
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

A nonlinear cointegration approach with
applications to structural health monitoring
To cite this article: H Shi et al 2016 J. Phys.: Conf. Ser. 744 012025

 

View the article online for updates and enhancements.

Related content
Impact Damage Detection in Smart
Composites Using Nonlinear
Acoustics—Cointegration Analysis for
Removal of Undesired Load Effect
Phong B Dao, Andrzej Klepka, ukasz
Pieczonka et al.

-

Cointegration approach for temperature
effect compensation in Lamb-wave-based
damage detection
Phong B Dao and Wieslaw J Staszewski

-

Recent citations
Long-time monitoring of the G. Meazza
stadium in a pattern recognition
prospective
Alessio Datteo et al

-

This content was downloaded from IP address 143.167.29.45 on 29/09/2017 at 10:41

https://doi.org/10.1088/1742-6596/744/1/012025
http://iopscience.iop.org/article/10.1088/1361-665X/aa5744
http://iopscience.iop.org/article/10.1088/1361-665X/aa5744
http://iopscience.iop.org/article/10.1088/1361-665X/aa5744
http://iopscience.iop.org/article/10.1088/1361-665X/aa5744
http://iopscience.iop.org/article/10.1088/0964-1726/22/9/095002
http://iopscience.iop.org/article/10.1088/0964-1726/22/9/095002
http://iopscience.iop.org/article/10.1088/0964-1726/22/9/095002
http://dx.doi.org/10.1016/j.proeng.2017.09.470
http://dx.doi.org/10.1016/j.proeng.2017.09.470
http://dx.doi.org/10.1016/j.proeng.2017.09.470


A nonlinear cointegration approach with applications to
structural health monitoring

H Shi, K Worden and E J Cross

Dynamic Research Group, Department of Mechanical Engineering, University of 
Sheffield, Mappin Street, Sheffield S1 3JD, UK

haichen.shi@sheffield.ac.uk

Abstract. One major obstacle to the implementation of structural health monitoring (SHM) is 
the effect of operational and environmental variabilities, which may corrupt the signal of 
structural degradation. Recently, an approach inspired from the community of econometrics, 
called cointegration, has been employed to eliminate the adverse influence from operational 
and environmental changes and still maintain sensitivity to structural damage. However, the 
linear nature of cointegration may limit its application when confronting nonlinear relations 
between system responses. This paper proposes a nonlinear cointegration method based on 
Gaussian process regression (GPR); the method is constructed under the Engle-Granger 
framework, and tests for unit root processes are conducted both before and after the GPR is 
applied. The proposed approach is examined with real engineering data from the monitoring of 
the Z24 Bridge.

1.  Introduction
Structural Health Monitoring (SHM) is becoming increasingly important for industries like aerospace 
engineering, civil infrastructure, mechanical engineering, etc. The aim of SHM is to carry out 
structural health assessment, which often involves obtaining dynamic response measurements of a 
system, damage-sensitive feature extraction and statistical analysis of these features [1]. More 
specifically, for example, in order to perform damage detection of a bridge, which is the application of 
interest here, procedures including sensor instrumentation, data acquisition, signal processing, feature 
extraction and damage detection are implemented. Dynamic characteristics like natural frequencies, 
mode shapes and damping ratios are considered to be appropriate features because they are considered 
to be functions of a system’s physical properties including mass, stiffness, damping and boundary 
conditions; damage-induced system changes can be defined as changes of these physical properties [2]. 
    Vibration-based SHM of bridges is often significantly affected by operational and environmental 
conditions, including: temperature, wind, humidity, ambient loading conditions, mass loading and so 
forth. The measured signals are sensitive to system variation as well as the changes of operational and 
environmental conditions, which may lead to false-positive or false-negative alarms of damage where 
no corrective procedure has been attempted. The method of separating the effects of operation and 
environment from real structural change is called data normalisation. In the past, many papers have 
been published relating to the issue of data normalisation; a fairly recent and comprehensive literature 
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review can be found in [3]. In [3], different types of environmental and operational variability, e.g.
temperature, boundary condition, mass loading and wind, were summarised with examples. The author 
also provided a good summary of several data normalisation methods including regression analysis, 
novelty detection and five other approaches that have been employed by the SHM community.  
    More recently, Cross et. al. [4], inspired by the econometrics literature, applied the concept of 
cointegration to the issue of removing common trends in SHM data. Cointegration is a property of 
some sets of nonstationary time series where a linear combination of the nonstationary series can 
produce a stationary residual, which can then be a potentially effective damage feature; the stationarity 
allowing use of the residual in a control chart [2]. The parameters of the linear combination are often 
referred to as a cointegrating vector. In [4], the cointegrating vectors were determined by a method 
from econometrics, specifically the Johansen procedure. The Johansen procedure is a maximum 
likelihood method, implemented as an eigenvalue problem, which seeks a white Gaussian residual 
from the cointegrating relation. An alternative procedure for estimating cointegrating relations is via 
the Engle-Granger (EG) two-step procedure [5]. The two steps in the EG procedure are as follows:

