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Abstract

In this article, we propose a multiscale method of embedding a graph into a vec-

tor space using diffusion wavelets. At each scale, we extract a detail subspace

and a corresponding lower-scale approximation subspace to represent the graph.

Representative features are then extracted at each scale to provide a scale-space

description of the graph. The lower-scale is constructed using a super-node

merging strategy based on nearest neighbor or maximum participation and the

new adjacency matrix is generated using vertex identification. This approach

allows the comparison of graphs where the important structural differences may

be present at varying scales. Additionally, this method can improve the differen-

tiating power of the embedded vectors and this property reduces the possibility

of cospectrality typical in spectral methods, substantially. The experimental re-

sults show that augmenting the features of abstract levels to the graph features

increases the graph classification accuracies in different datasets.

Keywords: Spectral graph embedding, diffusion wavelet, multi-resolution

analysis, graph summarization, scale space

1. Introduction

The graph data structure improves the expressiveness of vectors by describ-

ing objects in terms of the relationships between parts. This expressiveness in
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addition to the simplicity of presentation makes them so popular and there is

a rapidly growing interest in representation of different objects by graphs in5

different fields of science. The graph of covalence relation between chemical

molecules [1], the network of tertiary structure of proteins [2], and the skeleton

of objects in images and videos [3] are some examples of objects represented by

graphs.

The graph structure is determined by an unordered set of edges between10

an unordered set of nodes. This flexibility is a double-edged sword. On the

one hand, it causes the simplicity of object representation and this simplicity

results in better understanding of the internal relations of the objects. On

the other hand, it makes the procedure of graph handling so time consuming.

Different node permutations result in identical (or isomorphic) graphs, but the15

checking of this relationship between two graphs is an NP-complete problem [4].

There are some other problems in handling graphs, mentioned in [5, 6, 7, 8],

which motivate researchers to embed graphs in vector space during the last two

decades. Graph embedding in vector space tries to extract the differentiating

graph features and insert them into vectors. These vectors can be processed20

subsequently through the numerous statistical pattern analysis methods in order

to recognize patterns in corresponding graphs.

Of course some information is lost due to embed the flexible graph structure

into a relatively limited vector structure, but the advantage of the embedded

vectors is that we can utilize the full power of numerous statistical pattern25

recognition and machine learning techniques. It is crucial therefore that the

embedding method captures as much of the rich graph structure as possible.

Multi-resolution approaches have proved very effective in many areas of pattern

recognition, particularly in image analysis and computer vision, where the multi-

scale representation can pull out important features even when they appear at30

varying scales. This is the motivation for this paper, where we generate a multi-

resolution embedding of a graph based on the graph diffusion wavelet concept [9].

We anticipate that such a representation will be richer and improve comparison

and classification by revealing important structure at the different scales.
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A scale-based representation is already implicit in a number of graph em-35

bedding methods, particularly those based on the graph eigendecomposition,

where the eigenvalue, in some sense, reflects the scale of the feature. Several

works in the literature establishes connection between the structural properties

of graphs and the spectral features of their representation matrices [10]. These

attempts are grouped in the field of spectral graph theory and they are used40

as the feature extraction approach in spectral graph embedding in vector space

[5, 11, 12]. The mentioned spectral features are obtained in polynomial time [13]

from the eigendecomposition of graph, which is stated as follows: A = ΦΛΦ∗,

where A, Φ and Λ are the representation matrix, the matrix with eigenvectors

on its columns and the diagonal matrix of the eigenvalues, respectively. None45

of these generate an explicit scale-space representation or can control the scale

of the representation.

The graph spectrum (i.e. the vector of graph eigenvalues) is invariant to

different node permutations and has proved to be a useful graph embedding

method [14]. Unfortunately the problem of cospectrality, i.e. different graphs50

having the same spectrum, and lack of distinctiveness limits this approach. Al-

most all trees have cospectral mate [15] and there are works to produce cospec-

tral non-isomorphic graphs [16, 17]. This problem can be alleviated by using

eigenvectors [18] but in this approach there is no direct connection to the struc-

tural aspects of the graph.55

In this article, we try to create a rich graph embedding through a multi-

resolution approach. Structural properties of graphs exist at different scales

within the graph. Two graphs may be similar at one scale while they are dif-

ferent at another scale. For example, consider the comparison of two social

networks. The networks may be different or similar in the communication be-60

tween individuals (small scale), the structure of the constitutive communities

(intermediate scale), and the overall structure of the network and connections

between communities (large scale). The point at which scales convey the useful

information about the differences/similarities depends on the application. So,

mere extracting features from the initial graph, as it was done in previous works,65
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does not seem reasonable enough for all the applications.

For multi-resolution embedding proposed in this article, the spectrum of

different levels of approximation and detail are encapsulated into a feature vec-

tor. The mapping of graph into the approximation and detail subspaces is done

through the diffusion wavelet [9]. The summary graph of each level is extracted70

using this wavelet and some heuristics. This abstract graph1 is utilized as the

input of the diffusion wavelet for the next level. To the best of our knowl-

edge, there is not any application of multi-resolution signal processing methods

into graph embedding. The experimental results show that this approach can

improve the classification accuracy in different applications.75

In Section 2, some related works are presented. After declaring some basic

concepts in Section 3, the proposed method is described in Section 4. The

experimental results are displayed in Section 5 and finally Section 6 presents

some conclusion remarks and future works.

2. Related work80

The graph embedding methods can be divided into three groups: probing-

based, prototype-based and spectral methods. In probing-based methods [6, 7],

the frequent features are extracted from the graphs and their frequencies are

embedded into the fixed sized vectors. In prototype-based methods [8, 21], some

special prototypes are selected or made from training graphs and the differences85

of other graphs to these graphs are encoded into their feature vectors.

