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Abstract 
 
A comfortable sound environment in the outdoor spaces of apartment complexes contributes to 
the improvement of the overall environmental quality. It is expected that the characteristics of 
room acoustical parameters and sound pressure level (SPL) attenuation of outdoor spaces 
surrounded by multi-residential buildings depends on many design factors such as the openness, 
volume, and building layouts, etc. The aim of this study is to clarify the influential factors 
determining room acoustical parameters and SPL attenuation in outdoor spaces that are 
surrounded by buildings with complicated topographical conditions. A series of measurements 
was carried out for 15 outdoor spaces in 6 apartment complexes with different building layouts. 
The 15 outdoor spaces were categorized into 4 types of building layouts: linear-shaped, parallel-
shaped, U-shaped, and square-shaped. The result showed that reverberation time (RT) at 500 Hz 
and 1000 Hz is relatively long, over 4 sec, with uneven RT distribution showing a non-diffuse 
field. With increasing source to receiver distance, the RT and early decay time (EDT) increased 
logarithmically. On the other hand, the Definition (D50) and rapid speech transmission index 
(RASTI) decreased with increasing source to receiver distances. The result for the SPL 
attenuation measured at a 20 m source to receiver distance in 10 outdoor spaces showed a 17.7 
dB difference between the 10 spaces due to the influence of building geometry. An empirical 
method considering the openness, size-related parameters, and room constant is also suggested to 
predict the approximate RT and SPL attenuation in the outdoor spaces. 
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1. INTRODUCTION 

High-rise apartment buildings have been universally built for residential purposes due to the 
increasing population density in urbanized cities. An apartment complex consists of several 
apartment buildings in a limited area of land with various types of building layouts and blocks of 
buildings. Outdoor spaces in an apartment complex are planned by considering many 
architectural, environmental, and social factors such as car parking, natural lighting, and outdoor 
activities [1]. Recently, the importance of the outdoor spaces for leisure and rest has also been 
given particular attention, especially with the increase of the available land for such uses due to 
underground car parking. Therefore, designing environments that have a comfortable sound 
environment in outdoor spaces can contribute to improving the living quality of residents. 

Two approaches can be considered when designing spaces for effective noise reduction in 
outdoor urban environments. The first approach is to reduce background noise from external 
noise sources such as road traffic, and the second approach is to reduce background noise from 
internal noise sources such as human voices in the outdoor spaces. The majority of noise 
abatement schemes have mainly adopted the first approach related to reducing background noise 
from the external noise sources such as traffic noise by means of noise barriers as well as by the 
building layout such as introducing courtyards [2-7]. This conventional approach is based on the 
concept that a lower background noise could help residents to feel less stressed. 

Although reducing background noise in outdoor spaces is an effective noise abatement approach, 
it causes a relatively high signal to noise ratio (S/N) for the internal noise sources such as human 
conversation, pedestrian noise, and passing traffic. Therefore, it is also important to control the 
sound field of the outdoor space by means of acoustic materials with a high absorption 
coefficient such as green walls and soil which can reduce the increased sound pressure level 
(SPL) and reverberation time (RT) due to multiple reflections between building façades [8-11]. 

Numerous studies have been carried out to characterize sound fields with acoustic descriptors 
including RT and SPL distribution. The results showed that RT and SPL distribution are useful 
parameters to predict transient and steady-state sound propagation in urban spaces that are 
influenced by complicated acoustic phenomena such as multiple reflections, diffraction, and 
diffusion due to surrounding buildings and obstacles. Thus, various prediction models for RT 
and SPL distribution have been developed for microscale urban environments to understand the 
effect of boundary conditions and width-to-height ratio in sound propagation [12-15]. The results 
from these prediction models suggest that with diffusely reflecting boundaries, the RT is shorter 
than that with geometrically reflecting boundaries. It was also predicted that the RT in street 
canyons increases with increasing source to receiver distances for both diffusely and 
geometrically reflecting boundaries. 