1. Given a set of measured time variables { ( ), = 1,… , }, one selects one of the variables of 
interest, without loss of generality, say ( ), and estimates using ordinary least-squares 
methods, a regression on the other variables i.e.,

( ) = ( )+⋯+ 	 ( ) + ( )                                           (1)

2. The regression parameters are then used to form an Error Correction Model (ECM), which is 
used to represent the long run relationships between variables.

It is not necessary here, to dwell on the nature of the ECM, because a simplified implementation of the 
EG two-step procedure is sufficient for SHM purposes. Assuming that the regression relationship in 
equation (1) has captured all of the long term relationships between the variables, the cointegrating 
residual ( ) will be a stationary sequence and can be used directly in the formation of control charts 
for monitoring [2]. (Readers curious about ECMs can consult [5] or any standard monograph on 
cointegration.)

However, the theory of cointegration is largely a linear theory, as manifested by the linear 
relationship in (1), and will not be applicable if the true relationships between the measured time series 
are nonlinear. While there has been a great deal of work on the problem, it is fair to say that there is 
currently no general theory of nonlinear cointegration. The book [6] covers much of the historical 
work carried out within the community of econometrics. In the context of SHM, the need for a 
nonlinear theory made itself clear quite quickly after the introduction of the method. Many 
engineering systems have nonlinear relationships between the measured features of interest, the Z24 
Bridge data discussed later in this paper is a classic example. The first two attempts to formulate a 
nonlinear cointegration method for SHM purposes were [7] and [8]; in these references, variants of the 
Johansen and EG procedures were used in an evolutionary optimisation framework in order to 
estimate parameters for multinomial cointegrating relationships. The problem which occurred in these 
papers, was that the cointegrating residuals from the methods were heteroscedastic i.e. nonstationary 
in their variance. A recent study [9], made an interesting attempt to remove the problem; however, it 
appeared to do so by moving the nonstationarity from the variance of the residual sequence into its tail 
distribution. The problem is then that normal control chart thresholds would not be appropriate.

A potentially straightforward approach to nonlinear cointegration, as discussed in [6] (and partially 
adopted in [7,8]), is to simply extend step (1) of the EG procedure above, to a nonlinear regression, e.g.

( ) = ( ( ), … , ( )) + ( )                                           (2)
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with some regression function estimated in a parametric or nonparametric manner. Neural networks 
were suggested for the representation in [6], but any appropriate machine learning algorithm could be 
used in principle and this idea is where a proportion of the recent nonlinear cointegration literature has 
concentrated its attention. One recent paper uses least-squares support vector machines to good effect 
[10], and incorporated a Bayesian approach. Motivated by a desire to increase the Bayesian element in 
the nonlinear regression, the current paper will adopt Gaussian Process Regression (GPR) in order to 
learn the required relationship in equation (2) from data. This brings the immediate advantage of 
providing natural confidence intervals for the regression model. To illustrate the use of the GPR 
cointegration model, the paper will re-examine data from the well-known Z24 Bridge SHM 
benchmark exercise. Before proceeding to a discussion of the GPR approach and then to the case 
study, the next section will provide a little background on nonstationarity and cointegration.   

