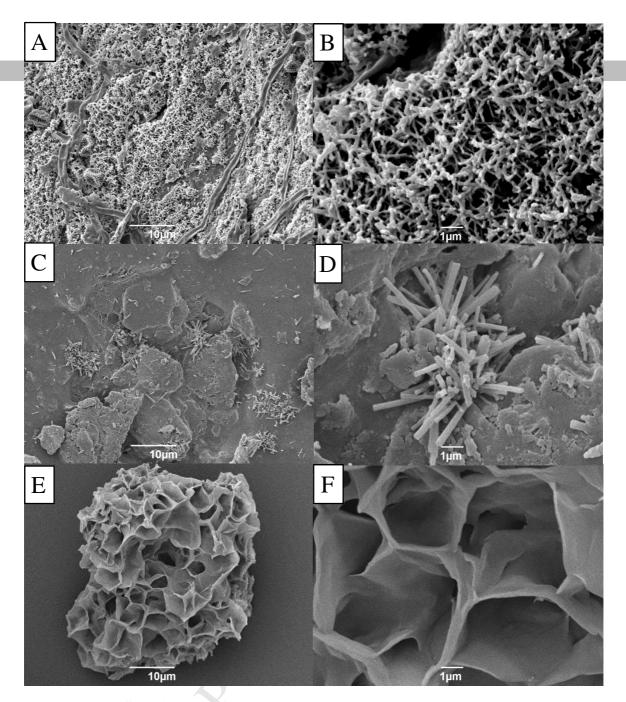


Figure 5. SEM images of spruce and spruce extracts. A and B= Nanotubules formed by nonacosan-10-ol on the biomass (spruce needles), C and D= Nanotubules still present on needles following milling, , E and F= complex, spherical structures of purified nonacosan-10-ol.

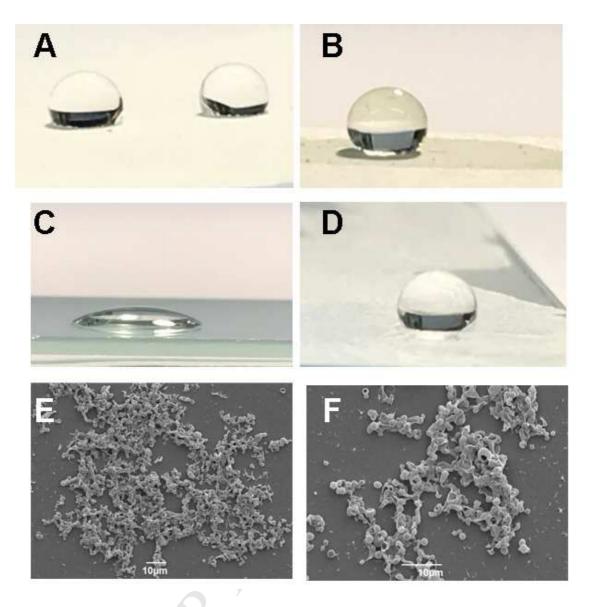


Figure 6 A) Droplets formed on filter paper with a 1% nonacosan-10-ol solution B)

Droplet formed on paper with a 20% nonacosan-10-ol solution C) Control: droplet on a glass slide and D) Droplet on glass covered with a 1% nonacosan-10-ol solution. E) SEM of nonacosanol assembling on glass slide (×500) F) SEM of nonacosanol assembling on glass slide (×1,000).

List of Tables

Table 1 The experimental design with the normalized values for temperature and pressure.

Factor	Variable	Normalized values		
		-1	0	1
X1	Temperature (°C)	40	50	60
X2	Pressure (bar)	200	300	400

Table 2. Experimental design with the different conditions and the assigned normalized values.

Experiment Point	Coordinate values		Experiment	al conditions
	X1	X2	Temp. (°C)	Pressure (bar)
A	-1	+1	40	400
В	+1	+1	60	400
C	-1	-1	40	200
D	+1	-1	60	200
Е	0	0	50	300

Table 3. Extraction yields obtained at different temperatures and pressures for Sitka spruce needles.

