
HANH TRAN, DAVID HOGG: ANOMALY DETECTION USING A CONVOLUTIONAL WINNER ...1

Anomaly Detection using a Convolutional
Winner-Take-All Autoencoder

Hanh T. M. Tran
schtmt@leeds.ac.uk

David Hogg
D.C.Hogg@leeds.ac.uk

School of Computing
University of Leeds
Leeds, UK

Abstract

We propose a method for video anomaly detection using a winner-take-all convolu-
tional autoencoder that has recently been shown to give competitive results in learning
for classification task. The method builds on state of the art approaches to anomaly
detection using a convolutional autoencoder and a one-class SVM to build a model of
normality. The key novelties are (1) using the motion-feature encoding extracted from a
convolutional autoencoder as input to a one-class SVM rather than exploiting reconstruc-
tion error of the convolutional autoencoder, and (2) introducing a spatial winner-take-all
step after the final encoding layer during training to introduce a high degree of sparsity.
We demonstrate an improvement in performance over the state of the art on UCSD and
Avenue (CUHK) datasets.

1 Introduction
Anomaly detection in video surveillance has received increasing attention in recent years
due to the growing importance of public security and safety [2, 5, 8, 15, 21]. The wide
range of application contexts, complexity of dynamic scenes and variability in anomalous
behaviours makes anomaly detection a challenging task. It motivates the search for more
effective methods for both feature representation and normality modelling.

In this paper, we use a convolutional autoencoder and one-class SVM approach (Fig.
1) for anomaly detection. We demonstrate a significant improvement on state of the art
performance by introducing a winner-take-all sparsity constraint on the autoencoder that has
been used previously for object recognition [16]. We also use local normality modelling
in which the field of view is partitioned into regions and one-class SVM is independently
used within each region. Moreover, we only use optical flow data as input, instead of the
combination of optical flow and appearance that has been used previously [8, 21].

The rest of the paper is organised as follows. In Sect. 2 we review related work on
anomaly detection using both motion features and deep architectures. In Sect. 3 we outline
our method, starting with the extraction of foreground patches (Sect. 3.1) and the genera-
tion of a robust motion-feature representation (Sect. 3.2 and 3.3). These motion features
are then used for anomaly detection with a one-class SVM (Sect. 3.4). Performance eval-
uation is covered in Sect. 4 and compared to the state of the art. Our experiments on two
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Figure 1: Overview of the method using a spatial sparsity Convolutional Winner-Take-All
autoencoder for anomaly detection.

challenging datasets (UCSD [15] and Avenue [14]) show that our deep motion feature repre-
sentation outperforms that of [8, 21] and is competitive with the state of the art hand-crafted
representations [5, 14, 20].

2 Related work
Most video based anomaly detection approaches involve a feature extraction step followed
by model building. The model is often based on hand-crafted features extracted from low-
level appearance and motion cues, such as colour, texture, and optical flow. Any occurrence
that is an outlier with respect to the learnt model is regarded as an anomaly. Many different
motion representations using dense optical flow or some other form of spatio-temporal gra-
dients [2, 11, 17] have been proposed. In particular, the probability of optical flow patterns
in local regions can be learnt using histograms [2]. Using the same low-level feature, Kim
and Grauman [11] model local optical flow patterns with a mixture of probabilistic Princi-
pal Component Analysis (MPPCA) models, and infer probability functions over the whole
optical flow field using a Markov Random Field (MRF). Mehran et al. [15] also concen-
trate on learning a representation which jointly models appearance and motion in crowded
scenes and use it to detect both temporal and spatial anomalies. Also focusing on motion
representation, Siqi et al. [20] propose a Spatially Localized Histogram of Optical Flow (SL-
HOF) descriptor to encode the structure and local motion information of foreground objects
in video. The authors show that this descriptor combined with one-class SVM modelling
outperforms other common video descriptors (MHOF [5], 3D Gradient [14], 3D HOG, 3D
HOF+HOG). All of these methods can do both anomaly detection and localization. Anoma-
lous behaviour of crowds can also be detected by modelling the normal interactions between
individuals using a social force model [17, 19]

Several methods use reconstruction error as a metric for anomaly detection [5, 14]. This
follows the intuition that a normal event is likely to generate sparse reconstruction coeffi-
cients with a small error, while the abnormal event generates a dense representation with
a large reconstruction error. To detect anomalies at different scales and locations, Cong et
al. [5] propose several spatial-temporal structures, represented by a normalized Multi-scale
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Histogram of Optical Flow. Their method can be extended to online event detection by an
incremental self-update mechanism. However, the disadvantage of sparse coding is that an
optimization step is required in both training and testing phases. A similar idea is found
in [14], where the processing cost was decreased significantly using Sparse Combination
Learning (SCL). Instead of coding sparsity using a whole dictionary, they code it directly
as a set of possible combinations of basis vectors. Each combination corresponds to a set
of dictionary atoms. With the learnt sparse combinations, for each testing feature, they only
need to find the most suitable combination by evaluating the least squares error under the
upper bound. This learning combination on 3D gradient features reaches a high detection
rate.