The spectral graph embedding is a prominent group of graph embedding

methods, whose process can be divided into two steps. In the first step, the

graph is coded into a matrix representing the binary relations between its ver-

tices. In the second step, the invariants are extracted from the representation90

matrix and inserted into feature vector such that they can differentiate different

graphs and assign similar vectors to similar graphs [18].

1The graph abstraction is used as a synonym for graph summarization in the literature
[19, 20]. The output of graph summarization is an abstract graph.
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Diverse concepts are used for defining the representation matrix. Adjacency

matrix [5, 22], adjacency of oriented line graph [11], Laplacian matrix [23, 24],

heat kernel [12, 25], and transition matrix of quantum random walk [26] are some95

instances of the introduced representation matrices. There are three approaches

in the invariant extraction step. The first approach is to use the elements of

representation matrix directly, such as β-complexity which uses the coefficients

of decomposition of representation matrix into other matrices [27]. The second

approach is to apply functions on the eigenvalues, e.g. min and max [5, 23, 26],100

sum [22], product [11, 12], and product of inverse [12] of the eigenvalues. The

last approach is to augment feature vectors by the functions on the eigenvectors.

The eigenvector related to the more important eigenvalue [28], the power series

coefficients of heat kernel content [12], and the symmetric polynomials [18] are

some instances of this approach. As it is noted in the introduction, here we105

use a different approach which utilizes the information contained both in the

eigenvalues and the eigenvectors.

Motivated from the extensive and successful application of wavelet trans-

form in the signal processing domain [29, 30, 31], during the last decade, the

researchers tried to transfer this concept to the graph domain. A graph signal110

is a signal with the number of samples equated to the graph order (i.e. the

number of graph vertices), each sample is assigned to a single vertex [32]. The

time and frequency domains in classical signals correspond to the vertex and

spectral domains in graph signals, respectively. Accordingly, the graph wavelets

are divided into two categories: the vertex domain wavelets [33, 34, 35] and the115

spectral domain wavelets [9, 36].

Random transforms [35], shortest path wavelet [33], and lifting-based wavelet

[34] are some examples of vertex domain wavelet designs. In random transforms

two groups of bases are defined for each graph, the first group is defined based

on the weighted average of graph signal samples in the neighborhood and the120

second group is defined based on the weighted difference of them. In shortest

path wavelet, for each vertex, the weighted averages of graph signal samples on

its neighborhood with different radii are computed as its large scale descriptions.
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Lifting-based wavelet design divides the vertices into two sets and defines the

wavelet coefficients of each set based on their neighbors in the other set.125

Spectral graph wavelet [36] and diffusion wavelet [9] are some examples of

spectral domain wavelets. The spectral graph wavelet is introduced accord-

ing to the eigendecomposition of the Laplacian matrix. The mother wavelet is

defined by utilizing the eigenvectors and applying a specially designed kernel

function on the eigenvalues. Scaling of the mother wavelet is defined by mul-130

tiplying in the spectral domain and its translation to a special vertex is done

by applying the spectral graph wavelet on a pulse located on that vertex. The

diffusion wavelet is a successful wavelet design in the spectral domain in which

the approximation and detail subspaces are computed based on the orthonormal

bases of these subspaces. These subspaces offer a multi-resolution analysis for135

the graph domain.

Diffusion wavelet is applied to some applications successfully. Gudivada [37]

constructed a fully connected similarity graph of data points using a Gaussian

kernel function. Afterwards, he calculated the data points coordinates in the

reduced dimension space of a special scale using the extended scaling functions140

of the diffusion wavelet. He used the extended scaling functions of the covariance

matrix as the eigenfaces in face recognition application. He also used this idea

in optical flow estimation by comparing the scaling functions of each block of

a frame against the scaling functions of the blocks of the search window in

the previous frame. Wang and Mahadevan [35] utilized the extended scaling145

functions of the diffusion wavelet to identify the topic hierarchy contained in a

document corpora and inferred the correlation of the documents to the topic

hierarchy.

All of the works related to the graph signal processing is applied on a single

graph or multiple graphs with identical node sets, because the graph signal150

processing is conceptually node order variant. Unlike the other works, in this

article, the information gathered from diffusion wavelet is used for comparing

different graphs with different vertex and edge sets. The extended scaling and

wavelet functions are used for extracting the summary and detail sub-graphs
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in every processed graph. A base embedding method is then employed on top155

of this information and makes the graph feature vector more informative. This

claim is assessed using different experiments.

3. Basic concepts

Let G = (V,E) ∈ G be an undirected and unlabeled graph with V as its

vertex set and E ⊆ V × V as its edge set.160

The adjacency matrix A of the undirected and unlabeled graph G is a sym-

metric |V | × |V | square matrix, which is defined as:

A =

[

aij =

{

1 if {i, j} ∈ E

0 otherwise

]

. (1)

The Laplacian matrix L for graph G is derived through equation L = D − A,

where D is the diagonal matrix of the vertex degrees. The transition matrix T

represents the possibility of transition between the pair of vertices in a single

time-step of a random walk and here it is derived from the adjacency matrix

through the equation165

T = D−1/2AD−1/2. (2)

This can be considered as a diffusion operator on the graph [9]. The tth power of

this matrix, i.e. T t, represents transitions between pairs of vertices after t time-

steps. This property is a motivation for defining a multi-resolution analysis for

graphs in [9], where the dyadic powers of the transition matrix T are used. The

lth resolution level is found after tl = 2l time-steps and the transition matrix at170

this resolution level is Tl = T 2l .

The graph G\{vi, vj} is the vertex identification on graph G for the vertices

vi, vj , such that in the new graph, two vertices vi and vj are gathered into one

single vertex v{i,j} incident to all the edges which have either of two vertices vi

and vj as one of their ends. The edge {vi, vj} (if exists) is converted to a loop175

inserted on v{i,j} .
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The key utility of diffusion wavelets is that, as T is a diffusion operator,

the detail present in any function on the graph reduces at each time-step, and

so can be represented more compactly. The graph can therefore be reduced

to an approximation subspace, representing a lower resolution graph, and a

detail subspace, representing the detail removed at the current level. If Sl is the

approximation subspace at level l, then the detail subspaceWl is the orthogonal

complement:

Sl = Sl+1 ⊕Wl. (3)

As the decomposition progresses, we expect the approximation subspace Sl to

get smaller, although not necessarily at every step as it may remain the same

size.