2.  Cointegration
As discussed above, in order to address the issue of environmental and operational variations (EOV) in 
SHM, cointegration, a method inspired from the discipline of econometrics, was introduced and 
initially employed to deal with EOVs in data collected from bridges and from ultrasonic NDE 
experiments. In the context of econometrics, cointegration was originally developed in order to model 
the underlying equilibrium relationships between nonstationary time series, which if they existed, 
implied that some linear combination of them would produce a stationary time series. Econometricians 
are normally more interested in testing for the presence of cointegration and estimating the 
cointegration relationships in their own right, but from the perspective of engineering applications, 
especially SHM, the motivations are slightly different. By building cointegration relationships of 
multivariate time series that may be affected by EOVs, one can project out the EOVs by acquiring a 
stationary series, which may serve as an effective damage indicator. Successful implementations in 
SHM were demonstrated by Cross et.al. in [5,7,8], in which cointegrating regression model errors 
were utilised as a damage indicator; EOVs were effectively eliminated in the stationary residual series, 
which, however, still maintained sensitivity to damage. Unfortunately, nature of the cointegration
limited the applicability of the method to problems where variates were related linearly. In this paper a 
new approach based on nonlinear cointegration theory is proposed to address this issue. Although this 
paper proposes a nonlinear algorithm, it makes uses of ideas from the linear theory and this section 
will discuss those ideas briefly before moving to the GPR. 

2.1.  Linear Cointegration
2.1.1 Stationarity and cointegration. Cointegration theory first arose in the field of econometrics to 
address the issue of “spurious regression”, which is due to the nonstationarity of some economic series. 
If two time series show monotonic trends, even if the trends are not causally related, ordinary least-
squares regression will potentially find a spurious relationship. For example, two completely unrelated 
time series may be found to exhibit some regression. One of the original aims of cointegration was to 
help expose truly causal relationships. 
        The basic definition of cointegration given by Engle and Granger is that two or more 
nonstationary time series (i.e. time series whose statistical moments vary with time) are cointegrated if 
some linear combination of them is stationary. To give a measure of the nonstationarity of time series, 
the order of integration is defined as follows. If a nonstationary time series )(tx can be transformed to 

be stationary after differencing times, then )(tx is said to be integrated of order d , which is denoted 

as )1(~)( Itx . So, an )1(I series is one which becomes stationary series after differencing only once, 

an )0(I series implies a stationary series. A more precise definition is now possible; a set of time 
series is cointegrated if they are all integrated of the same order and a linear combination exists which 
is integrated of a lower order [11]. Having established this definition, it is clearly important to have a 
means of estimating the order of integration; this can be accomplished using the ADF test.
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2.1.2 The Augmented Dickey-Fuller (ADF) test. In order to determine the order of integration of a time
series, a number of well-established statistical methods can be employed; one of the most commonly 
applied approaches is the Augmented Dickey-Fuller (ADF) test. Consider a time series )(tx , to test 

whether )(tx is stationary, if not, to what order )(tx is integrated to, )(tx will be fitted to the ADF 
regression model, which has the form [11]:

t

p

j
ctcjtxtxtx     211

)()1()( (3)

where  is the difference operator, i.e. )1()()(  txtxtx , p is the number of lagged terms, t is 

the model residual, tc1 and 2c represent a deterministic trend term and a shift respectively, these two 
terms are both optional choices which are dependent on the complexity of the real model. The 
procedures of the ADF test are: first, use a least square method to estimate the parameters in model (2), 
then to test the null hypothesis of 0 . The t statistic on  is calculated [11]:


 

̂
t (4)

where ̂ is the estimate of parameter  and  is the variance of the estimated parameters. Because 

the limiting distribution of the estimator ̂ is not a typical distribution (normal, student, etc), Dickey 
and Fuller (DF) investigated the asymptotic distribution of the statistic, and constructed a table of 
critical values. Once the statistic is calculated, it is compared with the DF table critical values, if

 tt  , where t is the critical value at level  given by DF, one can accept the null hypothesis. Thus 

the time series tx has a unit root and is an )1(I series, otherwise  tt  , and the null will be rejected. 

Next )(tx will be used to test the same null hypothesis, if accepted then )(tx can be regarded as an

)2(I series, if rejected the same procedures will be repeated until the order of integration is 
determined. In order to properly implement cointegration, the order of the series needs to be examined 
both before and after the analysis has been carried out, in order to check that cointegration has 
successfully lowered the order of integration.