Recently, deep learning architectures have been successfully used to tackle various com-
puter vision tasks, such as object classification [10, 12], object detection and semantic seg-
mentation [7]. Inspired by these successes, Xu et al. [21] build a deep network based on a
stacked de-noising autoencoder to learn appearance and motion features for anomaly detec-
tion. Three feature learning pipelines for appearance representation, motion representation
and joint appearance-motion representation are used. The third pipeline combines image
pixels with optical flow to learn a joint representation. For abnormality detection, the late
fusion is used to combine the abnormality scores predicted by three one-class SVM clas-
sifiers on three learnt feature representations. Hasan et al. [8] compute a regularity score
from a reconstruction error and use it as a metric for anomaly detection. However, a fully
connected autoencoder and a fully convolutional autoencoder are used instead of the sparse
coding method [5, 14]. The learnt autoencoder reconstructs a normal motion with low error
and creates higher reconstruction error for an irregular motion. The authors train their mod-
els on multiple datasets and show that this generalises well to other datasets. However, this
method does not localize an anomaly in a frame.

In this paper, we use a convolutional autoencoder to learn local flow features, but instead
of applying across the whole field of view (FoV) [8], we apply within fixed-size windows
onto the FoV. In [8], max-pooling is used to force compression of the flow field. With
smaller windows, we are able to use Winner-Take-All (WTA) to produce a sparse (and com-
pressive) representation as in [16]. This sparse representation promotes the emergence of
distinct flow-features during training. Our motivation was to see whether the competitive
performance using WTA obtained in [16] could be replicated for anomaly detection. Sim-
ilar to [21], we use an autoencoder with fixed-size windows onto the FoV, coupled with a
One-Class SVM (OCSVM) for anomaly detection. However, their autoencoder is fully con-
nected and therefore learns larger flow features. By using a convolutional autoencoder within
the window, coupled with a sparsity operator (WTA), we learn smaller generic flow-features
that are potentially more discriminative for the OCSVM.

3 Our method

3.1 Extracting foreground patches

In common with recent approaches to anomaly detection [5, 11, 20], we look for anomalies
via dense optical flow fields V t computed from successive pairs of video frames [13]. We
assume that anomalies will only be found where there is non-zero optical flow in the image
plane. Thus, we do not attempt to detect anomalous appearances of static objects. Patches are
extracted by a moving window (48×48 for training the auto-encoder; 24×24 for training the
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(a) (b)
Figure 2: Foreground patches extraction using a sliding window and thresholding of accumu-
lated optical flow squared magnitude. (a) Video frame at time t. (b) Map of flow magnitude
(from frames t and t +1) with overlapping foreground patches superimposed; the red square
delineates a single 24×24 foreground patch.

Figure 3: The architecture for a Conv-WTA autoencoder with spatial sparsity for learning
motion representations.

one-class SVMs and in testing) with 50% overlap. Those patches with accumulated optical
flow squared magnitude above a fixed threshold (empirically set at 10 in our experiments)
are foregrounded for further processing; other patches are discarded. Figure 2 depicts the
result of extracting foreground patches. This process is designed to eliminate most of the
background, thereby reducing the computational cost of further processing.

3.2 Convolutional Winner-Take-All autoencoder
The Convolutional Winner-Take-All Autoencoder (Conv-WTA) [16] is a non-symmetric au-
toencoder that learns hierarchical sparse representations in an unsupervised fashion. The
encoder typically consists of a stack of several ReLU convolutional layers with small filters
and the decoder is a linear deconvolutional layer of larger size. A deep encoder with small
filters incorporates more non-linearity and effectively regularises a larger filter (e.g 11×11)
by expressing as a decomposition of smaller filters (e.g. 5× 5) [18]. Like [16], we use
an autoencoder with three encoding layers and a single decoding layer (Fig. 3), giving a
pipeline of tensors H l ×W l ×Cl , with the input layer being an input foreground patch P of
optical flow vectors of size H0×W 0×C0, where C0 = 2. Zero-padding is implemented in
all convolutional layers, so that each feature map has the same size as the input.