We now introduce some key terms relating to the wavelet decomposition and180

graph representation.

• Approximation subspace: The subspace which contains the approximate

wavelet representation at the current resolution level. This reduces in size

as the resolution decreases.

• Detail subspace: The subspace which contains the detailed wavelet rep-185

resentation at the current resolution level, representing the information

discarded at this level.

• Summary graph, summary features: A graph representing the reduced-

resolution graph at the current level, the graph embedding features of this

graph2.190

• Detail graph, detail features: Similarly, a graph representing the detail

lost from the original graph at the current level and the graph embedding

features of this graph.

2For consistency with wavelet and graph summarization literature, in this article, the word
”approximation” is used for subspaces and the word ”summary” is used for graphs, adjacency
matrices and features.
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The key to the graph wavelet decomposition is to define a basis for the

approximation subspace. This basis is used for representing the approximation195

subspace at the next level, reducing the size of the subspace. Here we follow

[9] and seek a basis set which is localized and can ϵ-approximate the diffusion

operator at the next level l + 1.

At the resolution level l, the approximation subspace Sl is represented in a

level specific basis set Φl (scaling functions), denoted by [Sl]Φl
. This basis set200

is represented in the basis from the previous level, Φl−1. So there is a transfor-

mation from the previous basis to the current one, expressed as [Φl]Φl−1
. The

detail subspace [Wl]Ψl
is represented in the basis of Ψl (the wavelet functions).

This basis is represented in the current basis as [Ψl]Φl
and represents the details

removed in the current resolution level.205

In almost all the applications, there is need to express these functions in the

initial space V0 on some initial basis Φ0 (usually the standard basis). These

extended bases are

[Φl]Φ0 = [Φl]Φl−1
[Φl−1]Φl−2

. . . [Φ2]Φ1 [Φ1]Φ0 . (4)

[Ψl]Φ0 = [Ψl]Φl
[Φl]Φl−1

[Φl−1]Φl−2
. . . [Φ2]Φ1 [Φ1]Φ0 . (5)

Following the methods of Coifman and Maggioni [9], the scaling functions are

obtained by a QR-decomposition of the level l diffusion operator, represented in

Φl on the domain and Φl+1 on the range, i.e. [T 2l ]
Φl+1

Φl
. Similarly, the wavelet

function is obtained through decomposition of I − [Φl+1]Φl
[Φl+1]

T
Φl
. In this

process, the columns of the input matrix are considered as the vectors of the210

underlying space and the basis is derived through orthogonalization of these

vectors. {ϕl,k}k∈Jl
and {ψl,k}k∈Kl

are the bases of extended scaling functions

and extended wavelet functions, respectively, where Jl and Kl are the index

sets of the selected columns for these bases by orthogonalization process. This

process is explained in detail in Section 4.3.215
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Figure 1: The flowchart of one level of DWE. Three basic sub-routines are determined in bold
face, each of which is described in its corresponding paragraph.

4. Proposed method

A multi-resolution approach for graph comparison needs to extract different

abstract levels3 of graphs and be able to compare the corresponding abstract

levels with each other. The proposed multi-resolution method called diffusion

wavelet embedding (DWE) method, relies on diffusion wavelet decomposition220

for extracting these abstract levels. Subsequently, a graph feature extraction

method is used to enable efficient comparison between the graphs extracted at

different levels. The flowchart of one level of DWE is drawn in Fig. 1.

As it can be seen, DWE consists of three sub-routines: 1) Abstract level

extraction, 2) Feature extraction, and 3) Graph summarization. In the first225

sub-routine A(L−1), the adjacency matrix of the previous abstract level, is pro-

cessed through the diffusion wavelet and [Φ(L)]
Φ

(L)
0

and [Ψ(L)]
Φ

(L)
0

, the bases of

approximation and detail subspaces of Lth abstract level, are returned. Note

that L, the abstract level, is not the same as the resolution level l. The summary

and detail features of this level, F
(L)
s and F

(L)
d , are extracted in the second sub-230

3One abstract level is identified with multiple resolution levels in the diffusion wavelet
decomposition. As it will be described, each abstract level encapsulates the diffusion wavelet
computations for one or more resolution levels. In this article, the superscript (L) indicates
the Lth abstract level, while the subscript l represents the lth resolution level.
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routine through applying a base feature extraction method on A
(L)
s and A

(L)
d ,

the symmetric matrices obtained from the mappings of the input graph to the

approximation and detail subspaces. Finally, the next abstract graph, A(L),

is built through graph summarization sub-routine and transmitted to the next

level for further processing. This sub-routine is performed in two steps. In the235

first step, the set of super-nodes, N , are constructed using A(L−1) and [Φ(L)]
Φ

(L)
0

and in the second step, the adjacency matrix of the abstract graph is generated

from A(L−1) and N .

4.1. Abstract level extraction

The objective here is to extract the next abstract level from the input graph

through application of the diffusion wavelet. We begin with the input graph G

with adjacency A0. This matrix can be written as

A = [u1, u2, . . . , u|V |], (6)

where ui is the ith column of the adjacency matrix. The jth element of ui,240

Ai,j , represents the power of connection between the vertices vi and vj . The

strategy is to apply the diffusion wavelet decomposition on diffusion operator

T to reduce the dimension of the approximation subspace. At each application

of the wavelet decomposition the level of detail is reduced, but not necessarily

enough to allow us to represent the approximation space in a lower dimension.245

As a result, we may need to apply the decomposition multiple times before we

can reduce the dimensionality of the subspace. Each dimensionality reduction

is an abstract level and contains one or more resolution levels.