Several studies have also involved site and scale model measurements to examine sound 
propagation characteristics in urban spaces [16-21]. Ismail and Oldham [22] investigated the role 
of sound reflection from building façades with irregular surfaces using physical scale models. 
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The result suggested that the scattering coefficient is about 0.09-0.13 for urban façades in Europe. 
Although the scattering coefficient is small, the diffuse reflection mechanism is dominant at 
higher orders of reflections due to the effect of multiple reflections. Thomas et al. [23] carried 
out a series of measurements in 99 streets to examine the influence of geometrical parameters 
such as street width, average height, and façade roughness in SPL distribution by analyzing the 
reflection ratio, defined as the reverberant to direct sound energy ratio. The result showed that 
the reflection ratio strongly correlates with the street width. A model was also suggested to 
predict SPL according to the influence of changes in the street width and average building height 
in street canyons. 

In comparison with street canyons and squares, the acoustic quality in outdoor spaces of 
residential buildings could be more important because residents require a high level of 
comfortable sound environments for leisure and rest in outdoor spaces and in living rooms that 
face outdoor spaces. This is especially important during summer when residents open their 
windows, because sound energy containing multiple reflections transmits through the indoor 
spaces of high floors [24]. Thus, it is important that architects understand how architectural 
design can affect the RT and SPL attenuation in outdoor spaces. 

The purpose of this study is therefore to investigate the acoustic characteristics of outdoor spaces 
surrounded by multi-residential buildings by analyzing data measured in 15 outdoor spaces of 6 
apartment complexes with different building layouts. The 15 outdoor spaces were categorized 
into 4 types of building layouts: linear-shaped, parallel-shaped, U-shaped, and square-shaped. 
Some of the measurement data (4 of 15 outdoor spaces) from the preliminary work was used for 
the parametric study [24]. Based on the site measurements, the RT, early decay time (EDT), and 
SPL attenuation were analyzed according to the source to receiver distances. The characteristics 
of room acoustical parameters were also analyzed using Definition (D50) and the rapid speech 
transmission index (RASTI), both of which are related to speech intelligibility. An empirical 
model using AutoCAD to predict RT and SPL attenuation is also suggested in this study. 

 

2.  METHODOLOGY 

2.1. Description of the studied sites 

In this study, a series of field measurements was conducted to investigate the characteristics of 
sound propagation in 15 outdoor spaces of 6 apartment complexes in Korea. The apartment 
complexes were selected by taking into account the types of building layouts and building 
blocks. Figure 1 shows the bird’s-eye views for each apartment complex and Figure 2 shows the 
photographs for each site. Table 1 describes the site and measurement conditions for each 
apartment complex. 

As shown in Figures 1 and 2, each apartment complex has a different building layout, block, 
size, and height. On the other hand, most of the building façades have acoustically reflective  
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(a) Site 1 (Jeon-Nong) 

(d) Site 4 (Pa-Ju) 

Fig. 1

(a) Site 1 (Jeon-Nong) 

(d) Site 4 (Pa-Ju) 
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(b) Site 2 (Shin-Jung 2nd) (c) S

  
(e) Site 5 (Jeung-Pyung) (f) S

. 1 Bird’s-eye views of each apartment complex 
 
 

  
(b) Site 2 (Shin-Jung 2nd) (c) S

  
(e) Site 5 (Jeung-Pyung) (f) S

ig. 2 Photographs of each apartment complex 
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Table 1 Site an

 Site 1 

Name Jeon-Nong 

No. of 
buildings 

15 

No. of flats 867 

No. of floors 9~15 

Temp. 