Given a training set with N foreground patches {Pn}N
n=1, the weights Wl and biases bl of

each layer l are learnt by minimising the regularised least squares reconstruction error:

1
2N

N

∑
n=1
‖Pn− P̂n‖2

2 +
λ

2

4

∑
l=1
‖Wl‖2

F (1)
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(a) (b)
Figure 4: Learnt deconvolutional filters of Conv-WTA trained on the UCSD Ped1 and Ped2
optical flow foreground patches: (a) visualisation of 128 filters, where flow-vector angle and
magnitude is represented by hue and saturation [3] of 128 filters and (b) displacement vector
visualisation of four filters (the 1st (top-left), the 6th (top-right), the 7th (bottom-left) and the
12th (bottom-right) filter in the first row of (a)).

where ‖.‖F denotes the Frobenius norm, P̂n is the reconstruction of a patch Pn. The regu-
larization term λ is a hyper-parameter used to balance the importance of the reconstruction
error and the weight regularization.

In the feedforward phase, after computing the encoding tensor s3(x,y,c) (i.e. the output
of f3 in Fig. 3), a spatial sparsity mapping is applied:

gs3(x,y,c) =

{
s3(x,y,c), if s3(x,y,c) = maxx′,y′(s3(x′,y′,c))
0, otherwise

(2)

where (x,y,c) are the row, column and channel indices of an element in the tensor. The
result gs3(x,y,c) has only one non-zero value for each channel. Thus, the level of sparsity is
determined by the number of feature maps (C3 for the third layer). Only the non-zero hidden
units are used in back-propagating the error during training.

3.3 Max pooling and temporal averaging for motion feature
representation

After training the autoencoder, the output of the third layer can be used as a feature represen-
tation. C3 non-zero activations in the encoding tensor correspond to deconvolutional filters
(shown in Fig. 4) which contribute in the reconstruction of each optical flow patch. Using the
full output tensor of size H3×W 3×C3 as a motion feature representation preserves all of the
information, but is very large. Therefore, we extract a sparse and compressed motion feature
representation by turning off spatial sparsity and applying max-pooling on the last ReLU
feature maps, over the spatial region p× p with stride p (denoted as Conv-WTA Feature Ex-
traction in Fig. 1). The max-pooling is only used following training of the autoencoder with
WTA. Thus we benefit from the sparse representation that WTA promotes, whilst still reduc-
ing the dimensionality of the coding so that it is tractable for the OCSVM. Crucially, WTA
preserves the location of the maximum response in each filter, which is critical to success-
fully decoding and training the autoencoder to reduce reconstruction error. The location of
the maximum response is less critical for anomaly detection and hence max-pooling, which
greatly reduces dimensionality, is sufficient once training is complete.
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Figure 5: Frame-level and pixel-level evaluation on the UCSD Ped1. The legend for the
pixel-level (right) is the same as for the frame-level (left).

Figure 6: Frame-level and pixel-level evaluation on the UCSD Ped2.

To stabilise the output for each H0×W 0×C0 foreground patch extracted at time t, we
compute the motion feature representation at the same patch location over a temporal win-
dow {t − τ : t + τ} (τ = 2 in all experiments) and average the outputs. This gives a final
smoothed motion feature representation as output for each input foreground patch.

3.4 One class SVM modelling

One class SVM (OCSVM or unsupervised SVM) is a widely used method for outlier detec-
tion. Given the final feature-based representations {di}M

i=1for M normal foreground optical
flow patches, we use OCSVM for learning a normality model. In the testing phase, the
anomaly score of a foreground patch is calculated. For training the OCSVM, the meta-
parameter ν ∈ (0,1] determines the upper bound on the fraction of outliers and the lower
bound on the number of training examples used as support vectors. We employ a Gaus-
sian kernel k(d,d′) = e−γ‖d−d′‖2 for the SVM, in which d and d′ are the final feature-based
representations of foreground patches.