Experiment	Temperature (°C)	Pressure (Bar)	Extraction Yield
			(%)
1	40	200	0.91
2	60	200	1.45
3	60	200	1.36
4	40	400	1.26
5	50	300	1.41
6	60	400	1.70

Table 4. Quantification data of the most abundant compounds found in the wax extracts from spruce under various conditions.

Compounds	scCO ₂ extraction conditions (°C/bar)					
	40/200	60/200	50/300	40/400	60/400	
	(μg/g of	(μg/g of	(μg/g of	(μg/g of	(μg/g of	
	needles)	needles)	needles)	needles)	needles)	
Fatty acid						
C12:0	89.6 ±4.2	95.9 ±4.3	109.8 ±25.4	116 ±12.5	104.2 ±5	
C14:0	157 ±5.6	157.3 ±8.2	198 ±41.5	210.9 ±24.6	203.8 ±9.9	
C16:0	244.6 ±8.8	259.1 ±18.2	294.9 ±74.8	290.1 ±32	284.6 ±25.2	
C18 unsat. fatty acids	175.1±11.7	181.4 ±20.3	210.3 ±68.6	196.3 ±27.7	195 ±25.4	
C18:0	29.1 ±4.2	27.7 ±4.6	33.2 ±15.2	32.1 ±10.5	33.8 ±9.3	
C20:0	13.8 ±1.9	11.9 ±1.7	53.7 ±36.4	11.7 ±3.9	79.9 ±20	
Total Fatty acids	709.3 ±36.4	733.2 ±57.3	899.7 ±261.9	857.1 ±111.2	877.5 ±94.8	
Fatty alcohols						
Nonacosan-10-ol	2869.8 ±249.1	8070 ±91.1	6718.6 ±1117	3225.3 ±415.8	3719.8 ±1039.2	
Unsaturated ketones						
C ₂₈ + C ₃₀ Unsat.						
ketones	563.7 ±27	885.1 ±20.1	978.4 ±81.3	548 ±31.4	885.7 ±79.4	
Sterols						
Beta-sitosterol	341.6 ±7.8	397.9 ±6.6	374.5 ±13	329.1 ±39.7	393 ±28.6	
Other compounds						
Benzoic acid	42.5 ±8.3	100.2 ±16.6	65.1 ±8.5	67.1 ±28.7	80.9 ±10.3	
Hydroxyacid	43.8 ±2.6	51.3 ±5.3	69.5 ±23.6	59.5 ±4.7	65.1 ±8.5	
Phytol	74 ±3.1	75.3 ±2.7	65 ±7.2	67.5 ±8.4	70.3 ±3.2	

Table 5 Quantification data of the most abundant compounds found in the wax extracts from Norwegian spruce under various conditions.