(°C) 

11.1 

Humidity  
(%) 

56.5 

Wind speed 
(m/s) 

< 3.3 

 

In Figure 3, the 15 measurem
layouts surrounding the outd

parallel-shaped (i.e. =), U-sha

also have 4 different types whi

(a) Site 1 (Jeon-Nong) 

(d) Site 4 (Pa-Ju) 
 

Fig. 3 Ground p
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and measurement conditions for each apartment co

Site 2 Site 3 Site 4 

Shin-Jung 
2nd 

Shin-Jung 5th Pa-Ju Jeun

20 8 11 

471 238 648 

3~7 9~15 12~25 

21.5 21.5 24.3 

39.5 39.5 60.1 

< 2.0 < 2.0 < 2.1 

rement zones in the apartment complexes are 
utdoor spaces are categorized into 4 types: 

haped (i.e. U), and rectangular-shaped (i.e. ǹ

hich can be categorized as linear, L, U, and Y 

  
(b) Site 2 (Shin-Jung 2nd) (c) S

  
(e) Site 5 (Jeung-Pyung) (f) S
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 complex 

Site 5 Site 6 

eung-Pyung Chon-Wang 

6 13 

504 1044 

10~15 9~18 

26.4 21.2 

57.5 57.5 

< 1.5 < 2.1 

re shown. The building 
 linear-shaped (i.e. –), 

ǹ). The building blocks 

Y types. 

 
) Site 3 (Shin-Jung 5th) 

 
f) Site 6 (Chon-Wang) 

 

t complex 
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(a) Z1-1 (U type) 

 
(e) Z2-1 (U type) 

 
(i) Z4-1 (U type) 

 
(m) Z5-2 (= type) 

Fig. 4 Locat

 
The number and location of
described in Table 2, with a t
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(b) Z1-2 (ǹ type) (c) Z1-3 (- type) 

 
(f) Z2-2 (U type) (g) Z2-3 (= type) 

 
(j) Z4-2 (= type) (k) Z4-3 (= type) 

 
(n) Z6-1 (= type) (o) Z6-2 (- type) 

cations of source to receiver points in the 15 zon

of the source and receiver points at each 
a total of 209 points used to measure impulse
e) were fixed in an outdoor space, the location
order to analyze the RT distribution in a
ation was also carried out using a speaker for 

11 zones. The source to receiver distance for 
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(d) Z1-4 (ǹ type) 

  
(h) Z3-1 (ǹ type) 

  
(l) Z5-1(- type) 
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Table 2 Description on source to receiver points and measurement parameters at each measurement zone 

 Name of 
zone 

No. of 
sources 

No. of 
receiver 

Source-receiver  
distance (m) 

Measurement 
parameter 

Type of  
building 
layout Impulse 

response 
SPL 

attenuation 
Site 1 Z1-1 1 5 1, 5, 10, 20, 40 O O U 

Z1-2 1 5 1, 5, 10, 20, 40 O O ǹ 

Z1-3 1 5 1, 5, 10, 20, 40 O O - 

Z1-4 1 6 9, 10, 12, 13, 20, 21 O X ǹ 

Site 2 Z2-1 4 5 1, 7, 14, 21, 28 O O U 

Z2-2 4 5 1, 7, 14, 21, 28 O X U 

Z2-3 2 5 1, 7, 14, 21, 28 O O = 

Site 3 Z3-1 3 6 1, 5, 15, 25, 35, 45 O X ǹ 

Site 4 Z4-1 4 6 1, 10, 20, 30, 40, 50 O O U 

Z4-2 4 5 1, 5, 10, 15, 20 O O = 

Z4-3 4 6 1, 10, 20, 30, 40, 50 O O = 

Site 5 Z5-1 3 4 1, 7, 14, 21, 28 O O - 

Z5-2 2 4 1, 7, 14, 21 O X = 

Site 6 Z6-1 4 5 1, 10, 20, 30, 40 O O = 

Z6-2 3 4 1, 8, 16, 24 O O - 

 
zone was determined by considering the size of the outdoor spaces. Figure 4 illustrates the 
locations of source to receiver points in the 15 zones. 