In order to capture variations in normal flow patterns over the image plane, we divide the
field of view into I× J regions. A separate OCSVM is learnt from the foreground patches
located in each region. In testing, abnormality scores for each patch are generated from the
OCSVM corresponding to the region within which that patch lies.
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Method
Ped1 Ped2

Frame level
(%)

Pixel level
(%)

Frame level
(%)

Pixel level
(%)

EER AUC EER AUC EER AUC EER AUC
Sparse Coding [5] 19 86 54 46.1 - - - -
Mixture Dynamic Texture [15] 25 81.8 55 44 25 85 55 -
MPPCA [11] 40 59 82 - 30 77 - -
Social Force Model [17] 31 67.5 79 - 42 63 - -
SCL [14] 15 91.8 40.9 63.8 - - - -
SL-HOF [20] 18 87.5 35 64.4 9 95.1 19 81
AMDN [21] 16 92.1 40.1 67.2 17 90.8 - -
Conv-AE [8] 27.9 81 - - 21.7 90 - -

Conv-WTA + SVM[1×1] 27.9 81.3 46.8 56 8.9 96.6 16.9 89.3
Conv-WTA + SVM[6×9] 14.8 91.6 35.8 66.1 9.5 95 18.4 83.9
Conv-WTA + SVM[12×18] 15.9 91.9 35.7 68.7 11.2 92.8 21.2 80.9

Table 1: Performance comparison on UCSD Ped1 and Ped2.

4 Experimental evaluation

Dataset and Evaluation measures. We use two datasets (UCSD and Avenue) in our eval-
uation. The UCSD dataset [15] contains two subsets of video clips, each corresponding to
a different scene. The first one, denoted as Ped1, contains clips of 158× 238 pixels and
depicts a scene where groups of people walk toward and away from the camera. This subset
contains 34 normal video clips and 36 video clips containing one or more anomalies for test-
ing. The second, denoted as Ped2, has spatial resolution of 240× 360 and contains scenes
with pedestrian movement parallel to the camera plane. This contains 16 normal video clips,
together with 12 test video clips. For our experiments on the UCSD dataset, we use ground-
truth annotations from [15]. The Avenue dataset [14] contains 16 training videos and 21
testing videos. In total there are 15,328 training frames and 15,324 testing frames, all with
resolution 360×640.

We evaluate the method using the frame-level and pixel-level criteria proposed by Weixin
et al. [15]. An algorithm classifies frames into those that contain an anomaly and those that
do not. For both criteria, these predictions are compared with ground-truth to give the equal
error rate (EER) and area under the curve (AUC) of the resulting ROC curve (TPR versus
FPR) generated by varying an acceptance threshold. For a predicted anomalous frame to
be correct, the pixel-level criterion [15] additionally requires that a ground-truth map of
anomalous pixels is more than 40% covered by a map of predicted anomalous pixels. This
criterion is well founded when the map of abnormal pixels is constrained to arise through
thresholding a map of abnormality scores, as in [15]; otherwise it can be circumvented by
setting every pixel in a frame as anomalous, when just one pixel is predicted to be anomalous
- the frame-level score is not affected and the pixel-level criterion is always satisfied. In
order to use the pixel-level criterion, we output a map of abnormality scores by bilinear
interpolation of patch scores and evaluate our proposed method using this.
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Figure 7: Detection results on the UCSD Ped1 (first row), the Ped2 (second row) and the
Avenue dataset (third row). Our method detects the anomalies of a biker, skater, car and
wheelchair on the UCSD dataset. Moreover, running, loitering, throwing object and jump-
ing on the Avenue dataset are also detected. Pixels that have been correctly predicted as
anomalous are shown in yellow; anomalous pixels that have been missed are shown in red,
and pixels that have been incorrectly predicted as anomalous are shown in green.

Convolutional WTA autoencoder architecture and parameters. The Conv-WTA au-
toencoder architecture is 128conv5-128conv5-128conv5-128deconv11 with a stride of 1,
zero-padding of 2 in each convolutional layer and cropping of 5 in the deconvolutional layer.
We train our model on 3×105 foreground optical flow patches of size 48×48 extracted from
the UCSD dataset, using stochastic gradient descent with batch size Nb = 100, momentum
of 0.9 and weight decay λ = 5×10−4 [12]. The weights in each layer are initialized from a
zero-mean Gaussian distribution whose standard deviation is calculated from the number of
input channels and the spatial filter size of the layer [9]. This is a robust initialization method
that particularly considers the rectifier nonlinearities. The biases are initialized to zero. A
fixed value for the learning rate α = 10−4 is used following the first iteration. We use the
MatConvNet toolbox [1], augmented to perform WTA.

One class SVM model. The LIBSVM library (version 3.22) [4] was employed for our
experiments. The parameter ν is chosen from the range {2−12,2−11, . . . ,20} and γ (in the
Gaussian kernel) is from the range {2−12,2−11, . . . ,212}. Both parameters are selected by
10-fold cross validation on training data containing only normal activities.