Regardless of whether one is attempting linear or nonlinear cointegration, the ADF test (or an 
appropriate alternative) is an important part of the analysis because it establishes the stationarity (or 
not) of the regression model residual if one is employing the EG procedure. As mentioned above, the 
regression model used here will make use of Gaussian processes.

3.  Gaussian Process Regression
Gaussian process regression (GPR) is a Bayesian machine learning approach that can deal with 
nonlinear regression problems in such a way that confidence intervals for predictions are produced in a 
natural way. Generally speaking, a GP can be considered to be a distribution over functions, any finite 
samples from which are jointly Gaussian distributed [12]. Just as a Gaussian distribution can be fully 
specified by its mean and variance, analogously, a GP can be fully defined by its mean function )(xm
and covariance function ),( xxk  . This means that for any given inputs, the corresponding outputs are 
normally distributed, which gives possibilities for predicting unknown observations. As with other 
Bayesian inference approaches, unknown parameters are treated as random variables, and predictions 
are made probabilistically. 
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        In applying GPR, first of all, an appropriate prior assumption for the mean and covariance 
functions is applied. function. Then the joint distribution of known and unknown points is conditioned 
on training data, to give a predictive distribution for any new input observations. The final step is to 
integrate out parameters/hyrparameters in the model to give a posterior distribution. The detailed 
procedures are outlined as follows.
        For a given input x , a GP can be defined as [12],

))(),((~)( xx,xx kmGPf (5)

)]([)( xx fEm  (6)

))]()())(()([())(),(cov()( xxxxxxxx,  mfmfEffk (7)

where x are neighbouring points of the input x , E is the expectation operator. As normally little is 
known about the model, the first “guess” about the data, or the prior mean function is set to zero here; 
other possible choices of mean functions are linear functions, polynomial functions, etc. Therefore, the 
selection of covariance function is the key issue for GP. The covariance function defines the 
covariance of neighbouring data points as a function of the corresponding distance; this governs the 
smoothness of a process. The function used in this paper is called the squared exponential function, 
which is one of the most simple and commonly used covariance functions, it has the form [12],

 22

2
)

2

1
exp()( nl

k  x-xxx, 2
f (8)

where 2
f is the signal variance that dominates the magnitude of the process, 2

n is the noise variance,

l is the length scale parameter which controls the minimum length of two uncorrelated input variables. 
These parameters that control the behaviour of covariance functions are termed the hyperparameters. 
In the implementation of GPR used here, optimal values of the hyperparameters are estimated using a 
maximum likelihood approach [12].

       In order to make predictions at a new input point *x , one conditions the prior distribution on a 
known training set. As mentioned above, under the framework of the GP, the prediction and training 

set can be treated as joint Gaussian distribution, thus the predictive distribution of )( *xf can be 
estimated by conditioning the prior distribution on training data. The details of the analysis can be 
found in [12], only the summary formulae for the results will be given here.
Consider a training set based on vector inputs and scalar outputs, ],,[ N21 xxx X is the input 

matrix, ],,[ 21 Nyyy y is the corresponding output vector. For new (test) observations one defines 

the input matrix ],,[*
*
r

*
2

*
1 xxx X and the corresponding output vector ],,[ **

2
*
1 ryyy *y . and 

∗ are joint normally distributed, and according to the GP assumption, one can show that the 
predictions are distributed as [12], 

 ),(),(),(,),(),(~ *
1

*
1

* XXkXXkXXkXXkXXkN  yyy* (9)

For which the predictive mean )( *Xmpred and the predictive variance pred are expressed as follows:

y1
** ),(),()(  XXkXXkXmpred (10)

),(),(),(),()( *
1

**** XXkXXkXXkXXkXpred
 (11)
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where ),( *XXk is a convenient shorthand for the covariance matrix between input matrices X and

*X [12]. The predictive mean is the expected value of the output for a given test input and the 
predictive variance provides a natural confidence interval.

GPR can be used to estimate the nonlinear cointegrating relationship proposed in equation (2). A 
sequence of steps should be followed.