2.2. Measurement method 

The impulse signal was generated using a starter pistol, which can produce a strong impulse to 
noise ratio (INR). At the source to receiver distance of 50 m, the maximum source to receiver 
distance considered in this study, the INR was 26 dB at 125 Hz, 30 dB at 250 Hz, 38 dB at 500 
Hz, 41 dB at 1000 Hz, 47 dB at 2000 Hz, and 50 dB at 4000 Hz. According to ISO 3382-2 [25],  
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Fig. 5 Illustration of 

the recommended INR is at le
respectively. Therefore, it can
for the source to receiver dista

The impulsive signal for the st
(01dB) with a ½ inch microph
12H). The four channel Harm
(G.R.A.S. Type 40AF) and pre
from the ground were 1.5 m. F
measurement were repeated fiv

RT, EDT, D50, and RASTI for
analyzed using the Dirac progr
the effect of background noise
T20 (-5 dB to -25 dB) consid
using a directional speaker wi
white noise with the S/N of 4
measure SPL attenuation for so
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3.1. Impulse responses and d
To examine the difference in m
is useful to compare the impu
receiver distance. In comparis
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Figure 6 and Figure 7 show th
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of the experimental setup of source, receiver, and F

 least 35dB and 45dB for accurate RT measure
an be said that the INR above 500 Hz is suffi
stances within 50 m. 

 starter pistol was captured using the two-chann
phone (G.R.A.S. Type MCE 201) and preamp
armonie system (01dB) was also used with 
preamplifiers (G.R.A.S Type 26AG). The receiv
. Figure 5 illustrates the experimental conditio

 five times and averaged to calculate the RT. 

for the impulse responses recorded from the fie
ogram from B&K which has a noise compensat
ise on the RT calculation. In this study, the dec
sidering the INR. SPL attenuation with distan
 with a height of 1.5 m. The sound source for 
f 47 dB at 1m from the source, indicating suff

source to receiver distances within 50 m. 

SULTS 

d decay curves in 15 outdoor spaces 
n multiple reflection patterns of sound energy in
pulse responses and decay curves measured 

rison with a short source to receiver distance, w
d energy, an analysis of impulse responses mea
could show distinct differences in multiple ref
 the impulse responses and corresponding deca
nd 20 m from a source in 15 outdoor spaces. 
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 field measurement were 
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or the measurement was 
ufficient sound power to 
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where the direct sound 
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refection patterns. Thus, 
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(a) 20 m S-R dist. at Z1-1(U type) 

 
(d) 20 m S-R dist. at Z1-4(ǹ type)

 
(g) 21 m S-R dist. at Z2-3(= type) 

 
(j) 20 m S-R dist. at Z4-2(L type) 

 
(m) 21 m S-R dist. at Z5-2(= type)

Fig. 6 Impulse responses meas

 Myung-Jun Kim: Applied Acoustics           [DOI: 10.101

017, Pages 147-159                                                           

  
 (b) 20 m S-R dist. at Z1-2(ǹ type) (c) 20 m

  
e) (e) 21 m S-R dist. at Z2-1(U type) (f) 21 m 

  
 (h) 25 m S-R dist. at Z3-1(ǹ type) (i) 20 m 

  
 (k) 20 m S-R dist. at Z4-3(= type) (l) 21 m 

  
e) (n) 16 m S-R dist. at Z6-1(= type) (o) 20 m 

easured at around 20 m source to receiver distance f

 

 

1016/j.apacoust.2017.05.037] 

                                  Page 9 

 
 m S-R dist. at Z1-3(- type) 

 
m S-R dist. at Z2-2(U type) 

 
m S-R dist. at Z4-1(U type) 

 
 m S-R dist. at Z5-1(L type) 

 
 m S-R dist. at Z6-2(= type) 

ce for 15 outdoor spaces 
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(a) 20 m S-R dist. at Z1-1(U type) 

 
(d) 20 m S-R dist. at Z1-4(ǹ type)

 
(g) 21 m S-R dist. at Z2-3(= type) 

 
(j) 20 m S-R dist. at Z4-2(= type) 

 
(m) 21 m S-R dist. at Z5-2(= type)