For the UCSD dataset, we resize the frame resolution to 156×240. We evaluate perfor-
mance with three subdivisions of the field of view: [1× 1], [6× 9] and [12× 18]. The first
of these is equivalent to operating over the entire field of view. For the Avenue dataset, we
resize the frame resolution to 120× 156 which is close to one scale used in [14]. Here we
evaluate performance with three different subdivisions of the field of view: [1× 1], [4× 6]
and [8× 12]. In both cases, the sub-divisions are chosen to divide at pixel boundaries. 10-
fold cross validation is used once on each dataset for the SVM[1×1] model to select values
for the parameters to be used in all experiments (ν = 2−9 and γ = 2−7).
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Figure 8: Frame-level comparison on the Avenue dataset.

Method Frame level (%) Pixel level (%)
EER AUC EER AUC

SCL [14]* - 80.9 - -
Discriminative framework [6] - 78.3 - -
Conv-AE [8] 25.1 70.2 - -

Conv-WTA + SVM[1×1] 28.2 78.1 50 50.7
Conv-WTA + SVM[4×6] 26.5 81 45.7 54.2
Conv-WTA + SVM[8×12] 24.2 82.1 45.2 55

Table 2: Performance comparison on the Avenue dataset. (* the results from [6] replicated
SCL method [14])

Comparison with the state of the art. In this section, we compare the proposed frame-
work with state of the art methods on the UCSD and Avenue datasets. Each method is
compared on both ROC curves (Fig. 5, 6 and 8) and the EER/AUC metric (Tables 1, 2). Our
method achieves a significantly better EER and AUC result on Ped2 with SVM[1×1] (Table
1) and on Avenue with SVM[8× 12] (Table 2), where there is greater variation in depth.
Moreover, the method obtains comparable results with SVM[6×9] on Ped1 (Table 1).

As can be seen from Table 1, a finer sub-division gives better results on Ped1, whereas
the best results are obtained for no sub-division on Ped2 (i.e. [1×1]). This may be explained
by the greater variation in scale in Ped1 than in Ped2, leading to substantial variations in
the patterns of motion as an object moves in depth through the scene. It may also be due to
‘contextual’ anomalies such as a pedestrian walking over grass that occupies only a portion
of the scene. Finally, it is worth noting that a finer sub-division results in less training data
for each one-class SVM, which may result in unexpected results where there is inadequate
training data. Figure 7 displays some detection results on the UCSD and the Avenue datasets.

Varying max-pooling size. Max-pooling is used after training the autoencoder with WTA.
Thus, we benefit from the sparse representation that WTA promotes and the dimensionality
reduction of the coding for OCSVM. In this section, we evaluate the impact use of max-
pooling by varying the max-pooling area on Ped1 (Table 3). We use the encoding part of
the Conv-WTA autoencoder (removing zero-padding in convolutional layers and turning off
spatial sparsity) to extract motion features from foreground patches of size 24× 24. Then
max-pooling is applied on the last ReLU tensor of size 12×12×128 with different area and
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Max-pooling
size p

Encoding
representation

Subdivision
Frame level

(%)
Pixel level

(%)
EER AUC EER AUC

p = 12 1×1×128
[1×1] 28.4 81.1 47.1 52.8
[6×9] 15.5 91.3 34.4 65.7
[12×18] 16.2 91.5 35.5 67.7

p = 6 2×2×128
[1×1] 27.9 81.3 46.8 56
[6×9] 14.8 91.6 35.8 66.1
[12×18] 15.9 91.9 35.7 68.7

p = 4 3×3×128
[1×1] 27.9 80.8 46.8 55.4
[6×9] 15.3 91.1 38.6 63.2
[12×18] 16.7 91.4 38.1 65.9

Table 3: Performance comparison on UCSD Ped1 with different kernel sizes and strides of
max-pooling and different subdivisions.

stride. Table 3 shows a comparison on Ped1. The results are better with max-pooling size
p = 6. This size is used for comparing our results with the state of the art on the UCSD
dataset (Table 1). We use max-pooling size p = 12 for evaluating our frame-work on the
Avenue dataset.

5 Conclusions
We present a framework that use a deep spatial sparsity Conv-WTA autoencoder to learn a
motion feature representation for anomaly detection. The temporal fusion on feature space
gives a robust feature representation. Moreover, the combination of this motion feature rep-
resentation with a local application of one-class SVM gives competitive performance on two
challenging datasets in comparison to existing state-of-the-art methods. There is potential
to improve results further by adding an appearance channel alongside the optical flow chan-
nel, and also capturing longer-term motion patterns using a recurrent convolutional network
following on from the Conv-WTA encoding, and replacing our temporal smoothing.
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