Fatty acid 19.3 ± 2.6 C14:0 222.4 ± 0.8 C16:0 1377.9 ± 7.8 C18 unsaturated fatty acids 3669.3 ± 19.1 C18:0 156.3 ± 7.9 C20:0 122.6 ± 0.4 C22:0 223.8 ± 0.4 Total Fatty acids 5791.3 ± 39.1 Fatty alcohols Nonacosan-10-ol 396.6 ± 114.3 Unsaturated ketones C28 & C30 Unsaturated ketones Sterols Beta-sitosterol 9.19 - cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ± 9.4 24-Methylenecycloartan-3-one 59.6 ± 1.1 Stigmastan-3,5-diene 248.3 ± 12 Total steroid comounds 2122.4 ± 43.6 Other compounds 2122.4 ± 43.6 Borneol 97.7 ± 3.5 Bornyl acetate 220 ± 27.6 4-hydroxyacetophenone 419.8 ± 6.3 Phytol 343.7 ± 9.5	Compounds	μg/g of needles
C14:0 222.4 ±0.8 C16:0 1377.9 ±7.8 C18 unsaturated fatty acids 3669.3 ±19.1 C18:0 156.3 ±7.9 C20:0 122.6 ±0.4 C22:0 223.8 ±0.4 Total Fatty acids 5791.3 ±39.1 Fatty alcohols Nonacosan-10-ol 3966.6 ±114.3 Unsaturated ketones C28 & C30 Unsaturated ketones 159.6 ±0.8 Sterols Beta-sitosterol 1111 ±21.1 9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ±9.4 24-Methylenecycloartan-3-one 59.6 ±1.1 Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds Other compounds Borneol 97.7 ±3.5 Bornyl acetate 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	Fatty acid	
C16:0 1377.9 ±7.8 C18 unsaturated fatty acids 3669.3 ±19.1 C18:0 156.3 ±7.9 C20:0 122.6 ±0.4 C22:0 223.8 ±0.4 Total Fatty acids 5791.3 ±39.1 Fatty alcohols Nonacosan-10-ol 3966.6 ±114.3 Unsaturated ketones C28 & C30 Unsaturated ketones 159.6 ±0.8 Sterols Beta-sitosterol 1111 ±21.1 9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ±9.4 24-Methylenecycloartan-3-one 59.6 ±1.1 Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds 2122.4 ±43.6 Other compounds Borneol 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	C12:0	19.3 ±2.6
C18 unsaturated fatty acids 3669.3 ±19.1 C18:0 156.3 ±7.9 C20:0 122.6 ±0.4 C22:0 23.8 ±0.4 Total Fatty acids 5791.3 ±39.1 Fatty alcohols Nonacosan-10-ol 3966.6 ±114.3 Unsaturated ketones C28 & C30 Unsaturated ketones Sterols Beta-sitosterol 1111 ±21.1 9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ±9.4 24-Methylenecycloartan-3-one 59.6 ±1.1 Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds 2122.4 ±43.6 Other compounds 97.7 ±3.5 Borneol 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	C14:0	222.4 ±0.8
C18:0 156.3 ±7.9 C20:0 122.6 ±0.4 C22:0 223.8 ±0.4 Total Fatty acids 5791.3 ±39.1 Fatty alcohols Nonacosan-10-ol 3966.6 ±114.3 Unsaturated ketones C28 & C30 Unsaturated ketones 159.6 ±0.8 Sterols Beta-sitosterol 1111 ±21.1 9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ±9.4 24-Methylenecycloartan-3-one 59.6 ±1.1 Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds 2122.4 ±43.6 Other compounds Borneol 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	C16:0	1377.9 ±7.8
C20:0 122.6 ±0.4 C22:0 223.8 ±0.4 Total Fatty acids 5791.3 ±39.1 Fatty alcohols Nonacosan-10-ol 3966.6 ±114.3 Unsaturated ketones C28 & C30 Unsaturated ketones Sterols Beta-sitosterol 1111 ±21.1 9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ±9.4 24-Methylenecycloartan-3-one 59.6 ±1.1 Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds 2122.4 ±43.6 Other compounds Borneol 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	C18 unsaturated fatty acids	3669.3 ±19.1
C22:0 223.8 ±0.4 Total Fatty acids 5791.3 ±39.1 Fatty alcohols Nonacosan-10-ol 3966.6 ±114.3 Unsaturated ketones 159.6 ±0.8 Sterols Beta-sitosterol 1111 ±21.1 9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ±9.4 24-Methylenecycloartan-3-one 59.6 ±1.1 Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds 2122.4 ±43.6 Other compounds Borneol 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	C18:0	156.3 ±7.9
Total Fatty acids 5791.3 ±39.1	C20:0	122.6 ±0.4
Fatty alcohols Nonacosan-10-ol 3966.6 ±114.3 Unsaturated ketones 159.6 ±0.8 Sterols Beta-sitosterol 1111 ±21.1 9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ±9.4 24-Methylenecycloartan-3-one 59.6 ±1.1 Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds 2122.4 ±43.6 Other compounds 97.7 ±3.5 Borneol 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	C22:0	223.8 ±0.4