Fig. 7 Decay curves measur
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 (b) 20 m S-R dist. at Z1-2(ǹ type) (c) 20 m

  
e) (e) 21 m S-R dist. at Z2-1(U type) (f) 21 m 

  
 (h) 25 m S-R dist. at Z3-1(ǹ type) (i) 20 m 

  
 (k) 20 m S-R dist. at Z4-3(= type) (l) 21 m 

  
e) (n) 16 m S-R dist. at Z6-1(= type) (o) 20 m

sured at around 20 m source to receiver distance for
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m S-R dist. at Z2-2(U type) 

 
m S-R dist. at Z4-1(U type) 

 
 m S-R dist. at Z5-1(- type) 

 
 m S-R dist. at Z6-2(- type) 

for 15 outdoor spaces 
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(a) 500 Hz 

(c) 2000 Hz 

Fig. 8 Maximum, average, and
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street furniture, barriers, and 
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(b) 1000

 
(d) 4000
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ated to noise annoyance and spatial impression
ulse responses differ among the 15 outdoor 
d out at similar source to receiver distances.
ced by many design factors such as building h
en buildings, configuration of building façades, 
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y strong compared to that in the - and = shapes 

can be seen that the reflected sound energy at Z
hich can be confirmed again from the decay cu
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Fig. 9 Measured RT at 500 Hz w

3.2.1. RT and EDT 

In Figure 8, the maximum, av
shown with different frequenc
distribution in the outdoor spa
INR. The result shows that th
each measurement zone are si
the outdoor space with an open
RT differ according to each m
reflection patterns. It is noted
with other frequencies. Maxim

In urban spaces, the source to 
9, RT at 500 Hz measured at d
measured by categorizing the o

(a) - Type 

(c) U Type 
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at different source receiver distances in the 15 
e outdoor spaces as the 4 types of building layo
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Fig. 10 Measured EDT at 500
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Fig. 11 D50 with different sou

source to receiver distances log
same source to receiver dista
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3.2.2. Definition (D50) 

Energy-related parameters inc
how sound energy arrives at th
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(a) - Type 

(c) U Type 
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Fig. 12 RASTI with different s
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Fig. 13 SPL attenuatio
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4.  EMPRICAL METHOD TO PREDICT RT AND SPL ATTENATION 

4.1. RT 

It is well known from Sabine’s equation that the volume and absorption power of a space play an 
important role in determining RT. In comparison with the diffuse sound field in enclosed rooms, 
outdoor spaces have a non-diffuse sound field mainly due to the open ceiling and gaps between 
buildings which can be treated as surfaces with the absorption coefficient of 1.0. Generally, 
apartment buildings consist of concrete walls and windows with acoustically flat and reflective 
surfaces. Therefore, it is expected that the openness of an outdoor space is an important factor 
determining RT. In terms of volume, the size of an outdoor space as well as the building height 
can have an influence on RT. 

To evaluate the openness and size-related parameters of an outdoor space, in this study, a ray-
tracing technique is applied by drawing 360 rays (1 degree between rays) emitted from a sound 
source, which can be easily drawn in AutoCAD. The location of a sound source is determined 
considering the point measured at each measurement zone. The openness of an outdoor space is 
calculated by the percentage of the effective rays that reach building façades within a boundary 
line of the outdoor spaces. A distance threshold between the source, the façade, and the source is 
defined as 170 m by assuming a maximum S/N of 45 dB in outdoor spaces at a 1m source to 
receiver distance, which is a comparative value for sound attenuation for 170 m in a semi-free 
field. The maximum S/N of 45 dB is determined by considering shouted speech (85 dBA at 1 m) 
and quiet outdoor background noise (40 dBA). Size-related parameters including total ray length, 
average ray length, closed area, and closed volume for the effective ray are also calculated to 
investigate the relationship between design factors and RT. The definition and calculation 
method of each design factor are given as follows. 