Let S0 be the approximation subspace in which the abstract graph of level

L − 1, G(L−1), and its adjacency matrix, A(L−1), are defined. Assume that

at abstract level L, a dimension reduction occurs after m(L) diffusion wavelet

decompositions. This means that we found a sequence of wavelet decompositions
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such that

S0 = S1 = · · · = Sm(L)−1 ⊃ Sm(L) , (7)

where Sl is the approximation subspace obtained from applying diffusion wavelet

decomposition l times. In the intermediate subspaces the number of dimensions250

is equal to the number of dimensions of S0, so each vertex is described with

the same number of coordinates as the vertices in G(L−1). On the other hand,

the dimension reduction in Sm(L) means that every vertex can be represented

by fewer coordinates and the number of vertices describing the graph can be

reduced.255

4.2. Feature extraction

At the current level, [Φ
(L)

m(L) ]Φ(L)
0

and [Ψ
(L)

m(L) ]Φ(L)
0

are the bases of the approx-

imation and the detail subspaces, which are derived through eq. 4 and eq. 5,

respectively. We need to map A(L−1) into these subspaces in order to find the

graph representation at level L. The vertex coordinates are mapped into these

subspaces by projection onto the bases:

X(L) = A(L−1) × [Φ
(L)

m(L) ]Φ(L)
0
, (8)

Y (L) = A(L−1) × [Ψ
(L)

m(L) ]Φ(L)
0
, (9)

where X(L) represents the summary embedding and Y (L) represents the detail

embedding. The resulting X(L) and Y (L) matrices are not square because of the

reduction in dimensionality. For example, X(L) is a |S0| × |Sm(L) | matrix. For

yielding real-valued eigenvalues and eigenvectors (which are the raw materials

of almost all the spectral embedding methods), the processed matrix needs to

be square and symmetric. This task is done through the following equation:

A(L)
s = X(L)X(L)T . (10)
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There is a similar equation for the detail space. The resulting A
(L)
s and A

(L)
d

have the same dimensions as A(L−1), i.e. |S0| × |S0|, but they possess less

information. This kind of representation allows us to identify the original graph

vertices with the reduced resolution version. In fact the mappings of the input260

graph to the approximation and detail subspaces should have the dimensions

of |Sm(L) | × |Sm(L) | and (|S0| − |Sm(L) |) × (|S0| − |Sm(L) |), respectively. But it

should be noted that the resulting matrices A
(L)
s and A

(L)
d , are not used as a

lower resolution representations. These matrices are used as the inputs of some

base graph feature method f(G) to extract the graph features in the next step.265

The proposed diffusion wavelet embedding method for this purpose is defined

as follows:

Definition 1. Diffusion Wavelet Embedding (DWE): Given the set of abstract

subgraphs A = {A} ∪ {A
(L)
s |L = 1 . . . ρ} ∪ {A

(L)
d |L = 1 . . . ρ} for reference

graph G ∈ G and the base embedding method f : G → R
m, diffusion wavelet

embedding F is:

Ff,A : G → R
m×(2ρ+1)

Ff,A(G) = [f(A), f(A
(1)
s ), f(A

(2)
s ), . . . , f(A

(ρ)
s ),

f(A
(1)
d ), f(A

(2)
d ), . . . , f(A

(ρ)
d )].

(11)

4.3. Graph Summarization

To proceed with the DWE at the next abstract level, a graph summarization

method is needed. Here a diffusion wavelet-based method is proposed which de-270

rives the abstract graph, A(L), from the input graph, A(L−1), through applying

the basis of the summary space [Φm(L) ]Φ0 to it. This procedure consists of two

steps: 1) super-node construction and 2) adjacency matrix generation. In the

first step, the vertices of the input graph should be partitioned into super-nodes

which play the role of the vertices of the graph at the next level. For this pur-275

pose, V (G(L−1)) is divided into two groups: the participant and the deleted

vertices. These two classes of vertex are defined during the wavelet decomposi-

tion process. There, the basis space is constructed by taking the first column of

13



A as the first basis. The next basis is formed through orthogonalization of the

vector with greater difference to its image on the basis constructed so far. This280

process is repeated until the difference is lower than a pre-specified threshold.

The columns which participate in basis construction through orthogonalization

indicate participant vertices (with the indices included in Jm(L)) and the vertices

which are discarded up to desired threshold are called deleted vertices.

Each participant vertex is considered as the representative of a super-node.285

So there exist |Jm(L) | super-nodes, N = {n1, n2, . . . , n|J
m

(L) |}. Now it is time

to assign the deleted vertices to the super-nodes. Two approaches are pro-

posed here for this purpose: Nearest Neighbor (NN) and Maximum Participa-

tion (MP).

In NN approach, the deleted vertices are assigned to their nearest super-node290

in the target space. For this purpose, a 1NN classifier is used while the columns

of X(L) corresponding to the participant vertices are the training points and

the columns of X(L) corresponding to the deleted vertices are the test points.

X(L) is computed through eq. 8.

Motivated from [38], in the MP approach, the jth entry of the extended scal-

ing function corresponding to the super-node nk, is considered to be the amount

of participation of vj in constructing this super-node. Thus, each deleted vertex

vj is assigned to the super-node nk which has more participation in making

this super-node relative to the others. In other words, vj shows more tendency

to make nk rather than other super-nodes. This heuristic is expressed in the

following equation:

S(vj) = argmax
k,k∈J

m
(L)

ϕ
(L)

m(L),k
(j), (12)

where S(vj) is the super-node which the deleted vertex vj is assigned to.295

After assigning all the deleted vertices to the super-nodes, partitioning the

members of V (G(L−1)) into super-nodes, N = V (G(L)), is completed. The

next step is to insert edges between these vertices and form E(G(L)) through

adjacency matrix generation. For this purpose the vertex identification operator

14
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Figure 2: An example for vertex identification on the vertices of the super-nodes.

is used, and an example of this operation is shown in Fig. 2. Two vertices300

{v3, v4} are merged in the natural way by including any edges external to the

pair. Internal edges become self-loops. The resulting graph G\{v3, v4} is shown

at the top-right of Fig. 2.