1. Select suitable monitored variables for the model and calculate the order of the variables, which 
should be integrated to the same order. The ADF test is implemented on the variables to determine the 
integration order.
2. Separate the data sets into two parts: a training and test data set. Training data are used to train the 
GP regression model, the test data set is employed for the aim of monitoring potential system variation.
The training data should not contain any data corresponding to damage, but should as far as possible 
span the range of EOVs anticipated.
3. Use the training data to train the GP regression model, then apply the ADF again to testify whether 
the model residual series is integrated to a lower order than the original variables. Once this goal is 
achieved, one can say that the nonlinear cointegrating relationship is established successfully, the 
common trends are purged, therefore, the model residual series may be a potentially good indicator of 
damage induced variations.

4.  Case study: SHM of the Z24 Bridge
3.1 Properties of natural frequencies
The Z24 Bridge in Switzerland is a well-known bridge in the SHM community, because the
monitoring campaign introduced artificial damage during the one year monitoring study, more 
specifically from 11 November 1997 to 11 September 1998. The monitoring campaign also measured 
environmental parameters including air temperature, wind characteristics, humidity and so on. In order 
to obtain the dynamic behaviour of the bridge, the modal parameters such as natural frequencies were 
extracted from acceleration measurements [18]. Figure 1 shows the first four natural frequencies with 
respect to observation numbers, the black dotted line shows the day when the first of the damage 
scenarios was implemented. However, partly due to the influence of environmental conditions, the 
natural frequencies show no significant sign of structural degradation. Furthermore, after nine months 
of monitoring of the normally functioning bridge, six kinds of damage scenarios were artificially 
employed on different parts of the bridge. All damage scenarios, with the corresponding date and data 
points are listed in Table 1. For more details about the monitoring systems and the progressive damage 
tests, the interested reader can refer to [13]. 
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Figure 1. The first four natural frequencies identified from the Z24 Bridge, the black dotted line 
indicates damage introduction (at data point 4918), the shaded area separates the data set into two 
parts: training and test.

Date Damage Scenario Day Index Data Points
10/08/98 Settlement of Pier, 20 mm 272 4918~4941
12/08/98 Settlement of Pier, 40 mm 274 4966~4989
17/08/98 Settlement of Pier, 80 mm 279 5084~5107
18/08/98 Settlement of Pier, 95 mm 280 5108~5131
19/08/98 Tilt of Foundation 281 5132~5155
20/08/98 3rd Reference Point 281 5156~5179

Table 1. Progressive damage test scenarios and test dates [19].

    On further observation of Figure 1, it is obvious that the natural frequencies were affected by some 
external driver to a great extent, and this turned out to be temperature. See data points from 1800 to 
2200 for example, the corresponding test dates were 28/01/1998 to 15/02/1998, air temperature was 
mostly below zero during this period. There emerged a large peak of the natural frequencies 
approximately at data number 1800-2200, this may be explained by the nonlinear behaviour of the 
natural frequencies caused by freezing of the asphalt [17]. It seems that the effect of temperature may 
result in nonlinear relations between natural frequencies. Figure 2 plots the relationships between each 
of the extracted frequencies. With visual inspection, it can be seen that the second frequency is not 
linearly related with the other frequencies, while , and	 appear to be mutually linearly related 
[17]. The results of the mutual relationships between frequencies are summarised in Table 2. 
Following the procedures in Section 2.3, the orders of integration for the time series of the four natural 
frequencies are determined using the ADF test; the results are given in Table 3, and show that these 
four natural frequency series are nonstationary at the 95% confidence level and integrated of order one, 
i.e. they are )1(I series.
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Figure 2. Mutual relationships of the first four natural frequencies.

Nonlinear Linear Linear
Nonlinear Nonlinear Nonlinear

Linear Nonlinear Linear
Linear Nonlinear Linear

Table 2. Relationships between the first four natural frequencies [17].

ADF statistic(5% level) 5% critical value Stationarity
-0.317481 -1.940880 N∆ -14.37213 -1.940880 Y
-0.741687 -1.940880 N∆ -17.09163 -1.940880 Y
-0.418102 -1.940880 N∆ -28.57986 -1.940880 Y
-0.423898 -1.940880 N∆ -26.46857 -1.940880 Y

Table 3. ADF test of the first four modal frequency time series.