Nonacosan-10-ol 3966.6 ±114.3 Unsaturated ketones Sterols Beta-sitosterol 1111 ±21.1 9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ±9.4 24-Methylenecycloartan-3-one 59.6 ±1.1 Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds 2122.4 ±43.6 Other compounds Borneol 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	Total Fatty acids	5791.3 ±39.1
Unsaturated ketones C28 & C30 Unsaturated ketones Sterols Beta-sitosterol 9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ±9.4 24-Methylenecycloartan-3-one 59.6 ±1.1 Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds 2122.4 ±43.6 Other compounds Borneol 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	Fatty alcohols	
C28 & C30 Unsaturated ketones Sterols Beta-sitosterol 1111 ±21.1 9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ±9.4 24-Methylenecycloartan-3-one 59.6 ±1.1 Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds 2122.4 ±43.6 Other compounds 97.7 ±3.5 Bornel 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	Nonacosan-10-ol	3966.6 ±114.3
Sterols Beta-sitosterol 1111 ±21.1 9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ±9.4 24-Methylenecycloartan-3-one 59.6 ±1.1 Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds 2122.4 ±43.6 Other compounds 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	Unsaturated ketones	
Beta-sitosterol 1111 ± 21.1 9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ± 9.4 24-Methylenecycloartan-3-one 59.6 ± 1.1 Stigmastan-3,5-diene 248.3 ± 12 Total steroid comounds 2122.4 ± 43.6 Other compounds 97.7 ± 3.5 Borneol 97.7 ± 3.5 Bornyl acetate 220 ± 27.6 4-hydroxyacetophenone 419.8 ± 6.3 Phytol 343.7 ± 9.5	C28 & C30 Unsaturated ketones	159.6 ±0.8
9,19-cyclolanostan-3-ol, 24 methylene - (3β-)- 703.5 ± 9.4 24-Methylenecycloartan-3-one 59.6 ± 1.1 Stigmastan-3,5-diene 248.3 ± 12 Total steroid comounds 2122.4 ± 43.6 Other compounds 97.7 ± 3.5 Borneol 97.7 ± 3.5 Bornyl acetate 220 ± 27.6 4-hydroxyacetophenone 419.8 ± 6.3 Phytol 343.7 ± 9.5	Sterols	
24-Methylenecycloartan-3-one 59.6 ±1.1 Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds 2122.4 ±43.6 Other compounds 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	Beta-sitosterol	1111 ±21.1
Stigmastan-3,5-diene 248.3 ±12 Total steroid comounds 2122.4 ±43.6 Other compounds 97.7 ±3.5 Borneol 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	9,19-cyclolanostan-3-ol, 24 methylene - (3β-)-	703.5 ±9.4
Total steroid comounds 2122.4 ± 43.6 Other compounds 97.7 ± 3.5 Borneol 97.7 ± 3.5 Bornyl acetate 220 ± 27.6 4-hydroxyacetophenone 419.8 ± 6.3 Phytol 343.7 ± 9.5	24-Methylenecycloartan-3-one	59.6 ±1.1
Other compounds 97.7 ±3.5 Borneol 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	Stigmastan-3,5-diene	248.3 ±12
Borneol 97.7 ±3.5 Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	Total steroid comounds	2122.4 ±43.6
Bornyl acetate 220 ±27.6 4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	Other compounds	
4-hydroxyacetophenone 419.8 ±6.3 Phytol 343.7 ±9.5	Borneol	97.7 ±3.5
Phytol 343.7 ±9.5	Bornyl acetate	220 ±27.6
	4-hydroxyacetophenone	419.8 ±6.3
Total other compounds	Phytol	343.7 ±9.5
	Total other compounds	

Table 6. Contact angle measurements for the nonacosan-10-ol coatings on different materials.

Type		Paper CA	Glass CA
Control		$0^{\rm o}$	37°
1%	Nonacosan-10-ol	132°	128°
solution			
20%	Nonacosan-10-ol	149°	-
solution			

- Supercritical extraction was employed to valorise waste spruce needles
- Nonacosan-10-ol accounted for 8070 ±91.1 μg/g of needles
- A facile and green recrystallization process isolated 90% pure nonacosanol
- Nonacosanol demonstrated promise as a coating for porous materials
- Highly hydrophobic nonacosanol surfaces exhibited contact angles of 149°