4.4. The Algorithm

The algorithm of the proposed method is shown in Algorithm 1. The inputs305

of this algorithm are the graph adjacency matrix A, the number of abstract

levels ρ, the diffusion wavelet threshold ε, the super-node construction method

θ, and the base embedding method f : G → R
m. The output is the m× (2ρ+1)

dimensional feature matrix F . At first, the embedded vector of the reference

graph, f(A), is considered as the first column of the feature matrix F . The310

main body of the algorithm is repeated ρ times. In each iteration, the operation

corresponding to a single abstract level is performed. In step (i), each time,

one level of diffusion wavelet is applied on the transition matrix T through

the function Diffusion Wavelet. If the dimension of the approximation sub-

space is reduced, this subspace is considered as the approximation subspace of315

the abstract level L, otherwise another level of the diffusion wavelet is applied
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on the projection of T on the scaling functions. The inputs of the function

Diffusion Wavelet are the transition matrix T , the extended scaling functions

of the previous resolution level [Φl−1]Φ0 , the basis of the initial space Φ0, and

the threshold ε. Its outputs are the mapping of transition matrix T on the320

approximation subspace of the current resolution level, the extended scaling

and wavelet functions of this level ([Φl]Φ0 , [Ψl]Φ0), and the indices Jl,Kl of the

dimensions involved in the summary and detail spaces of T , respectively. In

step (ii), The vertex coordinates in the previous abstract level is mapped to the

approximation and wavelet subspaces, the resulting matrices are converted to325

the square symmetric ones, and their embedded vectors are inserted into fea-

ture matrix F . In step (iii), every participant node initiates a super-node as

its representative. The super node of every deleted node is either set to be its

nearest representative in the mapped coordinates or selected according to eq.

12, depending on the choice of method θ being NN or MP. For the first case,330

determining the 1-nearest neighbor is equivalent to finding the nearest point

in terms of Euclidean distance (or any other distance metric) and the mapped

coordinates is fetched from matrix X. In step (iv), the adjacency matrix of the

new abstract graph is computed through applying function vertex identify

each time on the members of one super-node. This function takes the adjacency335

matrix A and the super-nodes N(i) as input and identifies the members of N(i)

in the output adjacency matrix. Finally, the transition matrix and its space are

updated for the next iteration.

The time complexity of the algorithm is principally dependent on either the

base embedding method or the diffusion wavelet decomposition process. The340

diffusion wavelet decomposition relies on QR decomposition of a matrix which is

typically O(|V |3), with the usual speed-up for sparse graphs. This process must

be repeated for each wavelet level, but in the experiments here, the number of

levels required is small (1 in half of the cases and less than 7 in 93 percent of

the cases). We use the Laplacian spectrum embedding method, which is again345

O(|V |3) and the overall complexity is O(l|V |3) where l is the total number of

wavelet levels required.
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Algorithm 1 The algorithm of diffusion wavelet embedding method.

Inputs: A: adjacency Matrix
ρ: Number of abstract levels
ε: Diffusion wavelet precision
θ: the super-node construction method (NN or MP)
f : the base embedding method

Output: F : the feature matrix

1: Add f(A) as a column of matrix F

2: T ← Transition Matrix(A)
3: S ← S0

4: for L = 1, . . . , ρ do

◃ (i). Abstract level extraction

5: Φ0 ←an orthonormal basis which ε-spans S

6: J0 ← {1 . . . col(T )}
7: l← 1
8: while Jl−1 = Jl do

9: [[Φl]Φ0 , [Ψl]Φ0 , (Jl,Kl), T ]← Diffusion Wavelet(T, [Φl−1]Φ0 ,Φ0, ε)
10: l← l+ 1
11: end while

◃ (ii). Feature extraction

12: X ← A× [Φl]Φ0

13: As ← XXT

14: Ad ← (A× [Ψl]Φ0 )(A× [Ψl]Φ0 )
T

15: Add f(As) and f(Ad) as two columns of matrix F

◃ (iii). Graph Summarization: Super-node construction

16: for every participant node i, add i to S(i)

17: for every deleted node i, add i to S

(











argmin
k,k∈Jl

∥X(Jl(k))−X(i)∥2 if θ is NN

argmax
k,k∈Jl

Φl(i, k) if θ is MP

)

◃ (iv). Graph Summarization: Adjacency matrix generation

18: for every S(i), A← vertex identify(A,members of S(i))
19: T ← Transition Matrix(A)
20: S ← ⟨{ϕl,k}k∈Jl

⟩
21: end for
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As it can be seen, unlike the previous embedding methods which return a

feature vector for each graph, the output of DWE is a feature matrix.

5. Experiments350

In this section, we report the results of experiments to show the effectiveness

of the summarization and the embedding method. To begin, we examine the

properties of the graph summarization; in section 5.1 we use a toy example

to illustrate how the graph reduces in resolution whilst maintaining the key

structures. In section 5.2 we evaluate the accuracy of the summarization using355

synthetic data with varying structure.

In section 5.3 we evaluate the performance of multi-scale representation with

respect to edit distance, which is considered the gold-standard measure of graph

dissimilarity. Finally, in section 5.4 we explore whether real data has the multi-

scale properties which make our approach useful and compare the performance360

of the method with other state-of-the-art algorithms on real datasets.

In these experiments, three abstract levels are used in addition to the base

level. So the feature vector set is {f(A), f(A
(1)
s ), f(A

(2)
s ), f(A

(3)
s ), f(A

(1)
d ), f(A

(2)
d )

, f(A
(3)
d )}. The base embedding method is Laplacian spectrum, which is simple

and powerful. The classification accuracies are estimated using 5NN classifier.365

The reported values are the averages of 10 separate runs of 5-fold cross valida-

tion.