3.2 Regression model of natural frequencies
It might be difficult to find the specific physical meaning of a natural frequency regression model; 
however, from the view of cointegration, once the cointegration relationship of variables is built, the 
equilibrium relationship may indicate that system is functioning under normal conditions, hence the 
model error may be sensitive to system variation induced by damage, if the model error tends to be 
stationary, the underlying common trends of the original data are successfully removed. Considering 
the nonlinear behaviour of natural frequencies during the conditions of low temperature, data points 
from data point 1500 ~ 2500 are selected as training data, for the reason that this part of the data 
contains both large peaks and small fluctuations caused by environmental conditions. The rest of the 
data set is used for testing, as is illustrated in Figure 1. Because it is necessary to select one of the four 
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natural frequencies to serve as regression target, there are four possible regression models, 
namely,	 = ( , , ), = ( , , ), = ( , , )		and = ( , , ).
Following the proposed procedures, the ADF tests are applied to the training residual, the results are 
listed in Table 4, since all ADF test statistics are smaller than the critical value at 5% level, the 
residuals are stationary, and in other words, the nonlinear cointegrating relationships are successfully
established. The prediction behaviours of the four possible models are quite similar, they all tend to 
have a good fit to the data. Due to the limited space here, only one of the four possible regression 
models is shown in Figure 3 which illustrates the prediction performance of GP regression model and 
also the model residual. In Figure 3(a), the regression model = ( , , ) is used. Generally, the 
GP models follow the trend of the measurement data very well; the environmentally induced 
variations are also well predicted. Furthermore, by observing Figure 3(a), the residual becomes non-
stationary after the damage is introduced. The upper and lower lines represent the training residual 
mean plus or minus three times the standard deviations. Combining the data of progressive damage 
tests of the monitoring campaign, Figure 3(b) correspond to the day index 270~271 (8~9 August, 
1998). Recalling Table 1, it shows that around these dates, the damage scenario 'Settlement of Pier' 
was implemented. However in Figure 3, 'damage' is detected on day index 225, when no damage was 
introduced, similar detection results can be found in [19], the similar sudden frequency drop was 
interpreted in terms of a possible increase of mass of the bridge due to some heavy trucks standing on 
it.

Regression model = ( , , ) = ( , , )
ADF test statistic -10.451 -5.850
5% critical value -1.941 -1.941

Stationarity Y Y
Regression model = ( , , )		 = ( , , )
ADF test statistic -11.872 -9.156
5% critical value -1.941 -1.941

Stationarity Y Y
Table 4. ADF test results of training residual.

Figure 3(a). Gaussian process regression Model = ( , , )prediction performance comparing 
with real measurements.
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Figure 3(b). Gaussian process regression Model = ( , , ) residual.

5.  Discussion and conclusions
Cointegration, an emerging approach in SHM, has been successfully employed to deal with 
environmental and operational effects in SHM. More specifically, cointegration, used to model the 
long-run equilibrium relationships in economic series, can be utilised in SHM problems to find some 
linear combination of nonstationary variables sharing the same trend to construct a stationary residual 
purged of common trends, which may serve as a damage indicator. As an extension of previous work, 
a nonlinear cointegration approach based on the Engle-Granger procedure and Gaussian process 
regression is proposed in this paper, aiming to build nonlinear cointegrating relationships between 
variables. The idea is basically within the framework of linear cointegration, except for using GP 
regression as the cointegrating function. The ADF test is implemented both before and after the 
cointegrating regression to determine the order of integration, and furthermore to examine whether a 
nonlinear cointegration relationship has been built. Real data from the Z24 Bridge is used to validate 
this method, the results show that the model error series created from the model basically stays 
stationary during normal operating conditions, which means the trends induced by EOVs are 
effectively eliminated, yet the model series residuals still maintain sensitivity to structural damage.

One obvious advantage of implementing cointegration, comparing with other approaches like linear 
regression, is that it is clear that no direct measure of environmental or operational variations are 
necessary. This may provide great convenience for SHM, because the scale of structures of interest are 
growing massively, it is sometimes difficult to acquire measures of ambient variations accurately. 
However, one major limitation for this method would be that the GP assumes the model to be a 
smooth function, even though it works well under many circumstances, when discontinuities or an 
underlying regime switch occurs in structures, the GP may fail to model accurately. This perhaps can 
be explained by the different structural response under cold and warm temperatures. This issue may 
potentially be addressed by partitioning the data set into different regimes, and fitting multiple GPs 
into the model, this will be considered in the future work of the authors.
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