 

Ř Openness: 1 – (Number of effective rays on building façades/360) 

Ř Total ray length (m): Sum of the effective ray length 

Ř Average ray length (m): Total ray length/Number of effective rays 

Ř Closed area (m2): Sum of area closed by rays and façades  

Ř Closed volume (m3): Closed area Ő building height 

 
Figure 14 shows an example of the method used to calculate the size-related parameters by 
drawing the effective rays at Z1-1. Table 3 describes the design factors including openness, 
building height, and the size-related parameters for each measurement zone.  
Figure 15 shows the relationship between openness and RT. RT in Figure 15 is the value 
measured at the source to receiver distance of around 20 m from which RT changes 
insignificantly with increasing source to receiver distance. The result shows that the correlation  



Hong-Seok Yang, Jian Kang, and M
 

Applied Acoustics, Volume 127,2017
 

Fig. 14 Example of the calculatio

Table 3 Description of design fac
for each measurement zone 
Measurement 

zone 
No. of 

effective 
rays 

Ope

Z1-1 260 0

Z1-2 242 0

Z1-3 143 0

Z1-4 306 0

Z2-1 335 0

Z2-2 349 0

Z2-3 167 0

Z3-1 305 0

Z4-1 194 0

Z4-2 272 0

Z4-3 206 0

Z5-1 172 0

Z5-2 143 0

Z6-1 221 0

Z6-2 171 0
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0.53 2950 17.3 1273 

1016/j.apacoust.2017.05.037] 

                                  Page 18 

ameters at Z1-1 

the size-related parameters 

Closed  
volume 

(m3) 

Building 
height  
(m) 

104726 39 

106587 39 

83265 39 
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3048 12 
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107940 70 
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4914 42 
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57285 45 
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Fig. 15 Correlation analysis betw
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(a) Total ray length (p-value

(c) Closed area (p-value <

Fig. 16 Correlation analysis bet
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Fig. 17 Correlation analysis betw
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Fig. 18 Correlation analysis bet
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The result for RT distribution indicated that RT is significantly influenced by the source to 
receiver distance, building layout, and sizes of buildings. It was demonstrated that a maximum 
RT at 500 Hz and 1000 Hz is relatively long, about 4 sec, which shows the outdoor spaces are 
reverberant due to multiple reflections between building façades with specula surfaces. RT was 
distributed with a high deviation in the same outdoor space, showing a non-diffused sound field 
mainly due to the open ceiling and gaps between buildings. With increasing source to receiver 
distance, RT is generally increased logarithmically. It was also found that RT tends to rapidly 
change at a short distance from the sound source due to the strong effect of the direct sound. On 
the other hand, the change in RT above a source to receiver distance of about 15 m was 
insignificant. EDT also showed a similar tendency as that of RT. It was also shown that D50 and 
RASTI tend to decrease with the increase of source to receiver distances. At the same source to 
receiver distance in 15 outdoor spaces, D50 and RASTI also varied significantly due to the 
influence of the building geometry. The measurement result for SPL attenuation showed a 
difference of 17.7 dB between the 11 outdoor spaces in the SPL at a 20 m source to receiver 
distance measured due to the characteristics of the surrounding building geometry. 

By using AutoCAD, in this study, RT and SPL attenuation were predicted with an empirical 
model considering openness and size-related parameters. It was shown that RT is strongly 
influenced by size-related parameters, including total ray length, closed area, and closed volume. 
On the other hand, SPL attenuation had a strong relationship with the absorption power of the 
space, which was quantified with the new design factor called weighted room constant. The 
overall result indicated that the empirical model used to predict RT and SPL attenuation is a 
useful tool for architects during the design process to understand how a space affects the 
reverberance and noise annoyance due to the increased SPL by the surrounding building 
geometry. 

Although the acoustic characteristics of outdoor spaces surrounded by high-rise residential 
buildings were investigated in this study by a series of measurements, it is still necessary to carry 
out more systematic studies by using simulation techniques to suggest design guidelines for 
outdoor sound environments according to the size and volume of the spaces. Also, subjective 
evaluation on a spatial impression of the outdoor spaces needs to be carried out using 
spaciousness parameters such as inter-aural cross correlation coefficient (IACC), apparent source 
width (ASW), listener envelopment (LEV), etc. Another topic of interest is the effect of audio-
visual interaction in outdoor spaces on noise annoyance. It is expected that the proposed topics 
could provide useful information on the design of a comfortable level of sound for environments 
in outdoor spaces. 
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