5.1. Toy example for summarization

In this section, the summaries of a sample graph are represented for compar-

ison between NN and MP approaches in super-nodes construction. This graph,370

G, illustrated in Fig. 3a has three triangle structures composed of three node

sets {1, 2, 3}, {4, 5, 6}, and {6, 7, 8}. The second and the third triangles are

closer to each other and they are separated from the first triangle by means

of the edge {3, 4}. It is expected for an appropriate summarization method to

encapsulate the vertices of each triangle into a separate super-node in initial ab-375

stract levels and cluster the second and the third triangles into one super-node
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(a) DWE-NN method
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Figure 3: The example for different super-node construction approaches in proposed graph
summarization.

in further iterations. As shown in Fig. 3a, NN approach which clusters nodes

with similar relations in every step, could not differentiate between the second

and the third triangles which are located close to each other, but it could specify

the coarser node clusters in further steps. As Fig. 3b exhibits, MP approach380

met the first expectation by constructing a node cluster for each triangle up

to the third summary level (however the super-node members are not as we

expect), but the coarser node clusters could not be established in further steps

using this approach, as the separating structure of edge {3, 4} disappeared in

initial summarization steps. It can be concluded that using NN approach offers385

more hope for constructing suitable medium and large size super-nodes, but

the impact of imprecise small super-nodes on overall summarization accuracy

should be more investigated.
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5.2. Accuracy of summarization on random graphs

The previous section exhibited some behaviors of NN and MP approaches390

in super-node construction. In order to judge between these two approaches,

they should be applied on a set of graphs with known multi-scale structures.

We prefer to use a synthetic graph set rather than a real one. The reason is

twofold. First, there is not a straightforward method to realize the inherent node

clusters in a real dataset, while in a synthetic dataset, the composition of the395

inherent node clusters is under control. Second, although the overall accuracy of

DWE method using either of these two super-node construction approaches can

be estimated on real datasets (as in section 5.4), we cannot conclude from the

overall accuracy that the differences are merely due to the difference between

the selected super-node construction methods, because the final results affect by400

the subsequent steps as well. The behaviors of these steps may vary in applying

on different structured graphs resulted from NN and MP approaches.

In the synthetic graph set, we composed some inherent node clusters called

communities such that they have many within-cluster relations but a few between-

cluster relations. The members of these communities are recorded for estimating405

the accuracies of NN and MP approaches, in the following. We use a synthetic

graph set composed of 100 random graphs in this experiment. The number of

communities and the number of vertices included in each community are picked

randomly from the sets {2, 3, 4} and {6, 7, 8}, respectively. These numbers are

chosen as a compromise between providing a test for the graph summarization410

algorithm, and the computational complexity of testing on large sets of large

graphs. Every vertex has 4 to 8 adjacent vertices within the community and

every community has 1 to 4 adjacent communities. The adjacent vertices which

connect the communities are picked randomly and every two graph communi-

ties are connected through at most 1 edge. The graphs are connected. Some of415

the synthesized graphs are drawn in Fig. 4. These graphs have a community

structure which varies in size and number.

To estimate the node clustering accuracy, the last level super-nodes with

the size greater than one are considered for every graph and all possible two
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Figure 4: Some of the random graphs synthesized for comparing NN and MP approaches
against each other.

Table 1: The estimation of node clustering accuracy for NN and MP approach.

Method #homos #heteros #all %SNCprecision

NN 3266 655 3921 83.2951
MP 2318 917 3235 71.6538

subsets of their vertices are checked for being in the same community. We call

the relation of being in the same community as homogeneity and that of being

in different communities as heterogeneity. The number of homogeneities and

heterogeneities in every graph is computed and the results are summed over all

graphs to obtain the values #homos and #heteros, respectively. The precision

of every super-node construction method is estimated as follows:

SNCprecision =
#homos

#all
, (13)

where #all = #homos +#heteros is the total number of two subsets checked

for all graphs. The results are tabulated in Table 1. As it can be seen from the

#all column, NN approach can cluster more nodes and obtain more abstract420

graphs, additionally its #homos and #heteros are greater and less than their

counterparts in MP approach, respectively. Thus we use NN approach in super-

node construction from now, as its estimation of node clustering accuracy is

better than MP approach.

5.3. Following the edit distance425

Graph edit distance between two graphs is defined as the minimum cost

edit operations (e.g. edge deletion) needed for transforming first graph into

second one [39], and is considered the gold standard to assessing the similarity
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of two graphs. The feature distance of an appropriate embedding method is

expected to follow the graph edit distance (which is accurate but expensive to430

compute). In our case, if two graphs have a small edit distance from each other,

the distance of their DWE feature vector should be small as well and vice versa.

Our experiment for studying this requirement is as follows.

A seed Delaunay triangulation graph, shown in Fig. 5, is generated with 100

vertices, the (x, y) coordinates of which are the real numbers picked randomly435

from the range [1−100]. We then delete successive random edges from the graph

to yield a sequence of graphs with increasing edit distance from the original.

In this way, we produce a set of graphs with known edit distance from 1 to

30. The long vector of DWE feature matrix of each graph in the sequence is

extracted and its Euclidean distance from the feature vector of the seed graph is440

considered. This process is repeated 1000 times and the average feature distance

of graphs with each value of edit distance is computed. Fig. 6 shows this average

values in contrast to their corresponding edit distances. NN and MP approaches

are used as the super-node construction approach in DWE-NN and DWE-MP,

respectively. It can be seen that the feature distances follow the trend of the445

edit distances, especially in DWE-NN method. However the deviation from the

mean value is considerable.

In these experiments, we use the Laplacian spectrum as the base embedding

method. It is well known that this embedding suffers from the problem of

cospectrality, which means that two graphs have the same spectrum and hence450

the same embedding [14, 26]. As a result, the embedded distance is zero, but

the edit distance is non-zero. The diffusion wavelet embedding can alleviate this

problem because it explores multiple scales where the cospectrality problem may

not exist.

We examined a number of cospectral graph sets from [26]. Three sets of455

Strongly Regular Graphs (SRGs) and two sets of Balanced Incomplete Block

Designs (BIBDs) are used. The DWE successfully distinguishes the cospectral

sets SRG(25,12,5,6), SRG(26,10,3,4) and BIBD(15,3,1) but not SRG(36,15,6,6)

and BIBD(23,11,5). DWE does not offer a complete solution to the problem of
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Figure 5: The random Delauney triangulation seed graph.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Feature distance of DWE−NN vs edit distance

Edit distance

F
e
a
tu

re
 d

is
ta

n
c
e

(a) DWE-NN method

0 5 10 15 20 25 30 35
2

4

6

8

10

12

14

16

18

20

22

Feature distance of DWE−MP vs edit distance

Edit distance

F
e
a
tu

re
 d

is
ta

n
c
e

(b) DWE-MP method

Figure 6: The feature distances of different versions of DWE vs edit distances.
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cospectrality but improves the performance of the base embedding method.460

5.4. Classification accuracy of DWE on real datasets

In our final experiment, we examine the performance of DWE of real-world

data in classification problems. We use eight different graph datasets which

are common in the graph classification literature, the properties of which are

tabulated in Table 2. The first five datasets consist of object detection graphs465

which are extracted from images; however the method of the graph extraction,

the graph sizes and their other properties are different. Among them, The

COIL15 dataset is of 15 classes of COIL-DEL dataset of [40] with the relatively

large graphs. The final three datasets are bio- and chemo-informatics datasets.

Enzymes contains graphs describing the teriary structures of protein molecules.470

PTC is a chemical structure dataset with graphs representing atoms and bonds.

PPI is a protein-protein interaction dataset.

The key motivation for our method, diffusion wavelet embedding, is that

the important structures in graph datasets can occur at different scales, and

we need a scale-space representation. To explore whether this is true with real475

data, we begin by looking at the discriminating power of the different wavelet

levels. We use three wavelet levels, and each level has an approximation and

detail feature sets. There is also a feature set for the original reference graph,

giving 7 feature sets in total. We denote these by {R,A1, A2, A3, D1, D2, D3}

where the letter refers to the type of representation, and the number to the480

level. A and D refer to all the approximation features and all the detail features

respectively. In the first set of experiments, we combine the chosen features

näıvely, by concatenating them into a single long-vector representation. Fig. 7

shows the accuracy of some level combinations for different datasets.

It can be seen that the accuracies of different level combinations differ from485

one dataset to another. It can be concluded that, for different datasets, the

important structural information is laid in different abstract levels. For example,

PPI consists of the relatively large graphs and the results of its two last wavelet

decomposition combinations suggest that its large scale interactions are more
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Table 2: The description of the tested real datasets.

Dataset Description #Vertices
(min, max, ave)

#Edges
(min, max, ave)

#Graphs #Classes

Llow [40] The graphs of hand-
writing letters with
low, medium and high
distortions, respec-
tively. The objective
is the letter class
detection.

(1, 8, 4.68) (0, 6, 3.13) 2250 15

Lmed [40] (1, 9,4.67) (0, 7, 3.21) 2250 15
Lhigh [40] (1,9,4.67) (0, 9, 4.5) 2250 15
Shock [3] The graphs of skeleton

of object images. The
objective is object de-
tection.

(4, 33, 13.17) (6, 64, 24.33) 150 10

COIL15
[40]

The triangulation ob-
ject graphs with cor-
ners as vertices. The
objective is object de-
tection.

(18, 77, 42.73) (45, 222, 116.49) 585 15

Enzymes
[2]

The graphs of pro-
tein tertiary structures.
The objective is to de-
tect the type of en-
zyme.

(2, 126, 32.63) (1, 149, 62.14) 600 2

PTC [41] The graphs of chemical
compounds. The ob-
jective is to detect the
carcinogenicity.

(2, 109, 25.56) (2, 216, 51.92) 344 2

PPI [42] The protein-protein
interaction networks.
The objective is to
detect the type of
bacteria.

(3, 232, 109.60) (4, 3006, 864.37) 86 2

informative than its small scale interactions. This property is not observed in the490

COIL15 dataset, even though its graphs are relatively large. The COIL15 graphs

are the object structure graphs and the reference graph consists of the subtle

structures is so important, accordingly removing this level is a big mistake.

It is clear from Fig. 7 that the chosen features have a big impact and

this varies between datasets. This supports our contention that different scales495

are important in different datasets. Generating the long vector of the level

combinations makes the implicit assumption of the same importance for all

levels of detail and the results of Fig. 7 show that it is not an effective strategy.

Instead we need to learn which levels are important for the data. To this end,

we now use ensemble learning.500

In ensemble learning methods, a single classifier is learned based on each

feature set and the final decision is made by merging the decisions of these
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Figure 7: Accuracies of applying 5NN classifier on some different level combinations’ long
vectors in the tested datasets.

single classifiers [43]. Here, seven 5NN classifiers Di, i = 1, . . . , 7 are learned

for the feature vectors of the base level, each of the approximation levels and

each of the detail levels, separately. DPx(i, j) = P̂i(Cj |x), is the probability505

of being sample x in class j estimated by classifier i. In our case, this value is

defined as the fraction of the five nearest neighbors of sample x which are in

class j. For example, in a two class problem, if classifier i confronted with three

neighbors of the first class and two neighbors of the second class for sample

x, we have DPx(i, .) = [0.6, 0.4]. Different ensemble learning methods apply510

different combination strategies to combine these values estimated by different

classifiers to conclude about the probability of being x in each class j, P̂ (Cj |x).

Of course the class of the given sample x, F̂ (x), is the class with the bigger

probability value.

We explore a number of different ensemble combination methods. Max, min,515

average, and product methods simply combine the values DPx(i, j), i = 1 . . . 7

by max, min, average, and product operators, respectively. In the majority

vote method, F̂ (x) is the class which the majority of the classifiers vote for
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it. Weighted vote is similar to majority vote except that the vote of classifier

i for class j is equal to DPx(i, j). The Bayes ensemble method uses values of520

confusion matrices of different classifiers to estimate P̂ (Cj |x). In the decision

template method, the responses of different classifiers to the training samples of

each class are structured in the decision template of that class. F̂ (x) is the class

with maximum similarity of its decision template to DPx. In Dempster-Shafer

method, the belief degree of each classifier about sample x being in each class525

enter to the computations. For detailed information, please refer to [43].

Fig. 8 plots the average classification accuracies of different ensemble meth-

ods for different datasets, compared with the all strategy which is the classifica-

tion of the long vector of all features (R+A+D in the previous section). The

results show that for different datasets, the best performing ensemble method is530

different, but it can be selected through a validation step. For this purpose, in

each run, the accuracies of all ensemble learning methods are estimated using

4-fold cross validation and the most accurate one is selected for applying on the

test data. Fig. 9 compares the best-validated ensemble method for each dataset

against its best-performing level combination. In six out of eight cases, the535

best-validated ensemble learning method outperforms the best-performing level

combination. Furthermore, using ensemble methods is more statistically reason-

able. Finally, the classification accuracies of DWE-NN are compared with other

embedding methods in Table 3. We chose the best-validated ensemble learning

method (best-ens) as the combination strategy for DWE-NN. The results us-540

ing the all strategy are also inserted in order to have a fair comparison. The

other embedding methods include Laplacian spectrum (Lspec), BackTrackless

Walk [44] (BTW), Ihara Zeta Function [45] (IZF), sorted HKSs [46] (HKSsort),

histogram of HKSs [46] (HKShist), heat kernel Trace [12] (HIT), and the coeffi-

cients of heat content power series [12] (HIP). It can be observed that in half of545

the datasets, DWE-NN using the all strategy, which simply uses the long vector

of features of all abstract levels, demonstrated better classification accuracy in

comparison with the other tested methods. However DWE-NN using the best

validated ensemble method is recommended, as this approach obtained the best
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Figure 8: The classification accuracies of applying different ensemble learning methods on
different datasets. The base classifier is 5NN.

accuracies in comparison with the other tested embedding methods, for classi-550

fication of the graphs in all tested datasets. The average classification accuracy

improvement for DWE in comparison with the best of the other accuracies in

the tested datasets is 6.25%.

Table 3: The classification accuracies of DWE-NN against other embedding methods for all
datasets. The best classification accuracy for every dataset is indicated by * symbol. The
accuracies of DWE-NN variants which are better than other tested embedding methods are
demonstrated in bold face.

Llow lmed lhigh Shock coil15 Enzymes PTC PPI

Lspec 44.764 34.413 44.364 40.733 26.346 82.283 59.955 70.569
BTW 32.12 24.813 27.022 35.333 27.358 81.05 53.669 66.373
IZF 6.667 6.733 17.871 10 6.788 81.717 44.16 46.536
HKSsort 43.867 35.711 44.48 38.467 22.983 79.517 55.087 71.608
HKShist 6.782 6.667 6.72 8.8 5.798 82.167 45.375 57.105
HIT 12.382 11.742 10.68 7.4 7.605 82.583 49.818 43.673
HIP 13.076 13.356 10.769 16.267 7.604 81.083 51.324 48.333
DWE-NN
(best-ens)

57.271* 50.547* 46.276* 41.667* 37.103* 83.05* 63.629* 77.634*

DWE-NN
(all)

46.52 38.74 48.94 37.40 19.17 81.33 54.69 78.28
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Figure 9: The average classification accuracies of the best-performing level combination and
the selected ensemble learning for all datasets.

6. Conclusion

In this article, Diffusion Wavelet Embedding (DWE) is proposed which is555

a multi-resolution embedding method using diffusion wavelet. This method

maps the reference graph to the approximation and detail subspaces of different

abstract levels and embeds each of these mappings into vector space using a

base embedding method. The abstract graphs of different levels are constructed

by applying a diffusion wavelet based summarization method on the abstract560

graph of the previous level.

The graph summarization using diffusion wavelet is a good option for dis-

covering the inherent node clusters within the graphs. The nearest neighbor

approach for super-node construction and the vertex identification for adjacency

matrix generation are appropriate operators for graph summarization.565

DWE can decrease the cospectrality effects by adding the features of different

levels to the base feature set. This method removed the cospectrality effect in

three out of five tested sets. DWE uses the information of eigenvectors for

mapping the graph into the approximation and detail subspaces at one hand

and the eigenvalues to extract the information from these mappings at the other570

hand. As the eigenvalues and the eigenvectors are two components which are
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sufficient for reconstructing the graph uniquely, this method has a good quality

for cospectrality reduction.

DWE can improve the classification accuracy in the wide range of applica-

tions, using the advantages of diffusion wavelet as a powerful tool for discov-575

ering the small and large scale structures within the graph. Five image object

detection datasets with different graph extraction methods and three chemical

datasets with different graph structures are tested and DWE enhanced their

classification accuracies.

The scale of the most informative structures of the graphs differs from one580

dataset to another. So, different level combinations have different performances

on different datasets. Utilizing the ensemble learning methods for combining the

information gathered from different levels is a suitable strategy, provided that

the more appropriate ensemble method for the special application is applied.

The experimental results suggest that the multi-resolution graph embedding585

is a promising approach provided that the large scale descriptions of the graphs

are extracted precisely. For future work a validation phase for exploring the most

informative combination of the abstraction levels can be applied. A validation

method should be adopted to set the number of the abstraction levels and the

threshold of the diffusion wavelet. The roles of the class number, the graphs590

size and the noise degree in the ensemble method selection should be verified.
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